Total lesion glycolysis (TLG) as an imaging biomarker in metastatic colorectal cancer patients treated with regorafenib

  • Yoojoo Lim
  • Ji-In Bang
  • Sae-Won Han
  • Jin Chul Paeng
  • Kyung-Hun Lee
  • Jee Hyun Kim
  • Gyeong Hoon Kang
  • Seung-Yong Jeong
  • Kyu Joo Park
  • Tae-You Kim
Original Article



This study was performed to evaluate whether fluorine-18 fluorodeoxyglucose positron-emission tomography/computed tomography (FDG PET/CT) could predict treatment outcome of regorafenib in metastatic colorectal cancer (mCRC).


Previously treated refractory mCRC patients were enrolled into a prospective biomarker study of regorafenib. For this sub-study, the results of FDG PET/CT scans at baseline and after two cycles of treatment were analyzed. Various metabolic parameters obtained from PET images were analyzed in relation to treatment outcome.


A total of 40 patients were evaluable for PET image analysis. Among various PET parameters, total lesion glycolysis (TLG) measured in the same target lesions for RECIST 1.1 analysis were the most significant in predicting prognosis, with the lowest p-value observed in TLG calculated using the margin threshold of 40 % (TLG40 %). Further analysis using TLG40 % showed significantly longer overall survival (OS) in patients with lower baseline TLG40 % (<151.8) (p = 0.003, median 14.2 vs. 9.1 months in <151.8 and ≥151.8, respectively). Patients showing higher decrease in TLG40 % after treatment showed significantly longer progression-free survival (PFS) (p = 0.001, median 8.0 vs. 2.4 months in %ΔTLG40 % < −9.6 % and ≥ −9.6 %, respectively) and OS (p = 0.002, median 16.4 vs. 9.1 months in %ΔTLG40 % < −9.6 % and ≥ −9.6 %, respectively). The same cutoff could discriminate patients with longer survival among the patients who were under the stable disease category according to RECIST 1.1 (median PFS 8.4 vs. 6.8 months, p = 0.020; median OS 18.3 vs. 11.5 months, p = 0.049).


Measurement of TLG can predict treatment outcome of regorafenib in mCRC.


Metastatic colorectal cancer Regorafenib Fluorine-18 fluorodeoxyglucose positron-emission tomography Biomarker 


  1. 1.
    Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–47.CrossRefPubMedGoogle Scholar
  2. 2.
    Ratain MJ, Eisen T, Stadler WM, Flaherty KT, Kaye SB, Rosner GL, et al. Phase II placebo-controlled randomized discontinuation trial of sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol. 2006;24:2505–12.CrossRefPubMedGoogle Scholar
  3. 3.
    Bennouna J, Sastre J, Arnold D, Osterlund P, Greil R, Van Cutsem E, et al. Continuation of bevacizumab after first progression in metastatic colorectal cancer (ML18147): a randomised phase 3 trial. Lancet Oncol. 2013;14:29–37.CrossRefPubMedGoogle Scholar
  4. 4.
    Wilhelm SM, Dumas J, Adnane L, Lynch M, Carter CA, Schutz G, et al. Regorafenib (BAY 73-4506): a new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int J Cancer. 2011;129:245–55.CrossRefPubMedGoogle Scholar
  5. 5.
    Abou-Elkacem L, Arns S, Brix G, Gremse F, Zopf D, Kiessling F, et al. Regorafenib inhibits growth, angiogenesis, and metastasis in a highly aggressive, orthotopic colon cancer model. Mol Cancer Ther. 2013;12:1322–31.CrossRefPubMedGoogle Scholar
  6. 6.
    Schmieder R, Hoffmann J, Becker M, Bhargava A, Muller T, Kahmann N, et al. Regorafenib (BAY 73-4506): antitumor and antimetastatic activities in preclinical models of colorectal cancer. Int J Cancer. 2014;135:1487–96.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Cyran CC, Kazmierczak PM, Hirner H, Moser M, Ingrisch M, Havla L, et al. Regorafenib effects on human colon carcinoma xenografts monitored by dynamic contrast-enhanced computed tomography with immunohistochemical validation. PLoS One. 2013;8, e76009.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Grothey A, Van Cutsem E, Sobrero A, Siena S, Falcone A, Ychou M, et al. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet. 2013;381:303–12.CrossRefPubMedGoogle Scholar
  9. 9.
    Li J, Qin S, Xu R, Yau TC, Ma B, Pan H, et al. Regorafenib plus best supportive care versus placebo plus best supportive care in Asian patients with previously treated metastatic colorectal cancer (CONCUR): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2015;16:619–29.CrossRefPubMedGoogle Scholar
  10. 10.
    Lim Y, Han SW, Yoon JH, Lee JM, Lee JM, Paeng JC, et al. Clinical implication of anti-angiogenic effect of regorafenib in metastatic colorectal cancer. PLoS One. 2015;10, e0145004.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    de Geus-Oei LF, van Laarhoven HW, Visser EP, Hermsen R, van Hoorn BA, Kamm YJ, et al. Chemotherapy response evaluation with FDG-PET in patients with colorectal cancer. Ann Oncol. 2008;19:348–52.CrossRefPubMedGoogle Scholar
  12. 12.
    Wahl RL, Zasadny K, Helvie M, Hutchins GD, Weber B, Cody R. Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: initial evaluation. J Clin Oncol. 1993;11:2101–11.CrossRefPubMedGoogle Scholar
  13. 13.
    Juweid ME, Cheson BD. Positron-emission tomography and assessment of cancer therapy. N Engl J Med. 2006;354:496–507. doi:10.1056/NEJMra050276.CrossRefPubMedGoogle Scholar
  14. 14.
    Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50 Suppl 1:122S–50.CrossRefPubMedGoogle Scholar
  15. 15.
    Young H, Baum R, Cremerius U, Herholz K, Hoekstra O, Lammertsma AA, et al. Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. Eur J Cancer. 1999;35:1773–82.CrossRefPubMedGoogle Scholar
  16. 16.
    Van de Wiele C, Kruse V, Smeets P, Sathekge M, Maes A. Predictive and prognostic value of metabolic tumour volume and total lesion glycolysis in solid tumours. Eur J Nucl Med Mol Imaging. 2013;40:290–301.CrossRefPubMedGoogle Scholar
  17. 17.
    Kim TM, Paeng JC, Chun IK, Keam B, Jeon YK, Lee SH, et al. Total lesion glycolysis in positron emission tomography is a better predictor of outcome than the International Prognostic Index for patients with diffuse large B cell lymphoma. Cancer. 2013;119:1195–202.CrossRefPubMedGoogle Scholar
  18. 18.
    Keam B, Lee SJ, Kim TM, Paeng JC, Lee SH, Kim DW, et al. Total lesion glycolysis in positron emission tomography can predict gefitinib outcomes in non-small-cell lung cancer with activating EGFR mutation. J Thorac Oncol. 2015;10:1189–94.CrossRefPubMedGoogle Scholar
  19. 19.
    Choi ES, Ha SG, Kim HS, Ha JH, Paeng JC, Han I. Total lesion glycolysis by 18F-FDG PET/CT is a reliable predictor of prognosis in soft-tissue sarcoma. Eur J Nucl Med Mol Imaging. 2013;40:1836–42.CrossRefPubMedGoogle Scholar
  20. 20.
    Budczies J, Klauschen F, Sinn BV, Gyorffy B, Schmitt WD, Darb-Esfahani S, et al. Cutoff Finder: a comprehensive and straightforward Web application enabling rapid biomarker cutoff optimization. PLoS One. 2012;7, e51862.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Demetri GD, Reichardt P, Kang YK, Blay JY, Rutkowski P, Gelderblom H, et al. Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet. 2013;381:295–302.CrossRefPubMedGoogle Scholar
  22. 22.
    Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–90.CrossRefPubMedGoogle Scholar
  23. 23.
    Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M, et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med. 2007;356:125–34.CrossRefPubMedGoogle Scholar
  24. 24.
    De Bruyne S, Van Damme N, Smeets P, Ferdinande L, Ceelen W, Mertens J, et al. Value of DCE-MRI and FDG-PET/CT in the prediction of response to preoperative chemotherapy with bevacizumab for colorectal liver metastases. Br J Cancer. 2012;106:1926–33.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lastoria S, Piccirillo MC, Caraco C, Nasti G, Aloj L, Arrichiello C, et al. Early PET/CT scan is more effective than RECIST in predicting outcome of patients with liver metastases from colorectal cancer treated with preoperative chemotherapy plus bevacizumab. J Nucl Med. 2013;54:2062–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Wong AL, Lim JS, Sinha A, Gopinathan A, Lim R, Tan CS, et al. Tumour pharmacodynamics and circulating cell free DNA in patients with refractory colorectal carcinoma treated with regorafenib. J Transl Med. 2015;13:57.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Erdi YE, Mawlawi O, Larson SM, Imbriaco M, Yeung H, Finn R, et al. Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer. 1997;80:2505–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Zasadny KR, Kison PV, Francis IR, Wahl RL. FDG-PET determination of metabolically active tumor volume and comparison with CT. Clin Positron Imaging. 1998;1:123–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yoojoo Lim
    • 1
  • Ji-In Bang
    • 2
  • Sae-Won Han
    • 1
    • 3
  • Jin Chul Paeng
    • 2
  • Kyung-Hun Lee
    • 1
  • Jee Hyun Kim
    • 4
  • Gyeong Hoon Kang
    • 5
  • Seung-Yong Jeong
    • 6
  • Kyu Joo Park
    • 6
  • Tae-You Kim
    • 1
    • 3
    • 7
  1. 1.Department of Internal MedicineSeoul National University HospitalSeoulSouth Korea
  2. 2.Department of Nuclear MedicineSeoul National University HospitalSeoulSouth Korea
  3. 3.Cancer Research InstituteSeoul National University College of MedicineSeoulSouth Korea
  4. 4.Department of Internal MedicineSeoul National University Bundang HospitalGeyonggi-doSouth Korea
  5. 5.Department of PathologySeoul National University HospitalSeoulSouth Korea
  6. 6.Department of SurgerySeoul National University HospitalSeoulSouth Korea
  7. 7.Department of Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and TechnologySeoul National UniversitySeoulSouth Korea

Personalised recommendations