A PET/MRI study towards finding the optimal [18F]Fluciclovine PET protocol for detection and characterisation of primary prostate cancer

  • Mattijs Elschot
  • Kirsten M. Selnæs
  • Elise Sandsmark
  • Brage Krüger-Stokke
  • Øystein Størkersen
  • May-Britt Tessem
  • Siver A. Moestue
  • Helena Bertilsson
  • Tone F. Bathen
Original Article



[18F]Fluciclovine PET imaging shows promise for the assessment of prostate cancer. The purpose of this PET/MRI study is to optimise the PET imaging protocol for detection and characterisation of primary prostate cancer, by quantitative evaluation of the dynamic uptake of [18F]Fluciclovine in cancerous and benign tissue.


Patients diagnosed with high-risk primary prostate cancer underwent an integrated [18F]Fluciclovine PET/MRI exam before robot-assisted radical prostatectomy with extended pelvic lymph node dissection. Volumes-of-interest (VOIs) of selected organs (prostate, bladder, blood pool) and sub-glandular prostate structures (tumour, benign prostatic hyperplasia (BPH), inflammation, healthy tissue) were delineated on T2-weighted MR images, using whole-mount histology samples as a reference. Three candidate windows for optimal PET imaging were identified based on the dynamic curves of the mean and maximum standardised uptake value (SUVmean and SUVmax, respectively). The statistical significance of differences in SUV between VOIs were analysed using Wilcoxon rank sum tests (p<0.05, adjusted for multiple testing).


Twenty-eight (28) patients [median (range) age: 66 (55-72) years] were included. An early (W1: 5-10 minutes post-injection) and two late candidate windows (W2: 18-23; W3: 33-38 minutes post-injection) were selected. Late compared with early imaging was better able to distinguish between malignant and benign tissue [W3, SUVmean: tumour vs. BPH 2.5 vs. 2.0 (p<0.001), tumour vs. inflammation 2.5 vs. 1.7 (p<0.001), tumour vs. healthy tissue 2.5 vs. 2.0 (p<0.001); W1, SUVmean: tumour vs. BPH 3.1 vs. 3.1 (p=0.771), tumour vs inflammation 3.1 vs. 2.2 (p=0.021), tumour vs. healthy tissue 3.1 vs. 2.5 (p<0.001)] as well as between high-grade and low/intermediate-grade tumours (W3, SUVmean: 2.6 vs. 2.1 (p=0.040); W1, SUVmean: 3.1 vs. 2.8 (p=0.173)). These differences were relevant to the peripheral zone, but not the central gland.


Late-window [18F]Fluciclovine PET imaging shows promise for distinguishing between prostate tumours and benign tissue and for assessment of tumour aggressiveness.


[18F]Fluciclovine [18F]FACBC Prostate Cancer PET/MRI Dynamic PET 

Supplementary material

259_2016_3562_MOESM1_ESM.docx (12 kb)
ESM 1(DOCX 12 kb)
259_2016_3562_MOESM2_ESM.docx (213 kb)
ESM 2(DOCX 212 kb)


  1. 1.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.CrossRefPubMedGoogle Scholar
  2. 2.
    Heidenreich A, Bastian PJ, Bellmunt J, Bolla M, Joniau S, van der Kwast T, et al. EAU guidelines on prostate cancer. part 1: screening, diagnosis, and local treatment with curative intent-update 2013. Eur Urol. 2014;65:124–37.CrossRefPubMedGoogle Scholar
  3. 3.
    Barentsz JO, Weinreb JC, Verma S, Thoeny HC, Tempany CM, Shtern F, et al. Synopsis of the PI-RADS v2 guidelines for multiparametric prostate magnetic resonance imaging and recommendations for use. Eur Urol. 2016;69:41–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Futterer JJ, Briganti A, De Visschere P, Emberton M, Giannarini G, Kirkham A, et al. Can clinically significant prostate cancer Be detected with multiparametric magnetic resonance imaging? a systematic review of the literature. Eur Urol. 2015;68:1045–53.CrossRefPubMedGoogle Scholar
  5. 5.
    Kobus T, Vos PC, Hambrock T, De Rooij M, de Kaa CA H-V, Barentsz JO, et al. Prostate cancer aggressiveness: in vivo assessment of MR spectroscopy and diffusion-weighted imaging at 3 T. Radiology. 2012;265:457–67.CrossRefPubMedGoogle Scholar
  6. 6.
    Hovels AM, Heesakkers RA, Adang EM, Jager GJ, Strum S, Hoogeveen YL, et al. The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis. Clin Radiol. 2008;63:387–95.CrossRefPubMedGoogle Scholar
  7. 7.
    Schuster DM, Votaw JR, Nieh PT, Yu W, Nye JA, Master V, et al. Initial experience with the radiotracer anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid with PET/CT in prostate carcinoma. J Nucl Med. 2007;48:56–63.PubMedGoogle Scholar
  8. 8.
    Schuster DM, Nieh PT, Jani AB, Amzat R, Bowman FD, Halkar RK, et al. Anti-3-[(18)F]FACBC positron emission tomography-computerized tomography and (111)In-capromab pendetide single photon emission computerized tomography-computerized tomography for recurrent prostate carcinoma: results of a prospective clinical trial. J Urol. 2014;191:1446–53.CrossRefPubMedGoogle Scholar
  9. 9.
    Nanni C, Zanoni L, Pultrone C, Schiavina R, Brunocilla E, Lodi F et al. F-FACBC (anti1-amino-3-F-fluorocyclobutane-1-carboxylic acid) versus C-choline PET/CT in prostate cancer relapse: results of a prospective trial. Eur J Nucl Med Mol Imaging. 2016.Google Scholar
  10. 10.
    Schuster DM, Taleghani PA, Nieh PT, Master VA, Amzat R, Savir-Baruch B, et al. Characterization of primary prostate carcinoma by anti-1-amino-2-[(18)F] -fluorocyclobutane-1-carboxylic acid (anti-3-[(18)F] FACBC) uptake. Am J Nucl Med Mol Imaging. 2013;3:85–96.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Turkbey B, Mena E, Shih J, Pinto PA, Merino MJ, Lindenberg ML, et al. Localized prostate cancer detection with 18F FACBC PET/CT: comparison with MR imaging and histopathologic analysis. Radiology. 2014;270:849–56.CrossRefPubMedGoogle Scholar
  12. 12.
    Schuster DM, Nanni C, Fanti S, Oka S, Okudaira H, Inoue Y, et al. Anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid: physiologic uptake patterns, incidental findings, and variants that may simulate disease. J Nucl Med. 2014;55:1986–92.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sorensen J, Owenius R, Lax M, Johansson S. Regional distribution and kinetics of [18F]fluciclovine (anti-[18F]FACBC), a tracer of amino acid transport, in subjects with primary prostate cancer. Eur J Nucl Med Mol Imaging. 2013;40:394–402.CrossRefPubMedGoogle Scholar
  14. 14.
    Epstein JI. An update of the Gleason grading system. J Urol. 2010;183:433–40.CrossRefPubMedGoogle Scholar
  15. 15.
    Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, et al. 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging. 2012;30:1323–41.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Rosset A, Spadola L, Ratib O. OsiriX: an open-source software for navigating in multidimensional DICOM images. J Digit Imaging. 2004;17:205–16.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Epstein JI, Zelefsky MJ, Sjoberg DD, Nelson JB, Egevad L, Magi-Galluzzi C, et al. A contemporary prostate cancer grading system: a validated alternative to the gleason score. Eur Urol. 2016;69:428–35.CrossRefPubMedGoogle Scholar
  18. 18.
    Klein S, Staring M, Murphy K, Viergever MA. Pluim JP elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging. 2010;29:196–205.CrossRefPubMedGoogle Scholar
  19. 19.
    Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Stat Methodol. 1995;57:289–300.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Mattijs Elschot
    • 1
  • Kirsten M. Selnæs
    • 1
    • 2
  • Elise Sandsmark
    • 1
  • Brage Krüger-Stokke
    • 1
    • 3
  • Øystein Størkersen
    • 4
  • May-Britt Tessem
    • 1
  • Siver A. Moestue
    • 1
    • 5
  • Helena Bertilsson
    • 6
    • 7
  • Tone F. Bathen
    • 1
    • 2
  1. 1.Deparment of Circulation and Medical Imaging, Faculty of MedicineNTNU, Norwegian University of Science and TechnologyTrondheimNorway
  2. 2.St. Olavs HospitalTrondheim University HospitalTrondheimNorway
  3. 3.Department of Radiology, St. Olavs HospitalTrondheim University HospitalTrondheimNorway
  4. 4.Department of Pathology, St. Olavs HospitalTrondheim University HospitalTrondheimNorway
  5. 5.Department of Laboratory Medicine, Children’s and Women’s Health, Faculty of MedicineNTNU, Norwegian University of Science and TechnologyTrondheimNorway
  6. 6.Department of Urology, St. Olavs HospitalTrondheim University HospitalTrondheimNorway
  7. 7.Department of Cancer Research and Molecular Medicine, Faculty of MedicineNTNU, Norwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations