Metabolic tumor burden quantified on [18F]FDG PET/CT improves TNM staging of lung cancer patients

  • Paula Lapa
  • Bárbara Oliveiros
  • Margarida Marques
  • Jorge Isidoro
  • Filipe Caseiro Alves
  • J. M. Nascimento Costa
  • Gracinda Costa
  • João Pedroso de Lima
Original Article



The purpose of our study was to test a new staging algorithm, combining clinical TNM staging (cTNM) with whole-body metabolic active tumor volume (MATV-WB), with the goal of improving prognostic ability and stratification power.


Initial staging [18F]FDG PET/CT of 278 non-small cell lung cancer (NSCLC) patients, performed between January/2011 and April/2016, 74(26.6%) women, 204(73.4%) men; aged 34-88 years (mean ± SD:66 ± 10), was retrospectively evaluated, and MATV-WB was quantified. Each patient’s follow-up time was recorded: 0.7-83.6 months (mean ± SD:25.1 ± 20.3).


MATV-WB was an independent and statistically-significant predictor of overall survival (p < 0.001). The overall survival predictive ability of MATV-WB (C index: mean ± SD = 0.7071 ± 0.0009) was not worse than cTNM (C index: mean ± SD = 0.7031 ± 0.007) (Z = −0.143, p = 0.773). Estimated mean survival times of 56.3 ± 3.0 (95%CI:50.40-62.23) and 21.7 ± 2.2 months (95%CI:17.34-25.98) (Log-Rank = 77.48, p < 0.001), one-year survival rate of 86.8% and of 52.8%, and five-year survival rate of 53.6% and no survivors, were determined, respectively, for patients with MATV-WB < 49.5 and MATV-WB ≥ 49.5. Patients with MATV-WB ≥ 49.5 had a mortality risk 2.9-5.8 times higher than those with MATV-WB < 49.5 (HR = 4.12, p < 0.001). MATV-WB cutoff points were also determined for each cTNM stage: 23.7(I), 49.5(II), 52(III), 48.8(IV) (p = 0.029, p = 0.227, p = 0.025 and p = 0.001, respectively). At stages I, III and IV there was a statistically-significant difference in the estimated mean overall survival time between groups of patients defined by the cutoff points (p = 0.007, p = 0.004 and p < 0.001, respectively). At stage II (p = 0.365), there was a clinically-significant difference of about 12 months between the groups. In all cTNM stages, patients with MATV-WB ≥ cutoff points had lower survival rates. Combined clinical TNM-PET staging (cTNM-P) was then tested: Stage I < 23.7; Stage I ≥ 23.7; Stage II < 49.5; Stage II ≥ 49.5; Stage III < 52; Stage III ≥ 52; Stage IV < 48.8; Stage IV ≥ 48.8. cTNM-P staging presented a superior overall survival predictive ability (C index = 0.730) compared with conventional cTNM staging (C index = 0.699) (Z = −4.49, p < 0.001).


cTNM-P staging has superior prognostic value compared with conventional cTNM staging, and allows better stratification of NSCLC patients.


[18F]FDG PET/CT Quantification Tumor burden Prognostic value Lung cancer 


  1. 1.
    UyBico SJ, Wu CC, Suh RD, Le NH, Brown K, Krishnam MS. Lung cancer staging essentials: the new TNM staging system and potential imaging pitfalls. Radiographics. 2010;30(5):1163–81.CrossRefPubMedGoogle Scholar
  2. 2.
    Brundage MD, Davies D, Mackillop WJ. Prognostic factors in non-small cell lung cancer: a decade of progress. Chest. 2002;122(3):1037–57.CrossRefPubMedGoogle Scholar
  3. 3.
    Grivaux M, Zureik M, Marsal L, Asselain B, Peureux M, Chavaillon JM, et al. Five year survival for lung cancer patients managed in general hospitals. Rev Mal Respir. 2009;26(1):37–44.CrossRefPubMedGoogle Scholar
  4. 4.
    Zhang H, Wroblewski K, Jiang Y, Penney BC, Appelbaum D, Simon CA, et al. A new PET/CT volumetric prognostic index for non-small cell lung cancer. Lung Cancer. 2015;89(1):43–9.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Goldstraw P, Crowley J, Chansky K, Giroux DJ, Groome PA, Rami-Porta R, et al. The IASLC lung cancer staging project: proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM classification of malignant tumours. J Thorac Oncol. 2007;2(8):706–14.CrossRefPubMedGoogle Scholar
  6. 6.
    Ball DL, Fisher R, Burmeister B, Graham P, Joseph D, Penniment M, et al. Stage is not a reliable indicator of tumor volume in non-small cell lung cancer: a preliminary analysis of the trans-Tasman radiation oncology group 99-05 database. J Thorac Oncol. 2006;1(7):667–72.PubMedGoogle Scholar
  7. 7.
    Krause BJ, Schwarzenböck S, Souvatzoglou M. FDG PET and PET/CT. Recent Results Cancer Res. 2013;187:351–69.CrossRefPubMedGoogle Scholar
  8. 8.
    Castelli J, De Bari B, Depeursinge A, Simon A, Devillers A, Roman Jimenez G, et al. Overview of the predictive value of quantitative 18 FDG PET in head and neck cancer treated with chemoradiotherapy. Crit Rev Oncol Hematol. 2016;108:40–51.CrossRefPubMedGoogle Scholar
  9. 9.
    Zhang H, Wroblewski K, Appelbaum D, Pu Y. Independent prognostic value of whole-body metabolic tumor burden from FDG-PET in non-small cell lung cancer. Int J Comput Assist Radiol Surg. 2013;8(2):181–91.CrossRefPubMedGoogle Scholar
  10. 10.
    Lee P, Bazan JG, Lavori PW, Weerasuriya DK, Quon A, Le QT, et al. Metabolic tumor volume is an independent prognostic factor in patients treated definitively for non-small-cell lung cancer. Clin Lung Cancer. 2012;13(1):52–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Liao S, Penney BC, Wroblewski K, Zhang H, Simon CA, Kampalath R, et al. Prognostic value of metabolic tumor burden on 18F-FDG PET in nonsurgical patients with non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2012;39(1):27–38.CrossRefPubMedGoogle Scholar
  12. 12.
    Liao S, Penney BC, Zhang H, Suzuki K, Pu Y. Prognostic value of the quantitative metabolic volumetric measurement on 18F-FDG PET/CT in stage IV nonsurgical small-cell lung cancer. Acad Radiol. 2012;19(1):69–77.CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang H, Wroblewski K, Liao S, Kampalath R, Penney BC, Zhang Y, et al. Prognostic value of metabolic tumor burden from (18)F-FDG PET in surgical patients with non-small-cell lung cancer. Acad Radiol. 2013;20(1):32–40.CrossRefPubMedGoogle Scholar
  14. 14.
    Chen HH, Chiu NT, Su WC, Guo HR, Lee BF. Prognostic value of whole-body total lesion glycolysis at pretreatment FDG PET/CT in non-small cell lung cancer. Radiology. 2012;264(2):559–66.CrossRefPubMedGoogle Scholar
  15. 15.
    Obara P, Pu Y. Prognostic value of metabolic tumor burden in lung cancer. Chin J Cancer Res. 2013;25(6):615–22.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Bazan JG, Duan F, Snyder BS, Horng D, Graves EE, Siegel BA, et al. Metabolic tumor volume predicts overall survival and local control in patients with stage III non-small cell lung cancer treated in ACRIN 6668/RTOG 0235. Eur J Nucl Med Mol Imaging. 2017;44(1):17–24.CrossRefPubMedGoogle Scholar
  17. 17.
    Graham MM, Badawi RD, Wahl RL. Variations in PET/CT methodology for oncologic imaging at U.S. academic medical centers: an imaging response assessment team survey. J Nucl Med. 2011;52(2):311–7.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Steyerberg EW, Harrell FE, Borsboom GJ, Eijkemans MJ, Vergouwe Y, Habbema JD. Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J Clin Epidemiol. 2001;54(8):774–81.CrossRefPubMedGoogle Scholar
  19. 19.
    Harrell FE, Califf RM, Pryor DB, Lee KL, Rosati RA. Evaluating the yield of medical tests. JAMA. 1982;247(18):2543–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Harrell FE, Lee KL, Califf RM, Pryor DB, Rosati RA. Regression modelling strategies for improved prognostic prediction. Stat Med. 1984;3(2):143–52.CrossRefPubMedGoogle Scholar
  21. 21.
    Harrell FE, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996;15(4):361–87.CrossRefPubMedGoogle Scholar
  22. 22.
    Liu J, Dong M, Sun X, Li W, Xing L, Yu J. Prognostic value of 18F-FDG PET/CT in surgical non-small cell lung cancer: a meta-analysis. PLoS One. 2016;11(1):e0146195.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Albain KS, Swann RS, Rusch VW, Turrisi AT, Shepherd FA, Smith C, et al. Radiotherapy plus chemotherapy with or without surgical resection for stage III non-small-cell lung cancer: a phase III randomised controlled trial. Lancet. 2009;374(9687):379–86.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    van Meerbeeck JP, Kramer GW, Van Schil PE, Legrand C, Smit EF, Schramel F, et al. Randomized controlled trial of resection versus radiotherapy after induction chemotherapy in stage IIIA-N2 non-small-cell lung cancer. J Natl Cancer Inst. 2007;99(6):442–50.CrossRefPubMedGoogle Scholar
  25. 25.
    Winther-Larsen A, Fledelius J, Sorensen BS, Meldgaard P. Metabolic tumor burden as marker of outcome in advanced EGFR wild-type NSCLC patients treated with erlotinib. Lung Cancer. 2016;94:81–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Lee JW, Lee SM, Yun M, Cho A. Prognostic value of volumetric parameters on staging and posttreatment FDG PET/CT in patients with stage IV non-small cell lung cancer. Clin Nucl Med. 2016;41(5):347–53.CrossRefPubMedGoogle Scholar
  27. 27.
    Pak K, Cheon GJ, Nam HY, Kim SJ, Kang KW, Chung JK, et al. Prognostic value of metabolic tumor volume and total lesion glycolysis in head and neck cancer: a systematic review and meta-analysis. J Nucl Med. 2014;55(6):884–90.CrossRefPubMedGoogle Scholar
  28. 28.
    Marinelli B, Espinet-Col C, Ulaner GA, McArthur HL, Gonen M, Jochelson M, et al. Prognostic value of FDG PET/CT-based metabolic tumor volumes in metastatic triple negative breast cancer patients. Am J Nucl Med Mol Imaging. 2016;6(2):120–7.PubMedPubMedCentralGoogle Scholar
  29. 29.
    McDonald JE, Kessler MM, Gardner MW, Buros AF, Ntambi JA, Waheed S, et al. Assessment of Total lesion glycolysis by 18F FDG PET/CT significantly improves prognostic value of GEP and ISS in myeloma. Clin Cancer Res. 2017;23(8):1981–7Google Scholar
  30. 30.
    Meignan M, Cottereau AS, Versari A, Chartier L, Dupuis J, Boussetta S, et al. Baseline metabolic tumor volume predicts outcome in high-tumor-burden follicular lymphoma: a pooled analysis of three multicenter studies. J Clin Oncol. 2016.
  31. 31.
    Marcus C, Wray R, Taghipour M, Marashdeh W, Ahn SJ, Mena E, et al. JOURNAL CLUB: value of quantitative FDG PET/CT volumetric biomarkers in recurrent colorectal cancer patient survival. AJR Am J Roentgenol. 2016;207(2):257–65.CrossRefPubMedGoogle Scholar
  32. 32.
    Hong JH, Jung US, Min KJ, Lee JK, Kim S, Eo JS. Prognostic value of total lesion glycolysis measured by 18F-FDG PET/CT in patients with locally advanced cervical cancer. Nucl Med Commun. 2016;37(8):843–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Kang CM, Lee SH, Hwang HK, Yun M, Lee WJ. Preoperative volume-based PET parameter, MTV2.5, as a potential surrogate marker for tumor biology and recurrence in resected pancreatic cancer. Medicine (Baltimore). 2016;95(9):e2595.CrossRefGoogle Scholar
  34. 34.
    Jakoby BW, Bercier Y, Conti M, Casey ME, Bendriem B, Townsend DW. Physical and clinical performance of the mCT time-of-flight PET/CT scanner. Phys Med Biol. 2011;56(8):2375–89.CrossRefPubMedGoogle Scholar
  35. 35.
    Lasnon C, Majdoub M, Lavigne B, Do P, Madelaine J, Visvikis D, et al. (18)F-FDG PET/CT heterogeneity quantification through textural features in the era of harmonisation programs: a focus on lung cancer. Eur J Nucl Med Mol Imaging. 2016;43(13):2324–35.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Paula Lapa
    • 1
  • Bárbara Oliveiros
    • 2
    • 3
  • Margarida Marques
    • 2
    • 4
  • Jorge Isidoro
    • 1
  • Filipe Caseiro Alves
    • 5
  • J. M. Nascimento Costa
    • 6
  • Gracinda Costa
    • 1
  • João Pedroso de Lima
    • 1
    • 7
  1. 1.Nuclear Medicine DepartmentCentro Hospitalar e Universitário de CoimbraCoimbraPortugal
  2. 2.Laboratory of Biostatistics and Medical Informatics, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  3. 3.Institute for Biomedical Imaging and Life Sciences, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  4. 4.Technology and Information Systems DepartmentCentro Hospitalar e Universitário de CoimbraCoimbraPortugal
  5. 5.Radiology DepartmentCentro Hospitalar e Universitário de CoimbraCoimbraPortugal
  6. 6.University Oncology Clinic, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  7. 7.Institute of Nuclear Sciences Applied to Health-ICNASUniversity of CoimbraCoimbraPortugal

Personalised recommendations