Increased FDG uptake on late-treatment PET in non-tumour-affected oesophagus is prognostic for pathological complete response and disease recurrence in patients undergoing neoadjuvant radiochemotherapy

  • Sebastian Zschaeck
  • Frank Hofheinz
  • Klaus Zöphel
  • Rebecca Bütof
  • Christina Jentsch
  • Julia Schmollack
  • Steffen Löck
  • Jörg Kotzerke
  • Gustavo Baretton
  • Jürgen Weitz
  • Michael Baumann
  • Mechthild Krause
Original Article

Abstract

Purpose

Early side effects including oesophagitis are potential prognostic factors in patients undergoing radiochemotherapy (RCT) for locally advanced oesophageal cancer (LAEC). We assessed the prognostic value of 18F-fluorodeoxyglucose (FDG) uptake within irradiated non-tumour-affected oesophagus (NTO) during restaging positron emission tomography (PET) as a surrogate for inflammation/oesophagitis.

Methods

This retrospective evaluation included 64 patients with LAEC who had completed neoadjuvant RCT and had successful oncological resection. All patients underwent FDG PET/CT before and after RCT. In the restaging PET scan maximum and mean standardized uptake values (SUVmax, SUVmean) were determined in the tumour and NTO. Univariate Cox regression with respect to overall survival, local control, distant metastases and treatment failure was performed. Independence of clinically relevant parameters was tested in a multivariate Cox regression analysis.

Results

Increased FDG uptake, measured in terms of SUVmean in NTO during restaging was significantly associated with complete pathological remission (p = 0.002) and did not show a high correlation with FDG response of the tumour (rho < 0.3). In the univariate analysis, increased SUVmax and SUVmean in NTO was associated with improved overall survival (p = 0.011, p = 0.004), better local control (p = 0.051, p = 0.044), a lower rate of treatment failure (p < 0.001 for both) and development of distant metastases (p = 0.012, p = 0.001). In the multivariate analysis, SUVmax and SUVmean in NTO remained a significant prognostic factor for treatment failure (p < 0.001, p = 0.004) and distant metastases (p = 0.040, p = 0.011).

Conclusions

FDG uptake in irradiated normal tissues measured on restaging PET has significant prognostic value in patients undergoing neoadjuvant RCT for LAEC. This effect may potentially be of use in treatment personalization.

Keywords

Oesophageal cancer Radiochemotherapy Side effects Inflammation FDG pet 

Supplementary material

259_2017_3742_MOESM1_ESM.pdf (5 kb)
Fig. S1(PDF 5 kb)
259_2017_3742_MOESM2_ESM.docx (14 kb)
Table S1(DOCX 13 kb)
259_2017_3742_MOESM3_ESM.docx (16 kb)
Table S2(DOCX 15 kb)

References

  1. 1.
    van Hagen P, Hulshof MC, van Lanschot JJ, Steyerberg EW, van Berge Henegouwen MI, Wijnhoven BP, et al. Preoperative chemoradiotherapy for esophageal or junctional cancer. N Engl J Med. 2012;366:2074–84.CrossRefPubMedGoogle Scholar
  2. 2.
    Kranzfelder M, Schuster T, Geinitz H, Friess H, Büchler P. Meta-analysis of neoadjuvant treatment modalities and definitive non-surgical therapy for oesophageal squamous cell cancer. Br J Surg. 2011;98:768–83.CrossRefPubMedGoogle Scholar
  3. 3.
    Gurusamy KS, Pallari E, Midya S, Mughal M. Laparoscopic versus open transhiatal oesophagectomy for oesophageal cancer. Cochrane Database Syst Rev. 2016;3:CD011390.PubMedGoogle Scholar
  4. 4.
    Rebollo Aguirre AC, Ramos-Font C, Villegas Portero R, Cook GJR, Llamas Elvira JM, Tabares AR. 18F-fluorodeoxiglucose positron emission tomography for the evaluation of neoadjuvant therapy response in esophageal cancer: systematic review of the literature. Ann Surg. 2009;250:247–54.CrossRefPubMedGoogle Scholar
  5. 5.
    Swisher SG, Erasmus J, Maish M, Correa AM, Macapinlac H, Ajani JA, et al. 2-Fluoro-2-deoxy-D-glucose positron emission tomography imaging is predictive of pathologic response and survival after preoperative chemoradiation in patients with esophageal carcinoma. Cancer. 2004;101:1776–85.CrossRefPubMedGoogle Scholar
  6. 6.
    Jayachandran P, Pai RK, Quon A, Graves E, Krakow TE, La T, et al. Postchemoradiotherapy positron emission tomography predicts pathologic response and survival in patients with esophageal cancer. Int J Radiat Oncol Biol Phys. 2012;84:471–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Elimova E, Wang X, Etchebehere E, Shiozaki H, Shimodaira Y, Wadhwa R, et al. 18-fluorodeoxy-glucose positron emission computed tomography as predictive of response after chemoradiation in oesophageal cancer patients. Eur J Cancer 1990. 2015;51:2545–52.Google Scholar
  8. 8.
    Malik V, Lucey JA, Duffy GJ, Wilson L, McNamara L, Keogan M, et al. Early repeated 18F-FDG PET scans during neoadjuvant chemoradiation fail to predict histopathologic response or survival benefit in adenocarcinoma of the esophagus. J Nucl Med. 2010;51:1863–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Palie O, Michel P, Ménard J-F, Rousseau C, Rio E, Bridji B, et al. The predictive value of treatment response using FDG PET performed on day 21 of chemoradiotherapy in patients with oesophageal squamous cell carcinoma. A prospective, multicentre study (RTEP3). Eur J Nucl Med Mol Imaging. 2013;40:1345–55.Google Scholar
  10. 10.
    Lordick F, Ott K, Krause B-J, Weber WA, Becker K, Stein HJ, et al. PET to assess early metabolic response and to guide treatment of adenocarcinoma of the oesophagogastric junction: the MUNICON phase II trial. Lancet Oncol. 2007;8:797–805.Google Scholar
  11. 11.
    Lloyd S, Chang BW. Current strategies in chemoradiation for esophageal cancer. J Gastrointest Oncol. 2014;5:156–65.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Wolff HA, Daldrup B, Jung K, Overbeck T, Hennies S, Matthias C, et al. High-grade acute organ toxicity as positive prognostic factor in adjuvant radiation and chemotherapy for locally advanced head and neck cancer. Radiology. 2011;258:864–71.CrossRefPubMedGoogle Scholar
  13. 13.
    Wolff HA, Raus I, Jung K, Schüler P, Herrmann MK, Hennies S, et al. High-grade acute organ toxicity as a positive prognostic factor in primary radiochemotherapy for anal carcinoma. Int J Radiat Oncol Biol Phys. 2011;79:1467–78.CrossRefPubMedGoogle Scholar
  14. 14.
    Hennies S, Hermann RM, Gaedcke J, Grade M, Hess CF, Christiansen H, et al. Increasing toxicity during neoadjuvant radiochemotherapy as positive prognostic factor for patients with esophageal carcinoma. Dis Esophagus. 2014;27:146–51.CrossRefPubMedGoogle Scholar
  15. 15.
    Zschaeck S, Loeck S, Leger S, Haase R, Bandurska-Luque A, et al. FDG uptake in normal tissues assessed by PET during treatment has prognostic value for treatment results in head and neck squamous cell carcinomas undergoing radiochemotherapy. Radiother Oncol. 2017;122(3):437–44.Google Scholar
  16. 16.
    Mandard AM, Dalibard F, Mandard JC, Marnay J, Henry-Amar M, Petiot JF, et al. Pathologic assessment of tumor regression after preoperative chemoradiotherapy of esophageal carcinoma. Clinicopathologic correlations. Cancer. 1994;73:2680–6.Google Scholar
  17. 17.
    Becker K, Mueller JD, Schulmacher C, Ott K, Fink U, Busch R, et al. Histomorphology and grading of regression in gastric carcinoma treated with neoadjuvant chemotherapy. Cancer. 2003;98:1521–30.CrossRefPubMedGoogle Scholar
  18. 18.
    Thies S, Langer R. Tumor regression grading of gastrointestinal carcinomas after neoadjuvant treatment. Front Oncol. 2013;3:262.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    van den Hoff J, Lougovski A, Schramm G, Maus J, Oehme L, Petr J, et al. Correction of scan time dependence of standard uptake values in oncological PET. EJNMMI Res. 2014;4:18.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    R Core Team. R: A Language and Environment for Statistical Computing. The R Foundation.Google Scholar
  21. 21.
    Duan X-F, Tang P, Yu Z-T. Neoadjuvant chemoradiotherapy for resectable esophageal cancer: an in-depth study of randomized controlled trials and literature review. Cancer Biol Med. 2014;11:191–201.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Buscombe J. PET imaging of inflammation. Q J Nucl Med Mol Imaging. 2014;58:284–9.PubMedGoogle Scholar
  23. 23.
    Hess S, Hansson SH, Pedersen KT, Basu S, Høilund-Carlsen PF. FDG-PET/CT in infectious and inflammatory diseases. PET Clin. 2014;9:497–519.CrossRefPubMedGoogle Scholar
  24. 24.
    Niedzielski JS, Yang J, Liao Z, Gomez DR, Stingo F, Mohan R, et al. (18)F-Fluorodeoxyglucose positron emission tomography can quantify and predict esophageal injury during radiation therapy. Int J Radiat Oncol Biol Phys. 2016;96:670–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Schuell B, Gruenberger T, Kornek GV, Dworan N, Depisch D, Lang F, et al. Side effects during chemotherapy predict tumour response in advanced colorectal cancer. Br J Cancer. 2005;93:744–8.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Soveri LM, Hermunen K, de Gramont A, Poussa T, Quinaux E, Bono P, et al. Association of adverse events and survival in colorectal cancer patients treated with adjuvant 5-fluorouracil and leucovorin: is efficacy an impact of toxicity? Eur J Cancer. 2014;50:2966–74.CrossRefPubMedGoogle Scholar
  27. 27.
    Dahl O, Horn A, Mella O. Do acute side-effects during radiotherapy predict tumour response in rectal carcinoma? Acta Oncol. 1994;33:409–13.CrossRefPubMedGoogle Scholar
  28. 28.
    Wolff HA, Gaedcke J, Jung K, Hermann RM, Rothe H, Schirmer M, et al. High-grade acute organ toxicity during preoperative radiochemotherapy as positive predictor for complete histopathologic tumor regression in multimodal treatment of locally advanced rectal cancer. Strahlenther Onkol. 2010;186:30–5.CrossRefPubMedGoogle Scholar
  29. 29.
    Budach W, Hartford A, Gioioso D, Freeman J, Taghian A, Suit HD. Tumors arising in SCID mice share enhanced radiation sensitivity of SCID normal tissues. Cancer Res. 1992;52:6292–6.PubMedGoogle Scholar
  30. 30.
    Barber JB, Burrill W, Spreadborough AR, Levine E, Warren C, Kiltie AE, et al. Relationship between in vitro chromosomal radiosensitivity of peripheral blood lymphocytes and the expression of normal tissue damage following radiotherapy for breast cancer. Radiother Oncol. 2000;55:179–86.CrossRefPubMedGoogle Scholar
  31. 31.
    Borgmann K, Hoeller U, Nowack S, Bernhard M, Röper B, Brackrock S, et al. Individual radiosensitivity measured with lymphocytes may predict the risk of acute reaction after radiotherapy. Int J Radiat Oncol Biol Phys. 2008;71:256–64.CrossRefPubMedGoogle Scholar
  32. 32.
    Peacock J, Ashton A, Bliss J, Bush C, Eady J, Jackson C, et al. Cellular radiosensitivity and complication risk after curative radiotherapy. Radiother Oncol. 2000;55:173–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Russell NS, Grummels A, Hart AA, Smolders IJ, Borger J, Bartelink H, et al. Low predictive value of intrinsic fibroblast radiosensitivity for fibrosis development following radiotherapy for breast cancer. Int J Radiat Biol. 1998;73:661–70.CrossRefPubMedGoogle Scholar
  34. 34.
    Klug F, Prakash H, Huber PE, Seibel T, Bender N, Halama N, et al. Low-dose irradiation programs macrophage differentiation to an iNOS+/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell. 2013;24:589–602.CrossRefPubMedGoogle Scholar
  35. 35.
    Balermpas P, Rödel F, Rödel C, Krause M, Linge A, Lohaus F, et al. CD8+ tumour-infiltrating lymphocytes in relation to HPV status and clinical outcome in patients with head and neck cancer after postoperative chemoradiotherapy: a multicentre study of the German cancer consortium radiation oncology group (DKTK-ROG). Int J Cancer. 2016;138:171–81.CrossRefPubMedGoogle Scholar
  36. 36.
    Herskovic A, Martz K, al-Sarraf M, Leichman L, Brindle J, Vaitkevicius V, et al. Combined chemotherapy and radiotherapy compared with radiotherapy alone in patients with cancer of the esophagus. N Engl J Med. 1992;326:1593–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Cameron DA, Massie C, Kerr G, Leonard RCF. Moderate neutropenia with adjuvant CMF confers improved survival in early breast cancer. Br J Cancer. 2003;89:1837–42.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Zhang H, Tan S, Chen W, Kligerman S, Kim G, D'Souza WD, et al. Modeling pathologic response of esophageal cancer to chemoradiation therapy using spatial-temporal 18F-FDG PET features, clinical parameters, and demographics. Int J Radiat Oncol Biol Phys. 2014;88:195–203.CrossRefPubMedGoogle Scholar
  39. 39.
    Yip SS, Coroller TP, Sanford NN, Mamon H, Aerts HJ, Berbeco RI. Relationship between the temporal changes in positron-emission-tomography-imaging-based textural features and pathologic response and survival in esophageal cancer patients. Front Oncol. 2016;6:72.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Beukinga RJ, Hulshoff JB, van Dijk LV, Muijs CT, Burgerhof JG, Kats-Ugurlu G, et al. Predicting response to neoadjuvant chemoradiotherapy in esophageal cancer with textural features derived from pre-treatment 18F-FDG PET/CT imaging. J Nucl Med. 2017;58:723–9.CrossRefPubMedGoogle Scholar
  41. 41.
    Tixier F, Le Rest CC, Hatt M, Albarghach N, Pradier O, Metges JP, et al. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med. 2011;52:369–78.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    van Rossum PSN, Fried DV, Zhang L, Hofstetter WL, van Vulpen M, Meijer GJ, et al. The incremental value of subjective and quantitative assessment of 18F-FDG PET for the prediction of pathologic complete response to preoperative chemoradiotherapy in esophageal cancer. J Nucl Med. 2016;57:691–700.CrossRefPubMedGoogle Scholar
  43. 43.
    Baumann M, Krause M, Overgaard J, Debus J, Bentzen SM, Daartz J, et al. Radiation oncology in the era of precision medicine. Nat Rev Cancer. 2016;16:234–49.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Sebastian Zschaeck
    • 1
    • 2
    • 3
    • 4
  • Frank Hofheinz
    • 5
  • Klaus Zöphel
    • 2
    • 3
    • 4
    • 6
    • 7
  • Rebecca Bütof
    • 1
    • 4
  • Christina Jentsch
    • 1
    • 4
    • 7
  • Julia Schmollack
    • 1
    • 4
  • Steffen Löck
    • 1
    • 2
    • 3
    • 4
    • 7
    • 8
  • Jörg Kotzerke
    • 2
    • 3
    • 4
    • 6
    • 7
  • Gustavo Baretton
    • 2
    • 3
    • 7
    • 9
  • Jürgen Weitz
    • 2
    • 3
    • 7
    • 10
  • Michael Baumann
    • 1
    • 2
    • 3
    • 4
    • 7
    • 11
  • Mechthild Krause
    • 1
    • 2
    • 3
    • 4
    • 7
    • 11
  1. 1.Department of Radiation Oncology, University Hospital Carl Gustav CarusTechnische Universität DresdenDresdenGermany
  2. 2.German Cancer Consortium (DKTK)DresdenGermany
  3. 3.German Cancer Research Center (DKFZ)HeidelbergGermany
  4. 4.OncoRay – National Center for Radiation Research in OncologyFaculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden – RossendorfDresdenGermany
  5. 5.PET Center, Institute of Radiopharmaceutical Cancer ResearchHelmholtz-Zentrum Dresden-RossendorfDresdenGermany
  6. 6.Department of Nuclear MedicineFaculty of Medicine and University Hospital Carl Gustav CarusDresdenGermany
  7. 7.National Center for Tumor Diseases (NCT), Partner site DresdenDresdenGermany
  8. 8.Biostatistics and Modeling in Radiation OncologyFaculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden – RossendorfDresdenGermany
  9. 9.Department of PathologyFaculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität DresdenDresdenGermany
  10. 10.Department of Visceral, Thoracic and Vascular SurgeryUniversity Hospital Carl Gustav Carus, Technische Universität DresdenDresdenGermany
  11. 11.Institute of RadiooncologyHelmholtz-Zentrum Dresden – RossendorfDresdenGermany

Personalised recommendations