Skip to main content

Advertisement

Log in

A pilot study for texture analysis of 18F-FDG and 18F-FLT-PET/CT to predict tumor recurrence of patients with colorectal cancer who received surgery

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

This retrospective study was done to examine whether the heterogeneity in primary tumor F-18-fluorodeoxyglucose (18F-FDG) and 18F-3′-fluoro-3′-deoxythymidine (18F-FLT) distribution can predict prognosis of patients with colorectal cancer who received surgery.

Methods

The enrolled 32 patients with colorectal cancer underwent both 18F-FDG- and 18F-FLT-PET/CT studies before surgery. Clinicopathological factors, stage, SUVmax, SUVmean, metabolic tumor volume (SUV ≥ 2.5), total lesion glycolysis, total lesion proliferation and seven texture heterogeneity parameters (coefficient of variation, local parameters: entropy, homogeneity, and dissimilarity; and regional parameters: intensity variability [IV], size-zone variability [SZV], and zone percentage [ZP]) were obtained. Progression free survival (PFS) was calculated by the Kaplan-Meier method. Prognostic significance was assessed by Cox proportional hazards analysis.

Results

Eight patients had eventually come to progression, and 24 patients were alive without progression during clinical follow-up [mean follow-up PFS; 55.9 months (range, 1-72)]. High stage (p = 0.004), high 18F-FDG-IV (p = 0.015), high 18F-FDG-SZV (p = 0.013) and high 18F-FLT-entropy (p = 0.015) were significant in predicting poor 5-year PFS. Other parameters did not predict the disease outcome. At bivariate analysis, disease event hazards ratios for 18F-FDG-IV and 18F-FDG-SZV remained significant when adjusted for stage and 18F-FLT-entropy (18F-FDG-IV; p = 0.004 [adjusted for stage], 0.007 [adjusted for 18F-FLT-entropy]; 18F-FDG-SZV; p = 0.028 [adjusted for stage], 0.040 [adjusted for 18F-FLT-entropy]).

Conclusion

18F-FDG PET heterogeneity parameters, IV and SZV, have a potential to be strong prognostic factors to predict PFS of patients with surgically resected colorectal cancer and are more useful than 18F-FLT-PET/CT heterogeneity parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Haggar FA, Boushey RP. Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin Colon Rectal Surg. 2009;22:191–7.

    Article  PubMed  PubMed Central  Google Scholar 

  2. O’Connor OJ, McDermott S, Slattery J, Sahani D, Blake MA. The use of PET-CT in the assessment of patients with colorectal carcinoma. Int J Surg Oncol. 2011;2011:846512.

    PubMed  PubMed Central  Google Scholar 

  3. Grassetto G, Capirci C, Marzola MC, Rampin L, Chondrogiannis S, Musto A, et al. Colorectal cancer: prognostic role of 18F-FDG-PET/CT. Abdom Imaging. 2012;37:575–9.

    Article  PubMed  Google Scholar 

  4. von Schulthess GK, Steinert HC, Hany TF. Integrated PET/CT: current applications and future directions. Radiology. 2006;238:405–22.

    Article  Google Scholar 

  5. Jo HJ, Kim SJ, Lee HY, Kim IJ. Prediction of survival and cancer recurrence using metabolic volumetric parameters measured by 18F-FDG PET/CT in patients with surgically resected rectal cancer. Clin Nucl Med. 2014;39:493–7.

    PubMed  Google Scholar 

  6. Ogawa S, Itabashi M, Kondo C, Momose M, Sakai S, Kameoka S. Prognostic value of Total lesion glycolysis measured by 18F-FDG-PET/CT in patients with colorectal cancer. Anticancer Res. 2015;35:3495–500.

    CAS  PubMed  Google Scholar 

  7. Herrmann K, Wieder HA, Buck AK, Schöffel M, Krause BJ, Fend F, et al. Early response assessment using 3′-deoxy-3′-[18F]fluorothymidine-positron emission tomography in high-grade non-Hodgkin’s lymphoma. Clin Cancer Res. 2007;13:3552–8.

    Article  CAS  PubMed  Google Scholar 

  8. Pio BS, Park CK, Pietras R, Hsueh WA, Satyamurthy N, Pegram MD, et al. Usefulness of 3′-[F-18]fluoro-3′-deoxythymidine with positron emission tomography in predicting breast cancer response to therapy. Mol Imaging Biol. 2006;8:36–42.

    Article  PubMed  Google Scholar 

  9. Kenny L, Coombes RC, Vigushin DM, Al-Nahhas A, Shousha S, Aboagye EO. Imaging early changes in proliferation at 1 week post chemotherapy: a pilot study in breast cancer patients with 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography. Eur J Nucl Med Mol Imaging. 2007;34:1339–47.

    Article  PubMed  Google Scholar 

  10. Herrmann K, Buck AK, Schuster T, Junger A, Wieder HA, Graf N, et al. Predictive value of initial 18F-FLT uptake in patients with aggressive non-Hodgkin lymphoma receiving R-CHOP treatment. J Nucl Med. 2011;52:690–6.

    Article  PubMed  Google Scholar 

  11. Hoshikawa H, Mori T, Yamamoto Y, Kishino T, Fukumura T, Samukawa Y, et al. Prognostic value comparison between 18F-FLT PET/CT and 18F-FDG PET/CT volume-based metabolic parameters in patients with head and neck cancer. Clin Nucl Med. 2015;40:464–8.

    Article  PubMed  Google Scholar 

  12. El Naqa I, Grigsby P, Apte A, Kidd E, Donnelly E, Khullar D, et al. Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recogn. 2009;42:1162–71.

    Article  Google Scholar 

  13. Cook GJ, O’Brien ME, Siddique M, Chicklore S, Loi HY, Sharma B, et al. Non-small cell lung cancer treated with erlotinib: heterogeneity of 18F-FDG uptake at PET-association with treatment response and prognosis. Radiology. 2015;276:883–93.

    Article  PubMed  Google Scholar 

  14. Lee HS, Oh JS, Park YS, Jang SJ, Choi IS, Ryu JS. Differentiating the grades of thymic epithelial tumor malignancy using textural features of intratumoral heterogeneity via 18F-FDG PET/CT. Ann Nucl Med. 2016;30:309–19.

    Article  CAS  PubMed  Google Scholar 

  15. Hyun SH, Kim HS, Choi SH, Choi DW, Lee JK. Intratumoral heterogeneity of 18F-FDG uptake predicts survival in patients with pancreatic ductal adenocarcinoma. Eur J Nucl Med Mol Imaging. 2016;43:1461–8.

    Article  CAS  PubMed  Google Scholar 

  16. Pugachev A, Ruan S, Carlin S, Larson SM, Campa J, Ling CC, et al. Dependence of FDG uptake on tumor microenvironment. Int J Radiat Oncol Biol Phys. 2005;62:545–53.

    Article  CAS  PubMed  Google Scholar 

  17. van Baardwijk A, Bosmans G, van Suylen RJ, van Kroonenburgh M, Hochstenbag M, Geskes G, et al. Correlation of intra-tumour heterogeneity on 18F-FDG PET with pathologic features in non-small cell lung cancer: a feasibility study. Radiother Oncol. 2008;87:55–8.

    Article  PubMed  Google Scholar 

  18. van Velden FH, Cheebsumon P, Yaqub M, Smit EF, Hoekstra OS, Lammertsma AA, et al. Evaluation of a cumulative SUV-volume histogram method for parameterizing heterogeneous intratumoural FDG uptake in non-small cell lung cancer PET studies. Eur J Nucl Med Mol Imaging. 2011;38:1636–47.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Asselin MC, O’Connor JP, Boellaard R, Thacker NA, Jackson A. Quantifying heterogeneity in human tumours using MRI and PET. Eur J Cancer. 2012;48:447–55.

    Article  PubMed  Google Scholar 

  20. Cook GJ, Yip C, Siddique M, Goh V, Chicklore S, Roy A, et al. Are pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy? J Nucl Med. 2013;54:19–26.

    Article  PubMed  Google Scholar 

  21. Nakajo M, Jinguji M, Nakabeppu Y, Nakajo M, Higashi R, Fukukura Y, et al. Texture analysis of 18F-FDG PET/CT to predict tumour response and prognosis of patients with esophageal cancer treated by chemoradiotherapy. Eur J Nucl Med Mol Imaging. 2017;44:206–14.

    Article  CAS  PubMed  Google Scholar 

  22. Bundschuh RA, Dinges J, Neumann L, Seyfried M, Zsótér N, Papp L, et al. Textural parameters of tumor heterogeneity in 18F-FDG PET/CT for therapy response assessment and prognosis in patients with locally advanced rectal cancer. J Nucl Med. 2014;55:891–7.

    Article  CAS  PubMed  Google Scholar 

  23. Oh SJ, Mosdzianowski C, Chi DY, Kim JY, Kang SH, Ryu JS, et al. Fully automated synthesis system of 3′-deoxy-3′-[18F]fluorothymidine. Nucl Med Biol. 2004;31:803–9.

    Article  CAS  PubMed  Google Scholar 

  24. Nakajo M, Kajiya Y, Tani A, Jinguji M, Nakajo M, Nihara T, et al. Diagnostic and prognostic values of FLT-PET/CT for pancreatic cancer: comparison with FDG-PET/CT. Abdom Radiol (NY). 2016.

  25. Hatt M, Tixier F, Cheze Le Rest C, Pradier O, Visvikis D. Robustness of intratumour 18F-FDG PET uptake heterogeneity quantification for therapy response prediction in oesophageal carcinoma. Eur J Nucl Med Mol Imaging. 2013;40:1662–71.

    Article  PubMed  Google Scholar 

  26. Galavis PE, Hollensen C, Jallow N, Paliwal B, Jeraj R. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol. 2010;49:1012–6.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tixier F, Hatt M, Le Rest CC, Le Pogam A, Corcos L, Visvikis D. Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18F-FDG PET. J Nucl Med. 2012;53:693–700.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gebejes A, Huertas R. Texture characterization based on Grey-level co-occurrence matrix. Proc ICTIC (Proc Conf Inform Manag Sci). 2013;2:375–8.

    Google Scholar 

  29. Tixier F, Le Rest CC, Hatt M, Albarghach N, Pradier O, Metges JP, et al. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med. 2011;52:369–78.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cheng NM, Fang YH, Lee LY, Chang JT, Tsan DL, Ng SH, et al. Zone-size nonuniformity of 18F-FDG PET regional textural features predicts survival in patients with oropharyngeal cancer. Eur J Nucl Med Mol Imaging. 2015;42:419–28.

    Article  CAS  PubMed  Google Scholar 

  31. Orlhac F, Soussan M, Maisonobe JA, Garcia CA, Vanderlinden B, Buvat I. Tumor texture analysis in 18F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis. J Nucl Med. 2014;55:414–22.

    Article  CAS  PubMed  Google Scholar 

  32. Hatt M, Majdoub M, Vallières M, Tixier F, Le Rest CC, Groheux D, et al. 18F-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort. J Nucl Med. 2015;56:38–44.

    Article  CAS  PubMed  Google Scholar 

  33. Edge SB, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti A, editors. AJCC cancer staging manual. 7th ed. New York: Springer; 2010.

  34. Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3:32–5.

    Article  CAS  PubMed  Google Scholar 

  35. Van de Wiele C, Kruse V, Smeets P, Sathekge M, Maes A. Predictive and prognostic value of metabolic tumour volume and total lesion glycolysis in solid tumours. Eur J Nucl Med Mol Imaging. 2013;40:290–301.

    Article  CAS  PubMed  Google Scholar 

  36. Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50(Suppl 1):122S–50S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dehdashti F, Grigsby PW, Myerson RJ, Nalbantoglu I, Ma C, Siegel BA. Positron emission tomography with [(18)F]-3′-deoxy-3′fluorothymidine (FLT) as a predictor of outcome in patients with locally advanced resectable rectal cancer: a pilot study. Mol Imaging Biol. 2013;15:106–13.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hong YS, Kim HO, Kim KP, Lee JL, Kim HJ, Lee SJ, et al. 3′-deoxy-3′-18F-fluorothymidine PET for the early prediction of response to leucovorin, 5-fluorouracil, and oxaliplatin therapy in patients with metastatic colorectal cancer. J Nucl Med. 2013;54:1209–16.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masatoyo Nakajo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was waived by the institutional review board for this retrospective study.

Electronic supplementary material

ESM 1

(DOCX 50.8 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakajo, M., Kajiya, Y., Tani, A. et al. A pilot study for texture analysis of 18F-FDG and 18F-FLT-PET/CT to predict tumor recurrence of patients with colorectal cancer who received surgery. Eur J Nucl Med Mol Imaging 44, 2158–2168 (2017). https://doi.org/10.1007/s00259-017-3787-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-017-3787-0

Keywords

Navigation