Cardiac sympathetic neuronal damage precedes myocardial fibrosis in patients with Anderson-Fabry disease

  • Massimo Imbriaco
  • Teresa Pellegrino
  • Valentina Piscopo
  • Mario Petretta
  • Andrea Ponsiglione
  • Carmela Nappi
  • Marta Puglia
  • Serena Dell’Aversana
  • Eleonora Riccio
  • Letizia Spinelli
  • Antonio Pisani
  • Alberto Cuocolo
Original Article



Cardiac sympathetic denervation may be detectable in patients with Anderson-Fabry disease (AFD), suggesting its usefulness for early detection of the disease. However, the relationship between sympathetic neuronal damage measured by 123I–metaiodobenzylguanidine (MIBG) imaging with myocardial fibrosis on cardiac magnetic resonance (CMR) is still unclear.


Cardiac sympathetic innervation was assessed by 123I–MIBG single-photon emission computed tomography (SPECT) in 25 patients with genetically proved AFD. Within one month from MIBG imaging, all patients underwent contrast-enhanced CMR. MIBG defect size and fibrosis size on CMR were measured for the left ventricle (LV) and expressed as %LV.


Patients were divided into three groups according to MIBG and CMR findings: (1) matched normal, without MIBG defects and without fibrosis on CMR (n = 10); (2) unmatched, with MIBG defect but without fibrosis (n = 5); and (3) matched abnormal, with MIBG defect and fibrosis (n = 10). The three groups did not differ with respect to age, gender, α-galactosidase, proteinuria, glomerular filtration rate, and troponin I, while New York Heart Association class (p = 0.008), LV hypertrophy (p = 0.05), and enzyme replacement therapy (p = 0.02) were different among groups. Although in patients with matched abnormal findings, there was a significant correlation between MIBG defect size and area of fibrosis at CMR (r2 = 0.98, p < 0.001), MIBG defect size was larger than fibrosis size (26 ± 23 vs. 18 ± 13%LV, p = 0.02).


Sympathetic neuronal damage is frequent in AFD patients, and it may precede myocardial damage, such as fibrosis. Thus, 123I–MIBG imaging can be considered a challenging technique for early detection of cardiac involvement in AFD.


Fabry disease Sympathetic nervous system Radionuclide imaging Fibrosis Cardiac magnetic resonance imaging 


  1. 1.
    Desnick RJ, Ioannou YA, Eng CM. α-Galactosidase A deficiency: Fabry disease. In: Scriver CR, Beaudet AL, Sly WS, Valle D, editors. The metabolic and molecular bases of inherited disease. 8th ed. New York: McGraw Hill; 2001. p. 3733–74.Google Scholar
  2. 2.
    Linhart A, Kampmann C, Zamorano JL, Sunder-Plassmann G, Beck M, Mehta A, et al. European FOS investigators. Cardiac manifestations of Anderson-Fabry disease: results from the international Fabry outcome survey. Eur Heart J. 2007;28:1228–35.CrossRefPubMedGoogle Scholar
  3. 3.
    Schiffmann R. Fabry disease. Handb Clin Neurol. 2015;132:231–48.CrossRefPubMedGoogle Scholar
  4. 4.
    Schiffmann R, Warnock DG, Banikazemi M, Bultas J, Linthorst GE, Packman S, et al. Fabry disease: progression of nephropathy, and prevalence of cardiac and cerebrovascular events before enzyme replacement therapy. Nephrol Dial Transplant. 2009;24:2102–11.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Moon JC, Sachdev B, Elkington AG, McKenna WJ, Mehta A, Pennell DJ, et al. Gadolinium enhanced cardiovascular magnetic resonance in Anderson-Fabry disease. Evidence for a disease specific abnormality of the myocardial interstitium. Eur Heart J. 2003;24:2151–5.CrossRefPubMedGoogle Scholar
  6. 6.
    Weidemann F, Sanchez-Niño MD, Politei J, Oliveira JP, Wanner C, Warnock DG, et al. Fibrosis: a key feature of Fabry disease with potential therapeutic implications. Orphanet J Rare Dis. 2013;8:116.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Mewton N, Liu CY, Croisille P, Bluemke D, Lima JA. Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J Am Coll Cardiol. 2011;57:891–903.CrossRefPubMedGoogle Scholar
  8. 8.
    Wu KC, Weiss RG, Thiemann DR, Kitagawa K, Schmidt A, Dalal D, et al. Late gadolinium enhancement by cardiovascular magnetic resonance heralds an adverse prognosis in non ischemic cardiomyopathy. J Am Coll Cardiol. 2008;51:2414–21.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Stirrat J, White JA. The prognostic role of late gadolinium enhancement magnetic resonance imaging in patients with cardiomyopathy. Can J Cardiol. 2013;29:329–36.CrossRefPubMedGoogle Scholar
  10. 10.
    Oh-Ici D, Ridgway JP, Kuehne T, Berger F, Plein S, Sivananthan M, et al. Cardiovascular magnetic resonance of myocardial edema using a short inversion time inversion recovery (STIR) black-blood technique: diagnostic accuracy of visual and semi-quantitative assessment. J Cardiovasc Magn Reson. 2012;14:22.Google Scholar
  11. 11.
    Kline RC, Swanson DP, Wieland DM, Thrall JH, Gross MD, Pit B, et al. Myocardial imaging in man with I-123 metaiodobenzylguanidine. J Nucl Med. 1981;22:129–32.PubMedGoogle Scholar
  12. 12.
    Wieland DM, Brown LE, LesRogers W, Worthington KC, Wu JI, Clinthorne NH, et al. Myocardial imaging with a radioionated norepinephrine storage analog. J Nucl Med. 1981;22:22–31.PubMedGoogle Scholar
  13. 13.
    Wellman HN, Zipes DP. Cardiac sympathetic imaging with radioionated metaiodobenzylguanidine (MIBG). In: Zipes DP, Rowlands DJ, editors. Progress in cardiology 3/1. Philadelphia/London: Lea & Febiger; 1990. p. 161–74.Google Scholar
  14. 14.
    Barber MJ, Mueller TM, Henry DP, Felten SY, Zipes DP. Transmural myocardial infarction in the dog produces sympathectomy in non infarcted myocardium. Circulation. 1983;67:787–96.CrossRefPubMedGoogle Scholar
  15. 15.
    Dae MW, Herre JM, O’Connell JW, Botvinick EH, Newman D, Munoz L. Scintigraphic assessment of sympathetic innervation after transmural versus non transmural myocardial infarction. J Am Coll Cardiol. 1991;17:1416–23.CrossRefPubMedGoogle Scholar
  16. 16.
    Stanton MS, Tuli MM, Radtke NL, Heger J, Miles WM, Mock BH, et al. Regional sympathetic denervation after myocardial infarction in humans detected non-invasively using I-123-metaiodobenzylguaninidine. J Am Coll Cardiol. 1989;14:1519–26.CrossRefPubMedGoogle Scholar
  17. 17.
    Glowniak JV, Turner FE, Gray LL, Palac RT, Lagunas-Solar MC, Woodward WR. Iodine-123 metaiodobenzylguanidine imaging of the heart in idiopathic congestive cardiomyopathy and cardiac transplants. J Nucl Med. 1989;30:1182–91.PubMedGoogle Scholar
  18. 18.
    Schofer J, Spielmann R, Schuchert A, Weber K, Schluter M. Iodine-123-meta-iodobenzylguanidine scintigraphy: a noninvasive method to demonstrate myocardial adrenergic nervous system disintegrity in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol. 1988;12:1252–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Henderson EB, Kahn JK, Corbett JR, Jansen DE, Pippin J, Kulkarni P, et al. Abnormal I-123 metaiodobenzylguanidine myocardial washout and distribution may reflect myocardial adrenergic derangement in patients with congestive cardiomyopathy. Circulation. 1988;78:1192–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Nakajima K, Bunko H, Taki J, Shimizu M, Muramori A, Hisada K. Quantitative analysis of l23 I-metaiodobenzylguanidine (MIBG) uptake in hypertrophic cardiomyopathy. Am Heart J. 1990;119:1329–37.CrossRefPubMedGoogle Scholar
  21. 21.
    Stark RP, McGinn AL, Wilson RF. Chest pain in cardiac-transplant recipients. N Engl J Med. 1991;324:1791–4.CrossRefPubMedGoogle Scholar
  22. 22.
    Spinelli L, Pellegrino T, Pisani A, Giudice CA, Riccio E, Imbriaco M, et al. Relationship between left ventricular diastolic function and myocardial sympathetic denervation measured by (123) I-meta-iodobenzylguanidine imaging in Anderson-Fabry disease. Eur J Nucl Med Mol Imaging. 2016;43:729–39.CrossRefPubMedGoogle Scholar
  23. 23.
    Yamamoto S, Suzuki H, Sugimura K, Tatebe S, Aoki T, Miura M, et al. Focal reduction in cardiac (123) I-meta-iodobenzylguanidine uptake in patients with Anderson-Fabry disease. Circ J. 2016;25(80):2550–1.CrossRefGoogle Scholar
  24. 24.
    Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of diet in renal disease study group. Ann Intern Med. 1999;130:461–70.CrossRefPubMedGoogle Scholar
  25. 25.
    Flotats A, Carrió I, Agostini D, Le Guludec D, Marcassa C, Schäfers M, et al. Proposal for standardization of 123I metaiodobenzylguanidine (MIBG) cardiac sympathetic imaging by the EANM cardiovascular committee and the European Council of Nuclear Cardiology. Eur J Nucl Med Mol Imaging. 2010;37:1802–12.CrossRefPubMedGoogle Scholar
  26. 26.
    Pellegrino T, Petretta M, De Luca S, Paolillo S, Boemio A, Carotenuto R, et al. Observer reproducibility of results from a low-dose 123I-metaiodobenzylguanidine cardiac imaging protocol in patients with heart failure. Eur J Nucl Med Mol Imaging. 2013;40:1549–57.CrossRefPubMedGoogle Scholar
  27. 27.
    Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the cardiac imaging Committee of the Council on clinical cardiology of the American Heart Association. Circulation. 2002;105:539–42.CrossRefPubMedGoogle Scholar
  28. 28.
    Ponsiglione A, Puglia M, Morisco C, Barbuto L, Rapacciuolo A, Santoro M, et al. A unique association of arrhythmogenic right ventricular dysplasia and acute myocarditis, as assessed by cardiac MRI: a case report. BMC Cardiovasc Disord. 2016;21:16–230.Google Scholar
  29. 29.
    Kim RJ, Wu E, Rafael A, Chen E, Parker MA, Simonetti O, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 2000;343:1445–53.CrossRefPubMedGoogle Scholar
  30. 30.
    Moon JC, Sheppard M, Reed E, Lee P, Elliot PM, Pennell DJ. The histological basis of late gadolinium enhancement cardiovascular magnetic resonance in a patient with Anderson-Fabry disease. J Cardiovasc Magn Reson. 2006;8:479–82.CrossRefPubMedGoogle Scholar
  31. 31.
    Kozor R, Grieve SM, Tchan MC, Callaghan F, Hamilton-Craig C, Denaro C, et al. Cardiac involvement in genotype-positive Fabry disease patients assessed by cardiovascular MR. Heart. 2016;102:298–302.CrossRefPubMedGoogle Scholar
  32. 32.
    De Cobelli F, Esposito A, Belloni E, Pieroni M, Perseghin G, Chimenti C, et al. Delayed-enhanced cardiac MRI for differentiation of Fabry’s disease from symmetric hypertrophic cardiomyopathy. Am J Roentgenol. 2009;192:W97–102.CrossRefGoogle Scholar
  33. 33.
    Niemann M, Herrmann S, Hu K, Breunig F, Strotmann J, Beer M, et al. Differences in Fabry cardiomyopathy between female and male patients: consequences for diagnostic assessment. JACC Cardiovasc Imaging. 2011;4:592–601.CrossRefPubMedGoogle Scholar
  34. 34.
    Pica S, Sado DM, Maestrini V, Fontana M, White SK, Treibel T, et al. Reproducibility of native myocardial T1 mapping in the assessment of Fabry disease and its role in early detection of cardiac involvement by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2014;5:16–99.Google Scholar
  35. 35.
    Sado DM, White SK, Piechnik SK, Banypersad SM, Treibel T, Captur G, et al. Identification and assessment of Anderson-Fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping. Circ Cardiovasc Imaging. 2013;6:392–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Krämer J, Niemann M, Liu D, Hu K, MacHann W, Beer M, et al. Two-dimensional speckle tracking as a non-invasive tool for identification of myocardial fibrosis in Fabry disease. Eur Heart J. 2013;34:1587–96.CrossRefPubMedGoogle Scholar
  37. 37.
    Nappi C, Altiero M, Imbriaco M, Nicolai E, Giudice CA, Aiello M, et al. First experience of simultaneous PET/MRI for the early detection of cardiac involvement in patients with Anderson-Fabry disease. Eur J Nucl Med Mol Imaging. 2015;42:1025–31.CrossRefPubMedGoogle Scholar
  38. 38.
    Verschure DO, Lutter R, van Eck-Smit BL, Somsen GA, Verberne HJ. Myocardial (123)I–MIBG scintigraphy in relation to markers of inflammation and long-term clinical outcome in patients with stable chronic heart failure. J Nucl Cardiol. 2016. doi:10.1007/s12350-016-0697-7
  39. 39.
    Bertelsen AK, Tøndel C, Krohn J, Bull N, Aarseth J, Houge G, et al. Small fibre neuropathy in Fabry disease. J Neurol. 2013;260:917–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Alamartine E, Sury A, Roche F, Pichot V, Barthelemy JC. Autonomic nervous system activity in patients with Fabry disease. Open J Intern Med. 2012;2:116–22.CrossRefGoogle Scholar
  41. 41.
    Namdar M, Steffel J, Vidovic M, Brunckhorst CB, Holzmeister J, Luscher TF, et al. Electrocardiographic changes in early recognition of Fabry disease. Heart. 2011;97:485–90.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Massimo Imbriaco
    • 1
  • Teresa Pellegrino
    • 2
  • Valentina Piscopo
    • 1
  • Mario Petretta
    • 3
  • Andrea Ponsiglione
    • 1
  • Carmela Nappi
    • 1
  • Marta Puglia
    • 1
  • Serena Dell’Aversana
    • 1
  • Eleonora Riccio
    • 4
  • Letizia Spinelli
    • 1
  • Antonio Pisani
    • 4
  • Alberto Cuocolo
    • 1
  1. 1.Department of Advanced Biomedical SciencesUniversity Federico IINaplesItaly
  2. 2.Institute of Biostructure and BioimagingNational Council of ResearchNaplesItaly
  3. 3.Department of Translational Medical SciencesUniversity Federico IINaplesItaly
  4. 4.Department of Public HealthUniversity of Naples Federico IINaplesItaly

Personalised recommendations