Healthy brain ageing assessed with 18F-FDG PET and age-dependent recovery factors after partial volume effect correction

  • Stijn Bonte
  • Pieter Vandemaele
  • Stijn Verleden
  • Kurt Audenaert
  • Karel Deblaere
  • Ingeborg Goethals
  • Roel Van Holen
Original Article


Age 18F-FDG PET Healthy subject PVE correction 

Supplementary material

259_2016_3569_MOESM1_ESM.pdf (82 kb)
(PDF 82.3 KB)
259_2016_3569_MOESM2_ESM.tex (32 kb)
(PDF 31.9 KB)


  1. 1.
    Chételat G, Landeau B, Salmon E, et al. Relationships between brain metabolism decrease in normal aging and changes in structural and functional connectivity. Neuroimage 2013;76:167–77.CrossRefPubMedGoogle Scholar
  2. 2.
    Zuendorf G, Kerrouche N, Herholz K, Baron J-C. Efficient principal component analysis for multivariate 3D voxel-based mapping of brain functional imaging data sets as applied to FDG-PET and normal aging. Human Brain Mapping 2003;18(1):13–21.CrossRefPubMedGoogle Scholar
  3. 3.
    Moeller JR, Ishikawa T, Dhawan V, et al. The metabolic topography of normal aging. Journal of Cerebral Blood Flow and Metabolism 1996;16(3):385–98.CrossRefPubMedGoogle Scholar
  4. 4.
    Petit-Taboué MC, Landeau B, Desson JF, et al. Effects of healthy aging on the regional cerebral metabolic rate of glucose assessed with statistical parametric mapping. Neuroimage 1998;7(3):176–84.CrossRefPubMedGoogle Scholar
  5. 5.
    Hsieh T-C, Lin W-Y, Ding H-J, et al. Sex-and Age-Related Differences in Brain FDG Metabolism of Healthy Adults: An SPM Analysis. Journal of Neuroimaging 2012;22(1):21–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Willis M W, Ketter T A, Kimbrell T A, et al. Age sex and laterality effects on cerebral glucose metabolism in healthy adults. Psychiatry Research: Neuroimaging 2002;114(1):23–37.CrossRefPubMedGoogle Scholar
  7. 7.
    Fujimoto T, Matsumoto T, Fujita S, et al. Changes in glucose metabolism due to aging and gender-related differences in the healthy human brain. Psychiatry Research: Neuroimaging 2008;164(1):58–72.CrossRefPubMedGoogle Scholar
  8. 8.
    Yoshizawa H, Gazes Y, Stern Y, et al. Characterizing the normative profile of 18F-FDG PET brain imaging: Sex difference aging effect and cognitive reserve. Psychiatry Research: Neuroimaging 2014;221(1):78–85.CrossRefPubMedGoogle Scholar
  9. 9.
    Loessner A, Alavi A, Lewandrowski KU, et al. Regional cerebral function determined by FDG-PET in healthy volunteers: normal patterns and changes with age. Journal of Nuclear Medicine 1995;36(7):1141–9.PubMedGoogle Scholar
  10. 10.
    Shen X, Liu H, Hu Z, et al. The relationship between cerebral glucose metabolism and age: report of a large brain PET data set. PloS One 2012;7(12):e51517.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Iseki E, Murayama N, Yamamoto R, et al. Construction of a 18F-FDG PET normative database of Japanese healthy elderly subjects and its application to demented and mild cognitive impairment patients. International Journal of Geriatric Psychiatry 2010;25(4):352–61.CrossRefPubMedGoogle Scholar
  12. 12.
    Kim I-J, Kim S-J, Kim Y-K. Age-and sex-associated changes in cerebral glucose metabolism in normal healthy subjects: statistical parametric mapping analysis of F-18 fluorodeoxyglucose brain positron emission tomography. Acta Radiologica 2009;50(10):1169–74.CrossRefPubMedGoogle Scholar
  13. 13.
    Kochunov P, Mangin J-F, Coyle T, et al. Age-related morphology trends of cortical sulci. Human Brain Mapping 2005;26(3):210–20.CrossRefPubMedGoogle Scholar
  14. 14.
    Murphy D GM, DeCarli C, Schapiro M B, et al. Age-related differences in volumes of subcortical nuclei brain matter and cerebrospinal fluid in healthy men as measured with magnetic resonance imaging. Archives of Neurology 1992;49(8):839–45.CrossRefPubMedGoogle Scholar
  15. 15.
    Ge Y, Grossman R I, Babb J S, Rabin M L, Mannon L J, et al. Age-related total gray matter and white matter changes in normal adult brain. Part I: volumetric MR imaging analysis. American Journal of Neuroradiology 2002;23(8):1327–33.PubMedGoogle Scholar
  16. 16.
    Soret M, Bacharach S L, Buvat I. Partial-volume effect in PET tumor imaging. Journal of Nuclear Medicine 2007;48(6):932– 45.CrossRefPubMedGoogle Scholar
  17. 17.
    Matsuda H, Ohnishi T, Asada T, et al. Correction for partial-volume effects on brain perfusion SPECT in healthy men. Journal of Nuclear Medicine 2003;44(8):1243–52.PubMedGoogle Scholar
  18. 18.
    Meltzer C C, Leal J P, Mayberg H S, et al. Correction of PET data for partial volume effects in human cerebral cortex by MR imaging. Journal of Computer Assisted Tomography 1990;14(4):561–70.CrossRefPubMedGoogle Scholar
  19. 19.
    Müller-Gärtner H W, Links J M, Prince J L, et al. Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects. Journal of Cerebral Blood Flow and Metabolism 1992;12(4):571–83.CrossRefPubMedGoogle Scholar
  20. 20.
    Quarantelli M, Berkouk K, Prinster A, et al. Integrated software for the analysis of brain PET/SPECT studies with partial-volume-effect correction. Journal of Nuclear Medicine 2004;45(2):192–201.PubMedGoogle Scholar
  21. 21.
    Park H-J, Lee J D, Chun J W, et al. Cortical surface-based analysis of 18F-FDG PET: measured metabolic abnormalities in schizophrenia are affected by cortical structural abnormalities. Neuroimage 2006;31(4): 1434–44.CrossRefPubMedGoogle Scholar
  22. 22.
    Curiati PK, Tamashiro-Duran JH, Duran FLS, et al. Age-Related Metabolic Profiles in Cognitively Healthy Elders: Results from a Voxel-Based [18F] Fluorodeoxyglucose–Positron-Emission Tomography Study with Partial Volume Effects Correction. American Journal of Neuroradiology 2011;32(3):560–5.CrossRefPubMedGoogle Scholar
  23. 23.
    Ibáñez V, Pietrini P, Furey M L, et al. Resting state brain glucose metabolism is not reduced in normotensive healthy men during aging after correction for brain atrophy. Brain Research Bulletin 2004;63(2):147–54.CrossRefPubMedGoogle Scholar
  24. 24.
    Kochunov P, Ramage AE, Lancaster JL, et al. Loss of cerebral white matter structural integrity tracks the gray matter metabolic decline in normal aging. Neuroimage 2009;45(1):17–28.CrossRefPubMedGoogle Scholar
  25. 25.
    Kalpouzos G, Chételat G, Baron J-C, et al. Voxel-based mapping of brain gray matter volume and glucose metabolism profiles in normal aging. Neurobiology of Aging 2009;30(1):112–24.CrossRefPubMedGoogle Scholar
  26. 26.
    De Leon MJ, Convit A, Wolf OT, et al. Prediction of cognitive decline in normal elderly subjects with 2-[18F] fluoro-2-deoxy-D-glucose/positron-emission tomography (FDG/PET). Proceedings of the National Academy of Sciences 2001;98(19):10966–71.CrossRefGoogle Scholar
  27. 27.
    Yanase D, Matsunari I, Yajima K, et al. Brain FDG PET study of normal aging in Japanese: effect of atrophy correction. European Journal of Nuclear Medicine and Molecular Imaging 2005;32(7):794–805.CrossRefPubMedGoogle Scholar
  28. 28.
    Knopman D S, Jack C R, Wiste H J, et al. 18 F-fluorodeoxyglucose positron emission tomography aging and apolipoprotein E genotype in cognitively normal persons. Neurobiology of Aging 2014;35(9):2096–106.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Nugent S, Tremblay S, Chen K W, et al. Brain glucose and acetoacetate metabolism: a comparison of young and older adults. Neurobiology of Aging 2014;35(6):1386–95.CrossRefPubMedGoogle Scholar
  30. 30.
    Nugent S, Castellano C-A, Goffaux P, et al. Glucose hypometabolism is highly localized but lower cortical thickness and brain atrophy are widespread in cognitively normal older adults. American Journal of Physiology-Endocrinology and Metabolism 2014:ajpendo–00067.Google Scholar
  31. 31.
    Rousset O G, Ma Y, Evans A C. Correction for partial volume effects in PET: principle and validation. Journal of Nuclear Medicine 1998;39(5):904–11.PubMedGoogle Scholar
  32. 32.
    Thomas B A. 2012. Improved brain PET quantification using partial volume correction techniques. UCL (University College London).Google Scholar
  33. 33.
    Folstein M F, Folstein S E, McHugh P R. Mini-mental state: a practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research 1975;12(3):189–98.CrossRefPubMedGoogle Scholar
  34. 34.
    Andreasen N C, O’Leary D S, Cizadlo T, Arndt S, Rezai K, Watkins G L, et al. Remembering the past: two facets of episodic memory explored with positron emission tomography. American Journal of Psychiatry 1995;152(11):1576–85.CrossRefPubMedGoogle Scholar
  35. 35.
    Daube-Witherspoon ME, Matej S, Karp JS, Lewitt RM. Application of the row action maximum likelihood algorithm with spherical basis functions to clinical PET imaging. IEEE Transactions on Nuclear Science 2001;48(1): 24–30.CrossRefGoogle Scholar
  36. 36.
    Watson C C, Newport DMEC, Casey M E. 1996. Three-dimensional image reconstruction in radiology and nuclear medicine. Springer.Google Scholar
  37. 37.
    Hammers A, Allom R, Koepp M J, et al. Three-dimensional maximum probability atlas of the human brain with particular reference to the temporal lobe. Human brain mapping 2003;19(4):224–47.CrossRefPubMedGoogle Scholar
  38. 38.
    Zaidi H, Ruest T, Schoenahl F, Montandon M-L. Comparative assessment of statistical brain MR image segmentation algorithms and their impact on partial volume correction in PET. Neuroimage 2006;32(4):1591–607.CrossRefPubMedGoogle Scholar
  39. 39.
    Hoetjes N J, van Velden F HP, Hoekstra O S, Hoekstra C J, Krak N C, Lammertsma A A, et al. Partial volume correction strategies for quantitative FDG PET in oncology. European journal of nuclear medicine and molecular imaging 2010;37(9):1679–87.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Gutierrez D, Montandon M-L, Assal F, Allaoua M, Ratib O, Lövblad K-O, et al. Anatomically guided voxel-based partial volume effect correction in brain PET: impact of MRI segmentation. Computerized Medical Imaging and Graphics 2012;36(8):610–9.CrossRefPubMedGoogle Scholar
  41. 41.
    Teo B-K, Seo Y, Bacharach S L, et al. Partial-volume correction in PET: validation of an iterative postreconstruction method with phantom and patient data. Journal of Nuclear Medicine 2007;48(5):802–10.PubMedGoogle Scholar
  42. 42.
    Borghammer P, Cumming P, Aanerud J, Gjedde A. Artefactual subcortical hyperperfusion in PET studies normalized to global mean: lessons from Parkinson’s disease. Neuroimage 2009;45(2):249–57.CrossRefPubMedGoogle Scholar
  43. 43.
    Dukart J, Mueller K, Horstmann A, Vogt B, Frisch S, Barthel H, et al. Differential effects of global and cerebellar normalization on detection and differentiation of dementia in FDG-PET studies. Neuroimage 2010;49 (2):1490–5.CrossRefPubMedGoogle Scholar
  44. 44.
    Kushner M, Tobin M, Alavi A, Chawluk J, Rosen M, Fazekas F, et al. Cerebellar glucose consumption in normal and pathologic states using fluorine-FDG and PET. Journal of Nuclear Medicine 1987;28(11): 1667–70.PubMedGoogle Scholar
  45. 45.
    Yakushev I, Landvogt C, Buchholz H-G, Fellgiebel A, Hammers A, Scheurich A, et al. Choice of reference area in studies of Alzheimer’s disease using positron emission tomography with fluorodeoxyglucose-F18. Psychiatry Research: Neuroimaging 2008;164(2):143–53.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Stijn Bonte
    • 1
    • 2
    • 3
  • Pieter Vandemaele
    • 3
  • Stijn Verleden
    • 4
  • Kurt Audenaert
    • 4
  • Karel Deblaere
    • 3
  • Ingeborg Goethals
    • 3
  • Roel Van Holen
    • 2
  1. 1.IBiTechGhent,Belgium
  2. 2.iMinds - Medical Image and Signal Processing (MEDISIP), Department of Electronics and Information SystemsGhent UniversityGhentBelgium
  3. 3.Department of Radiology and Nuclear MedicineUniversity HospitalGhentBelgium
  4. 4.Department of PsychiatryUniversity HospitalGhentBelgium

Personalised recommendations