A pilot study for texture analysis of 18F-FDG and 18F-FLT-PET/CT to predict tumor recurrence of patients with colorectal cancer who received surgery

  • Masatoyo Nakajo
  • Yoriko Kajiya
  • Atsushi Tani
  • Megumi Jinguji
  • Masayuki Nakajo
  • Masaki Kitazono
  • Takashi Yoshiura
Original Article

Abstract

Purpose

This retrospective study was done to examine whether the heterogeneity in primary tumor F-18-fluorodeoxyglucose (18F-FDG) and 18F-3′-fluoro-3′-deoxythymidine (18F-FLT) distribution can predict prognosis of patients with colorectal cancer who received surgery.

Methods

The enrolled 32 patients with colorectal cancer underwent both 18F-FDG- and 18F-FLT-PET/CT studies before surgery. Clinicopathological factors, stage, SUVmax, SUVmean, metabolic tumor volume (SUV ≥ 2.5), total lesion glycolysis, total lesion proliferation and seven texture heterogeneity parameters (coefficient of variation, local parameters: entropy, homogeneity, and dissimilarity; and regional parameters: intensity variability [IV], size-zone variability [SZV], and zone percentage [ZP]) were obtained. Progression free survival (PFS) was calculated by the Kaplan-Meier method. Prognostic significance was assessed by Cox proportional hazards analysis.

Results

Eight patients had eventually come to progression, and 24 patients were alive without progression during clinical follow-up [mean follow-up PFS; 55.9 months (range, 1-72)]. High stage (p = 0.004), high 18F-FDG-IV (p = 0.015), high 18F-FDG-SZV (p = 0.013) and high 18F-FLT-entropy (p = 0.015) were significant in predicting poor 5-year PFS. Other parameters did not predict the disease outcome. At bivariate analysis, disease event hazards ratios for 18F-FDG-IV and 18F-FDG-SZV remained significant when adjusted for stage and 18F-FLT-entropy (18F-FDG-IV; p = 0.004 [adjusted for stage], 0.007 [adjusted for 18F-FLT-entropy]; 18F-FDG-SZV; p = 0.028 [adjusted for stage], 0.040 [adjusted for 18F-FLT-entropy]).

Conclusion

18F-FDG PET heterogeneity parameters, IV and SZV, have a potential to be strong prognostic factors to predict PFS of patients with surgically resected colorectal cancer and are more useful than 18F-FLT-PET/CT heterogeneity parameters.

Keywords

Colorectal cancer Prognosis 18F-FDG-PET/CT 18F-FLT-PET/CT Texture analysis 

Supplementary material

259_2017_3787_MOESM1_ESM.docx (51 kb)
ESM 1(DOCX 50.8 kb)

References

  1. 1.
    Haggar FA, Boushey RP. Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin Colon Rectal Surg. 2009;22:191–7.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    O’Connor OJ, McDermott S, Slattery J, Sahani D, Blake MA. The use of PET-CT in the assessment of patients with colorectal carcinoma. Int J Surg Oncol. 2011;2011:846512.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Grassetto G, Capirci C, Marzola MC, Rampin L, Chondrogiannis S, Musto A, et al. Colorectal cancer: prognostic role of 18F-FDG-PET/CT. Abdom Imaging. 2012;37:575–9.CrossRefPubMedGoogle Scholar
  4. 4.
    von Schulthess GK, Steinert HC, Hany TF. Integrated PET/CT: current applications and future directions. Radiology. 2006;238:405–22.CrossRefGoogle Scholar
  5. 5.
    Jo HJ, Kim SJ, Lee HY, Kim IJ. Prediction of survival and cancer recurrence using metabolic volumetric parameters measured by 18F-FDG PET/CT in patients with surgically resected rectal cancer. Clin Nucl Med. 2014;39:493–7.PubMedGoogle Scholar
  6. 6.
    Ogawa S, Itabashi M, Kondo C, Momose M, Sakai S, Kameoka S. Prognostic value of Total lesion glycolysis measured by 18F-FDG-PET/CT in patients with colorectal cancer. Anticancer Res. 2015;35:3495–500.PubMedGoogle Scholar
  7. 7.
    Herrmann K, Wieder HA, Buck AK, Schöffel M, Krause BJ, Fend F, et al. Early response assessment using 3′-deoxy-3′-[18F]fluorothymidine-positron emission tomography in high-grade non-Hodgkin’s lymphoma. Clin Cancer Res. 2007;13:3552–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Pio BS, Park CK, Pietras R, Hsueh WA, Satyamurthy N, Pegram MD, et al. Usefulness of 3′-[F-18]fluoro-3′-deoxythymidine with positron emission tomography in predicting breast cancer response to therapy. Mol Imaging Biol. 2006;8:36–42.CrossRefPubMedGoogle Scholar
  9. 9.
    Kenny L, Coombes RC, Vigushin DM, Al-Nahhas A, Shousha S, Aboagye EO. Imaging early changes in proliferation at 1 week post chemotherapy: a pilot study in breast cancer patients with 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography. Eur J Nucl Med Mol Imaging. 2007;34:1339–47.CrossRefPubMedGoogle Scholar
  10. 10.
    Herrmann K, Buck AK, Schuster T, Junger A, Wieder HA, Graf N, et al. Predictive value of initial 18F-FLT uptake in patients with aggressive non-Hodgkin lymphoma receiving R-CHOP treatment. J Nucl Med. 2011;52:690–6.CrossRefPubMedGoogle Scholar
  11. 11.
    Hoshikawa H, Mori T, Yamamoto Y, Kishino T, Fukumura T, Samukawa Y, et al. Prognostic value comparison between 18F-FLT PET/CT and 18F-FDG PET/CT volume-based metabolic parameters in patients with head and neck cancer. Clin Nucl Med. 2015;40:464–8.CrossRefPubMedGoogle Scholar
  12. 12.
    El Naqa I, Grigsby P, Apte A, Kidd E, Donnelly E, Khullar D, et al. Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recogn. 2009;42:1162–71.CrossRefGoogle Scholar
  13. 13.
    Cook GJ, O’Brien ME, Siddique M, Chicklore S, Loi HY, Sharma B, et al. Non-small cell lung cancer treated with erlotinib: heterogeneity of 18F-FDG uptake at PET-association with treatment response and prognosis. Radiology. 2015;276:883–93.CrossRefPubMedGoogle Scholar
  14. 14.
    Lee HS, Oh JS, Park YS, Jang SJ, Choi IS, Ryu JS. Differentiating the grades of thymic epithelial tumor malignancy using textural features of intratumoral heterogeneity via 18F-FDG PET/CT. Ann Nucl Med. 2016;30:309–19.CrossRefPubMedGoogle Scholar
  15. 15.
    Hyun SH, Kim HS, Choi SH, Choi DW, Lee JK. Intratumoral heterogeneity of 18F-FDG uptake predicts survival in patients with pancreatic ductal adenocarcinoma. Eur J Nucl Med Mol Imaging. 2016;43:1461–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Pugachev A, Ruan S, Carlin S, Larson SM, Campa J, Ling CC, et al. Dependence of FDG uptake on tumor microenvironment. Int J Radiat Oncol Biol Phys. 2005;62:545–53.CrossRefPubMedGoogle Scholar
  17. 17.
    van Baardwijk A, Bosmans G, van Suylen RJ, van Kroonenburgh M, Hochstenbag M, Geskes G, et al. Correlation of intra-tumour heterogeneity on 18F-FDG PET with pathologic features in non-small cell lung cancer: a feasibility study. Radiother Oncol. 2008;87:55–8.CrossRefPubMedGoogle Scholar
  18. 18.
    van Velden FH, Cheebsumon P, Yaqub M, Smit EF, Hoekstra OS, Lammertsma AA, et al. Evaluation of a cumulative SUV-volume histogram method for parameterizing heterogeneous intratumoural FDG uptake in non-small cell lung cancer PET studies. Eur J Nucl Med Mol Imaging. 2011;38:1636–47.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Asselin MC, O’Connor JP, Boellaard R, Thacker NA, Jackson A. Quantifying heterogeneity in human tumours using MRI and PET. Eur J Cancer. 2012;48:447–55.CrossRefPubMedGoogle Scholar
  20. 20.
    Cook GJ, Yip C, Siddique M, Goh V, Chicklore S, Roy A, et al. Are pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy? J Nucl Med. 2013;54:19–26.CrossRefPubMedGoogle Scholar
  21. 21.
    Nakajo M, Jinguji M, Nakabeppu Y, Nakajo M, Higashi R, Fukukura Y, et al. Texture analysis of 18F-FDG PET/CT to predict tumour response and prognosis of patients with esophageal cancer treated by chemoradiotherapy. Eur J Nucl Med Mol Imaging. 2017;44:206–14.CrossRefPubMedGoogle Scholar
  22. 22.
    Bundschuh RA, Dinges J, Neumann L, Seyfried M, Zsótér N, Papp L, et al. Textural parameters of tumor heterogeneity in 18F-FDG PET/CT for therapy response assessment and prognosis in patients with locally advanced rectal cancer. J Nucl Med. 2014;55:891–7.CrossRefPubMedGoogle Scholar
  23. 23.
    Oh SJ, Mosdzianowski C, Chi DY, Kim JY, Kang SH, Ryu JS, et al. Fully automated synthesis system of 3′-deoxy-3′-[18F]fluorothymidine. Nucl Med Biol. 2004;31:803–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Nakajo M, Kajiya Y, Tani A, Jinguji M, Nakajo M, Nihara T, et al. Diagnostic and prognostic values of FLT-PET/CT for pancreatic cancer: comparison with FDG-PET/CT. Abdom Radiol (NY). 2016.Google Scholar
  25. 25.
    Hatt M, Tixier F, Cheze Le Rest C, Pradier O, Visvikis D. Robustness of intratumour 18F-FDG PET uptake heterogeneity quantification for therapy response prediction in oesophageal carcinoma. Eur J Nucl Med Mol Imaging. 2013;40:1662–71.CrossRefPubMedGoogle Scholar
  26. 26.
    Galavis PE, Hollensen C, Jallow N, Paliwal B, Jeraj R. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol. 2010;49:1012–6.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Tixier F, Hatt M, Le Rest CC, Le Pogam A, Corcos L, Visvikis D. Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18F-FDG PET. J Nucl Med. 2012;53:693–700.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Gebejes A, Huertas R. Texture characterization based on Grey-level co-occurrence matrix. Proc ICTIC (Proc Conf Inform Manag Sci). 2013;2:375–8.Google Scholar
  29. 29.
    Tixier F, Le Rest CC, Hatt M, Albarghach N, Pradier O, Metges JP, et al. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med. 2011;52:369–78.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Cheng NM, Fang YH, Lee LY, Chang JT, Tsan DL, Ng SH, et al. Zone-size nonuniformity of 18F-FDG PET regional textural features predicts survival in patients with oropharyngeal cancer. Eur J Nucl Med Mol Imaging. 2015;42:419–28.CrossRefPubMedGoogle Scholar
  31. 31.
    Orlhac F, Soussan M, Maisonobe JA, Garcia CA, Vanderlinden B, Buvat I. Tumor texture analysis in 18F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis. J Nucl Med. 2014;55:414–22.CrossRefPubMedGoogle Scholar
  32. 32.
    Hatt M, Majdoub M, Vallières M, Tixier F, Le Rest CC, Groheux D, et al. 18F-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort. J Nucl Med. 2015;56:38–44.CrossRefPubMedGoogle Scholar
  33. 33.
    Edge SB, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti A, editors. AJCC cancer staging manual. 7th ed. New York: Springer; 2010.Google Scholar
  34. 34.
    Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3:32–5.CrossRefPubMedGoogle Scholar
  35. 35.
    Van de Wiele C, Kruse V, Smeets P, Sathekge M, Maes A. Predictive and prognostic value of metabolic tumour volume and total lesion glycolysis in solid tumours. Eur J Nucl Med Mol Imaging. 2013;40:290–301.CrossRefPubMedGoogle Scholar
  36. 36.
    Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50(Suppl 1):122S–50S.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Dehdashti F, Grigsby PW, Myerson RJ, Nalbantoglu I, Ma C, Siegel BA. Positron emission tomography with [(18)F]-3′-deoxy-3′fluorothymidine (FLT) as a predictor of outcome in patients with locally advanced resectable rectal cancer: a pilot study. Mol Imaging Biol. 2013;15:106–13.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hong YS, Kim HO, Kim KP, Lee JL, Kim HJ, Lee SJ, et al. 3′-deoxy-3′-18F-fluorothymidine PET for the early prediction of response to leucovorin, 5-fluorouracil, and oxaliplatin therapy in patients with metastatic colorectal cancer. J Nucl Med. 2013;54:1209–16.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Masatoyo Nakajo
    • 1
  • Yoriko Kajiya
    • 2
  • Atsushi Tani
    • 1
  • Megumi Jinguji
    • 1
  • Masayuki Nakajo
    • 2
  • Masaki Kitazono
    • 3
  • Takashi Yoshiura
    • 1
  1. 1.Department of Radiology, Graduate School of Medical and Dental SciencesKagoshima UniversityKagoshimaJapan
  2. 2.Department of RadiologyNanpuh HospitalKagoshimaJapan
  3. 3.Department of SurgeryNanpuh HospitalKagoshimaJapan

Personalised recommendations