Skip to main content

Advertisement

Log in

Healthy brain ageing assessed with 18F-FDG PET and age-dependent recovery factors after partial volume effect correction

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Chételat G, Landeau B, Salmon E, et al. Relationships between brain metabolism decrease in normal aging and changes in structural and functional connectivity. Neuroimage 2013;76:167–77.

    Article  PubMed  Google Scholar 

  2. Zuendorf G, Kerrouche N, Herholz K, Baron J-C. Efficient principal component analysis for multivariate 3D voxel-based mapping of brain functional imaging data sets as applied to FDG-PET and normal aging. Human Brain Mapping 2003;18(1):13–21.

    Article  PubMed  Google Scholar 

  3. Moeller JR, Ishikawa T, Dhawan V, et al. The metabolic topography of normal aging. Journal of Cerebral Blood Flow and Metabolism 1996;16(3):385–98.

    Article  CAS  PubMed  Google Scholar 

  4. Petit-Taboué MC, Landeau B, Desson JF, et al. Effects of healthy aging on the regional cerebral metabolic rate of glucose assessed with statistical parametric mapping. Neuroimage 1998;7(3):176–84.

    Article  PubMed  Google Scholar 

  5. Hsieh T-C, Lin W-Y, Ding H-J, et al. Sex-and Age-Related Differences in Brain FDG Metabolism of Healthy Adults: An SPM Analysis. Journal of Neuroimaging 2012;22(1):21–7.

    Article  PubMed  Google Scholar 

  6. Willis M W, Ketter T A, Kimbrell T A, et al. Age sex and laterality effects on cerebral glucose metabolism in healthy adults. Psychiatry Research: Neuroimaging 2002;114(1):23–37.

    Article  CAS  PubMed  Google Scholar 

  7. Fujimoto T, Matsumoto T, Fujita S, et al. Changes in glucose metabolism due to aging and gender-related differences in the healthy human brain. Psychiatry Research: Neuroimaging 2008;164(1):58–72.

    Article  CAS  PubMed  Google Scholar 

  8. Yoshizawa H, Gazes Y, Stern Y, et al. Characterizing the normative profile of 18F-FDG PET brain imaging: Sex difference aging effect and cognitive reserve. Psychiatry Research: Neuroimaging 2014;221(1):78–85.

    Article  PubMed  Google Scholar 

  9. Loessner A, Alavi A, Lewandrowski KU, et al. Regional cerebral function determined by FDG-PET in healthy volunteers: normal patterns and changes with age. Journal of Nuclear Medicine 1995;36(7):1141–9.

    CAS  PubMed  Google Scholar 

  10. Shen X, Liu H, Hu Z, et al. The relationship between cerebral glucose metabolism and age: report of a large brain PET data set. PloS One 2012;7(12):e51517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Iseki E, Murayama N, Yamamoto R, et al. Construction of a 18F-FDG PET normative database of Japanese healthy elderly subjects and its application to demented and mild cognitive impairment patients. International Journal of Geriatric Psychiatry 2010;25(4):352–61.

    Article  PubMed  Google Scholar 

  12. Kim I-J, Kim S-J, Kim Y-K. Age-and sex-associated changes in cerebral glucose metabolism in normal healthy subjects: statistical parametric mapping analysis of F-18 fluorodeoxyglucose brain positron emission tomography. Acta Radiologica 2009;50(10):1169–74.

    Article  PubMed  Google Scholar 

  13. Kochunov P, Mangin J-F, Coyle T, et al. Age-related morphology trends of cortical sulci. Human Brain Mapping 2005;26(3):210–20.

    Article  PubMed  Google Scholar 

  14. Murphy D GM, DeCarli C, Schapiro M B, et al. Age-related differences in volumes of subcortical nuclei brain matter and cerebrospinal fluid in healthy men as measured with magnetic resonance imaging. Archives of Neurology 1992;49(8):839–45.

    Article  CAS  PubMed  Google Scholar 

  15. Ge Y, Grossman R I, Babb J S, Rabin M L, Mannon L J, et al. Age-related total gray matter and white matter changes in normal adult brain. Part I: volumetric MR imaging analysis. American Journal of Neuroradiology 2002;23(8):1327–33.

    PubMed  Google Scholar 

  16. Soret M, Bacharach S L, Buvat I. Partial-volume effect in PET tumor imaging. Journal of Nuclear Medicine 2007;48(6):932– 45.

    Article  PubMed  Google Scholar 

  17. Matsuda H, Ohnishi T, Asada T, et al. Correction for partial-volume effects on brain perfusion SPECT in healthy men. Journal of Nuclear Medicine 2003;44(8):1243–52.

    PubMed  Google Scholar 

  18. Meltzer C C, Leal J P, Mayberg H S, et al. Correction of PET data for partial volume effects in human cerebral cortex by MR imaging. Journal of Computer Assisted Tomography 1990;14(4):561–70.

    Article  CAS  PubMed  Google Scholar 

  19. Müller-Gärtner H W, Links J M, Prince J L, et al. Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects. Journal of Cerebral Blood Flow and Metabolism 1992;12(4):571–83.

    Article  PubMed  Google Scholar 

  20. Quarantelli M, Berkouk K, Prinster A, et al. Integrated software for the analysis of brain PET/SPECT studies with partial-volume-effect correction. Journal of Nuclear Medicine 2004;45(2):192–201.

    PubMed  Google Scholar 

  21. Park H-J, Lee J D, Chun J W, et al. Cortical surface-based analysis of 18F-FDG PET: measured metabolic abnormalities in schizophrenia are affected by cortical structural abnormalities. Neuroimage 2006;31(4): 1434–44.

    Article  PubMed  Google Scholar 

  22. Curiati PK, Tamashiro-Duran JH, Duran FLS, et al. Age-Related Metabolic Profiles in Cognitively Healthy Elders: Results from a Voxel-Based [18F] Fluorodeoxyglucose–Positron-Emission Tomography Study with Partial Volume Effects Correction. American Journal of Neuroradiology 2011;32(3):560–5.

    Article  CAS  PubMed  Google Scholar 

  23. Ibáñez V, Pietrini P, Furey M L, et al. Resting state brain glucose metabolism is not reduced in normotensive healthy men during aging after correction for brain atrophy. Brain Research Bulletin 2004;63(2):147–54.

    Article  PubMed  Google Scholar 

  24. Kochunov P, Ramage AE, Lancaster JL, et al. Loss of cerebral white matter structural integrity tracks the gray matter metabolic decline in normal aging. Neuroimage 2009;45(1):17–28.

    Article  CAS  PubMed  Google Scholar 

  25. Kalpouzos G, Chételat G, Baron J-C, et al. Voxel-based mapping of brain gray matter volume and glucose metabolism profiles in normal aging. Neurobiology of Aging 2009;30(1):112–24.

    Article  CAS  PubMed  Google Scholar 

  26. De Leon MJ, Convit A, Wolf OT, et al. Prediction of cognitive decline in normal elderly subjects with 2-[18F] fluoro-2-deoxy-D-glucose/positron-emission tomography (FDG/PET). Proceedings of the National Academy of Sciences 2001;98(19):10966–71.

    Article  CAS  Google Scholar 

  27. Yanase D, Matsunari I, Yajima K, et al. Brain FDG PET study of normal aging in Japanese: effect of atrophy correction. European Journal of Nuclear Medicine and Molecular Imaging 2005;32(7):794–805.

    Article  PubMed  Google Scholar 

  28. Knopman D S, Jack C R, Wiste H J, et al. 18 F-fluorodeoxyglucose positron emission tomography aging and apolipoprotein E genotype in cognitively normal persons. Neurobiology of Aging 2014;35(9):2096–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nugent S, Tremblay S, Chen K W, et al. Brain glucose and acetoacetate metabolism: a comparison of young and older adults. Neurobiology of Aging 2014;35(6):1386–95.

    Article  CAS  PubMed  Google Scholar 

  30. Nugent S, Castellano C-A, Goffaux P, et al. Glucose hypometabolism is highly localized but lower cortical thickness and brain atrophy are widespread in cognitively normal older adults. American Journal of Physiology-Endocrinology and Metabolism 2014:ajpendo–00067.

  31. Rousset O G, Ma Y, Evans A C. Correction for partial volume effects in PET: principle and validation. Journal of Nuclear Medicine 1998;39(5):904–11.

    CAS  PubMed  Google Scholar 

  32. Thomas B A. 2012. Improved brain PET quantification using partial volume correction techniques. UCL (University College London).

  33. Folstein M F, Folstein S E, McHugh P R. Mini-mental state: a practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research 1975;12(3):189–98.

    Article  CAS  PubMed  Google Scholar 

  34. Andreasen N C, O’Leary D S, Cizadlo T, Arndt S, Rezai K, Watkins G L, et al. Remembering the past: two facets of episodic memory explored with positron emission tomography. American Journal of Psychiatry 1995;152(11):1576–85.

    Article  CAS  PubMed  Google Scholar 

  35. Daube-Witherspoon ME, Matej S, Karp JS, Lewitt RM. Application of the row action maximum likelihood algorithm with spherical basis functions to clinical PET imaging. IEEE Transactions on Nuclear Science 2001;48(1): 24–30.

    Article  Google Scholar 

  36. Watson C C, Newport DMEC, Casey M E. 1996. Three-dimensional image reconstruction in radiology and nuclear medicine. Springer.

  37. Hammers A, Allom R, Koepp M J, et al. Three-dimensional maximum probability atlas of the human brain with particular reference to the temporal lobe. Human brain mapping 2003;19(4):224–47.

    Article  PubMed  Google Scholar 

  38. Zaidi H, Ruest T, Schoenahl F, Montandon M-L. Comparative assessment of statistical brain MR image segmentation algorithms and their impact on partial volume correction in PET. Neuroimage 2006;32(4):1591–607.

    Article  PubMed  Google Scholar 

  39. Hoetjes N J, van Velden F HP, Hoekstra O S, Hoekstra C J, Krak N C, Lammertsma A A, et al. Partial volume correction strategies for quantitative FDG PET in oncology. European journal of nuclear medicine and molecular imaging 2010;37(9):1679–87.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gutierrez D, Montandon M-L, Assal F, Allaoua M, Ratib O, Lövblad K-O, et al. Anatomically guided voxel-based partial volume effect correction in brain PET: impact of MRI segmentation. Computerized Medical Imaging and Graphics 2012;36(8):610–9.

    Article  PubMed  Google Scholar 

  41. Teo B-K, Seo Y, Bacharach S L, et al. Partial-volume correction in PET: validation of an iterative postreconstruction method with phantom and patient data. Journal of Nuclear Medicine 2007;48(5):802–10.

    PubMed  Google Scholar 

  42. Borghammer P, Cumming P, Aanerud J, Gjedde A. Artefactual subcortical hyperperfusion in PET studies normalized to global mean: lessons from Parkinson’s disease. Neuroimage 2009;45(2):249–57.

    Article  PubMed  Google Scholar 

  43. Dukart J, Mueller K, Horstmann A, Vogt B, Frisch S, Barthel H, et al. Differential effects of global and cerebellar normalization on detection and differentiation of dementia in FDG-PET studies. Neuroimage 2010;49 (2):1490–5.

    Article  PubMed  Google Scholar 

  44. Kushner M, Tobin M, Alavi A, Chawluk J, Rosen M, Fazekas F, et al. Cerebellar glucose consumption in normal and pathologic states using fluorine-FDG and PET. Journal of Nuclear Medicine 1987;28(11): 1667–70.

    CAS  PubMed  Google Scholar 

  45. Yakushev I, Landvogt C, Buchholz H-G, Fellgiebel A, Hammers A, Scheurich A, et al. Choice of reference area in studies of Alzheimer’s disease using positron emission tomography with fluorodeoxyglucose-F18. Psychiatry Research: Neuroimaging 2008;164(2):143–53.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stijn Bonte.

Ethics declarations

Conflict of interests

All authors declare that they have no conflict of interest. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Written informed consent was obtained from all individual subjects included in this study according the guidelines of the local medical ethics committee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 82.3 KB)

(PDF 31.9 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonte, S., Vandemaele, P., Verleden, S. et al. Healthy brain ageing assessed with 18F-FDG PET and age-dependent recovery factors after partial volume effect correction. Eur J Nucl Med Mol Imaging 44, 838–849 (2017). https://doi.org/10.1007/s00259-016-3569-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-016-3569-0

Keywords

Navigation