Skip to main content

Advertisement

Log in

Improving the dose–myelotoxicity correlation in radiometabolic therapy of bone metastases with 153Sm-EDTMP

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

153Sm-ethylene diamine tetramethylene phosphonic acid (153Sm-EDTMP) is widely used to palliate pain from bone metastases, and is being studied for combination therapy beyond palliation. Conceptually, red marrow (RM) dosimetry allows myelotoxicity to be predicted, but the correlation is poor due to dosimetric uncertainty, individual sensitivity and biological effects from previous treatments. According to EANM guidelines, basic dosimetric procedures have been studied to improve the correlation between dosimetry and myelotoxicity in 153Sm-EDTMP therapy.

Methods

RM dosimetry for 33 treatments of bone metastases from breast, prostate and lung tumours was performed prospectively (with 99mTc-MDP) and retrospectively, acquiring whole-body scans early and late after injection. The 153Sm-EDTMP activity was calculated by prospective dosimetry based on measured skeletal uptake and full physical retention, with the RM absorbed dose not exceeding 3.8 Gy. Patient-specific RM mass was evaluated by scaling in terms of body weight (BW), lean body mass (LBM) and trabecular volume (TV) estimated from CT scans of the L2–L4 vertebrae. Correlations with toxicity were determined in a selected subgroup of 27 patients, in which a better correlation between dosimetry and myelotoxicity was expected.

Results

Skeletal uptakes of 99mTc and 153Sm (Tc% and Sm%) were well correlated. The median Sm% was higher in prostate cancer (75.3 %) than in lung (60.5 %, p = 0.005) or breast (60.8 %, p = 0.008). PLT and WBC nadirs were not correlated with administered activity, but were weakly correlated with uncorrected RM absorbed doses, and the correlation improved after rescaling in terms of BW, LBM and TV. Most patients showed transient toxicity (grade 1–3), which completely and spontaneously recovered over a few days. Using TV, RM absorbed dose was in the range 2–5 Gy, with a median of 312 cGy for PLT in patients with toxicity and 247 cGy in those with no toxicity (p = 0.019), and 312 cGy for WBC in those with toxicity and 232 cGy in those with no toxicity (p = 0.019). ROC curves confirmed the correlations, yielding toxicity absorbed dose thresholds of 265 cGy for PLT and 232 cGy for WBC.

Conclusion

The best predictor of myelotoxicity and blood cells nadir was obtained scaling the RM absorbed dose in terms of the estimated TV. It seems clear that the increase in skeletal uptake due to the presence of bone metastases and the assumption of full physical retention cause an overestimation of the RM absorbed dose. Nevertheless, an improvement of the dose–toxicity correlation is easily achievable by simple methods, also leading to possible improvement in multifactorial analyses of myelotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lote K, Walloe A, Bjersand A. Bone metastases: prognosis, diagnosis and treatment. Acta Radiol Oncol. 1986;25:227–32.

    Article  CAS  PubMed  Google Scholar 

  2. Garret IR. Bone destruction in cancer. Semin Oncol. 1993;20:4–9.

    Google Scholar 

  3. Bonica JJ. Treatment of cancer pain: current status and future needs. In: Fields HL, Dubner R, Cerbero F, editors. Advances in pain research and therapy, vol 9. New York: Raven; 1985. p. 589–616.

    Google Scholar 

  4. Coleman RE. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res. 2006;12:6243s–9s.

    Article  PubMed  Google Scholar 

  5. Coleman RE. Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat Rev. 2001;27:165–76.

    Article  CAS  PubMed  Google Scholar 

  6. Bayouth JE, Macey DJ, Kasi LP, Fossella FV. Dosimetry and toxicity of samarium-153-EDTMP administered for bone pain due to skeletal metastases. J Nucl Med. 1994;35:63–9.

    CAS  PubMed  Google Scholar 

  7. Serafini AN, Houston SJ, Resche I, et al. Palliation of pain associated with metastatic bone cancer using Sm-153 lexidronam: a double-blind placebo-controlled clinical trial. J Clin Oncol. 1998;16:1574–81.

    CAS  PubMed  Google Scholar 

  8. Maini CL, Bergomi S, Romano L, Sciuto R. 153Sm-EDTMP for bone pain palliation in skeletal metastases. Eur J Nucl Med Mol Imaging. 2004;31:S171–8.

    Article  PubMed  Google Scholar 

  9. Bauman G, Charette M, Reid R, et al. Radiopharmaceuticals for the palliation of painful bone metastasis – a systemic review. Radiother Oncol. 2005;75:258–70.

    Article  CAS  PubMed  Google Scholar 

  10. Tu SM, Millikan RE, Mengistu B, et al. Bone-targeted therapy for advanced androgen-independent carcinoma of the prostate: a randomised phase II trial. Lancet. 2001;357:336–41.

    Article  CAS  PubMed  Google Scholar 

  11. Ricci S, Boni G, Pastina I, et al. Clinical benefit of bone-targeted radiometabolic therapy with 153Sm-EDTMP combined with chemotherapy in patients with metastatic hormone-refractory prostate cancer. Eur J Nucl Med Mol Imaging. 2007;34:1023–30.

    Article  CAS  PubMed  Google Scholar 

  12. Suttmann H, Grgic A, Jan Lehmann J, et al. Combining 153Sm-lexidronam and docetaxel for the treatment of patients with hormone-refractory prostate cancer: first experience. Cancer Biother Radiopharm. 2008;23:609–18.

    Article  CAS  PubMed  Google Scholar 

  13. Fizazi K, Beuzeboc P, Lumbroso J, et al. Phase II trial of consolidation docetaxel and samarium-153 in patients with bone metastases from castration-resistant prostate cancer. J Clin oncol. 2009;27:2429–35.

    Article  CAS  PubMed  Google Scholar 

  14. Anderson PM, Wiseman GA, Erlandson L, et al. Gemcitabine radiosensitization after high-dose samarium for osteoblastic osteosarcoma. Clin Cancer Res. 2005;11:6895–900.

    Article  CAS  PubMed  Google Scholar 

  15. Anderson PM, Wiseman GA, Dispenzieri A, et al. High-dose samarium-153 ethylene diamine tetramethylene phosphonate: low toxicity of skeletal irradiation in patients with osteosarcoma and bone metastases. J Clin Oncol. 2002;20:189–96.

    Article  CAS  PubMed  Google Scholar 

  16. Loeb DM, Garrett-Mayer E, Hobbs RF, et al. Dose-finding study of (153)Sm-EDTMP in patients with poor-prognosis osteosarcoma. Cancer. 2009;115:2514–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Loeb DM, Hobbs RF, Okoli A, et al. Tandem dosing of samarium-153 ethylenediamine tetramethylene phosphoric acid with stem cell support for patients with high-risk osteosarcoma. Cancer. 2010;116:5470–8.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Senthamizhchelvan S, Hobbs RF, Song H, et al. Tumor dosimetry and response for 153Sm-ethylenediamine tetramethylene phosphonic acid therapy of high-risk osteosarcoma. J Nucl Med. 2012;53:215–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Hobbs RF, McNutt T, Baechler S, et al. A treatment planning methodology for sequentially combining radiopharmaceutical therapy (RPT) and external radiation therapy (XRT). Int J Radiat Oncol Biol Phys. 2011;80:1256–62.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Valicenti RK, Trabulsi E, Intenzo C, et al. A phase I trial of samarium-153-lexidronam complex for treatment of clinically nonmetastatic high-risk prostate cancer: first report of a completed study. Int J Radiat Oncol Biol Phys. 2011;79:732–7.

    Article  CAS  PubMed  Google Scholar 

  21. Bartlett ML, Webb M, Durrant S, et al. Dosimetry and toxicity of Quadramet for bone marrow ablation in multiple myeloma and other haematological malignancies. Eur J Nucl Med. 2002;29:1470–7.

    Article  CAS  Google Scholar 

  22. Berenson JR, Yellin O, Patel R, et al. A phase I study of samarium Lexidronam/Bortezomib combination therapy for the treatment of relapsed or refractory multiple myeloma. Clin Cancer Res. 2009;15:1069–75.

    Article  CAS  PubMed  Google Scholar 

  23. Brenner W, Kampen WU, Kampen AM, Henze E. Skeletal uptake and soft-tissue retention of 186Re-HEDP and 153Sm-EDTMP in patients with metastatic bone disease. J Nucl Med. 2001;42:230–6.

    CAS  PubMed  Google Scholar 

  24. Bodei L, Lam M, Chiesa C, et al. EANM procedure guideline for treatment of refractory metastatic bone pain. Eur J Nucl Med Mol Imaging. 2008;35:1934–40.

    Article  PubMed  Google Scholar 

  25. Hindorf C, Lindén O, Tennvall J, et al. Evaluation of methods for red marrow dosimetry based on patients undergoing radioimmunotherapy. Acta Oncol. 2005;44:579–88.

    Article  CAS  PubMed  Google Scholar 

  26. Wessels BW, Bolch WE, Bouchet LG, et al. Bone marrow dosimetry using blood-based models for radiolabeled antibody therapy: a multiinstitutional comparison. J Nucl Med. 2004;45:1725–33.

    PubMed  Google Scholar 

  27. Forrer F, Krenning EP, Kooij PP, et al. Bone marrow dosimetry in peptide receptor radionuclide therapy with [177Lu-DOTA(0),Tyr(3)]octreotate. Eur J Nucl Med Mol Imaging. 2009;36:1138–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Breitz HB, Fisher DR, Wessels BW. Marrow toxicity and radiation absorbed dose estimates from rhenium-186-labeled monoclonal antibody. J Nucl Med. 1998;39:1746–51.

    CAS  PubMed  Google Scholar 

  29. Shen S, Meredith RF, Duan J, et al. Comparison of methods for predicting myelotoxicity for non-marrow targeting I-131-antibody therapy. Cancer Biother Radiopharm. 2003;18:209–15.

    Article  CAS  PubMed  Google Scholar 

  30. O’Donoghue JA, Baidoo N, Deland D, et al. Hematologic toxicity in radioimmunotherapy: dose-response relationships for 131-I labeled antibody therapy. Cancer Biother Radiopharm. 2002;17:435–43.

    Article  PubMed  Google Scholar 

  31. Behr T, Béhé M, Sgouros G. Correlation of red marrow radiation dosimetry with myelotoxicity: empirical factors influencing the radiation-induced myelotoxicity of radiolabeled antibodies, fragments and peptides in pre-clinical and clinical settings. Cancer Biother Radiopharm. 2002;17:445–64.

    Article  CAS  PubMed  Google Scholar 

  32. Hindorf C, Glatting G, Chiesa C, Lindén O, Flux G. EANM Dosimetry Committee guidelines for bone marrow and whole-body dosimetry. Eur J Nucl Med Mol Imaging. 2010;37:1238–50.

    Article  PubMed  Google Scholar 

  33. Lindén O, Tennvall J, Hindorf C, et al. 131I-labelled anti-CD22 MAb (LL2) in patients with B-cell lymphomas failing chemotherapy. Treatment outcome, haematologic toxicity and absorbed dose to bone marrow. Acta Oncol. 2002;41:297–303.

    Article  PubMed  Google Scholar 

  34. Liu H, Zhan H, Sun D, et al. Analysis of multiple factors related to hematologic toxicity following 153Sm-EDTMP therapy. Cancer Biother Radiopharm. 2007;22:515–20.

    Article  PubMed  Google Scholar 

  35. Baechler S, Hobbs RF, Jacene HA, et al. Predicting hematologic toxicity in patients undergoing radioimmunotherapy with 90Y-ibritumomab tiuxetan or 131I-tositumomab. J Nucl Med. 2010;51:1878–84.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Bianchi L, Baroli A, Marzoli L, et al. Prospective dosimetry with 99mTc-MDP in metabolic radiotherapy of bone metastases with 153Sm-EDTMP. Eur J Nucl Med Mol Imaging. 2009;36:122–9.

    Article  CAS  PubMed  Google Scholar 

  37. Eary JF, Collins C, Stabin M, et al. Samarium-153-EDTMP biodistribution and dosimetry estimation. J Nucl Med. 1993;34:1031–6.

    CAS  PubMed  Google Scholar 

  38. Shen S, Meredith RF, Duan J, et al. Improved prediction of myelotoxicity using a patient-specific imaging dose estimate for non-marrow-targeting 90Y-antibody therapy. J Nucl Med. 2002;43:1245–53.

    CAS  PubMed  Google Scholar 

  39. Stabin MG, Siegel JA, Sparks RB. Sensitivity of model-based calculations of red marrow dosimetry to changes in patient-specific parameters. Cancer Biother Radiopharm. 2002;17:535–43.

    Article  PubMed  Google Scholar 

  40. Bolch WE, Patton PW, Shah AP. Considerations of anthropometric, tissue volume, and tissue mass scaling for improved patient specificity of skeletal S values. Med Phys. 2002;29:1054–70.

    Article  CAS  PubMed  Google Scholar 

  41. Brindle JM, Trindade AA, Shah AP, et al. Linear regression model for predicting patient-specific total skeletal spongiosa volume for use in molecular radiotherapy dosimetry. J Nucl Med. 2006;47:1875–83.

    PubMed  Google Scholar 

  42. Pichardo JC, Trindade AA, Brindle JM, et al. Method for estimating skeletal spongiosa volume and active marrow mass in the adult male and adult female. J Nucl Med. 2007;48:1880–8.

    Article  PubMed  Google Scholar 

  43. Ferrer L, Kraeber-Bodéré F, Bodet-Milin C, et al. Three methods assessing red marrow dosimetry in lymphoma patients treated with radioimmunotherapy. Cancer. 2010;116:1093–100.

    Article  CAS  PubMed  Google Scholar 

  44. National Cancer Institute. Common Terminology Criteria for Adverse Events v3.0 (CTCAE). Available at: http://ctep.cancer.gov/protocolDevelopment/electronic_applications/ctc.htm. Accessed January 30, 2013.

  45. Loevinger R, Berman M. A revised schema for calculating the absorbed dose from biologically distributed radionuclides. MIRD Pamphlet no. 1. New York: Society of Nuclear Medicine; 1975.

    Google Scholar 

  46. Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 2005;46:1023–7.

    PubMed  Google Scholar 

  47. Vigna L, Matheoud R, Ridone S, et al. Characterization of the [(153)Sm]Sm-EDTMP pharmacokinetics and estimation of radiation absorbed dose on an individual basis. Phys Med. 2011;27:144–52.

    Article  CAS  PubMed  Google Scholar 

  48. Morgan DJ, Bray KM. Lean body mass as a predictor of drug dosage. Implications for drug therapy. Clin Pharmacokinet. 1994;26:292–307.

    Article  CAS  PubMed  Google Scholar 

  49. Sugawara Y, Zasadny KR, Neuhoff AW, Wahl RL. Reevaluation of the standardized uptake value for FDG: variations with body weight and methods for correction. Radiology. 1999;213:521–5.

    Article  CAS  PubMed  Google Scholar 

  50. James W. Research on obesity. London: Her Majesty’s Stationery Office; 1976.

    Google Scholar 

  51. Hume R. Prediction of lean body mass from height and weight. J Clin Pathol. 1966;19:389–91

    Article  CAS  PubMed  Google Scholar 

  52. Snyder WS, Cook MJ, Nasset ES, et al. Report of the Task Group on Reference Man. Oxford, UK: Pergamon; 1975. p. 91.

    Google Scholar 

  53. Singh A, Holmes RA, Farhangi M, et al. Human pharmacokinetics of samarium-153 EDTMP in metastatic cancer. J Nucl Med. 1989;30:1814–8.

    CAS  PubMed  Google Scholar 

  54. Pacilio M, Ventroni G, Basile C, et al. Prospective 99mTc-MDP and retrospective 153Sm-EDTMP 3D-dosimetry in metabolic radiotherapy of bone metastases: dosimetric comparisons and equivalent uniform biologic effective dose calculations. Eur J Nucl Med Mol Imaging. 2012;39:S187.

    Google Scholar 

  55. Pacilio M, Ventroni G, Basile C, et al. Comparison of prospective 99mTc-MDP and retrospective 153Sm-EDTMP 3D-dosimetry in metabolic radiotherapy of bone metastases. Clin Transl Imaging. 2013;1:S127.

    Google Scholar 

  56. Spiess AN, Neumeyer N. An evaluation of R2 as an inadequate measure for nonlinear models in pharmacological and biochemical research: a Monte Carlo approach. BMC Pharmacol. 2010;10:6.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Heyward VH, Stolarczyk LM. Applied body composition assessment. Champaign, IL: Human Kinetics; 1996.

    Google Scholar 

  58. Wiseman GA, Kornmehl E, Leigh B, et al. Radiation dosimetry results and safety correlations from 90Y-ibritumomab tiuxetan radioimmunotherapy for relapsed or refractory non-Hodgkin’s lymphoma: combined data from 4 clinical trials. J Nucl Med. 2003;44:465–74.

    CAS  PubMed  Google Scholar 

  59. Siegel JA. Establishing a clinically meaningful predictive model of hematologic toxicity in nonmyeloablative targeted radiotherapy: practical aspects and limitations of red marrow dosimetry. Cancer Biother Radiopharm. 2005;20:126–40.

    Article  CAS  PubMed  Google Scholar 

  60. Lim SM, DeNardo GL, DeNardo DA, et al. Prediction of myelotoxicity using radiation doses to marrow from body, blood and marrow sources. J Nucl Med. 1997;38:1374–8.

    CAS  PubMed  Google Scholar 

  61. DeNardo DA, DeNardo GL, O’Donnell RT, et al. Imaging for improved prediction of myelotoxicity after radioimmunotherapy. Cancer. 1997;80:2558s–66s.

    Article  Google Scholar 

  62. Sgouros G, Roeske JC, McDevitt MR, et al. MIRD Pamphlet No. 22 (abridged): radiobiology and dosimetry of alpha-particle emitters for targeted radionuclide therapy. J Nucl Med. 2010;51:311–28.

    Article  CAS  PubMed  Google Scholar 

  63. Bruland ØS, Nilsson S, Fisher DR, Larsen RH. High-linear energy transfer irradiation targeted to skeletal metastases by the α-emitter 223Ra: adjuvant or alternative to conventional modalities? Clin Cancer. 2006;12:6250s–7s.

    Article  CAS  Google Scholar 

  64. Nilsson S, Franzén L, Parker C, et al. Bone-targeted radium-223 in symptomatic, hormone-refractory prostate cancer: a randomised, multicentre, placebo-controlled phase II study. Lancet Oncol. 2007;8:587–94.

    Article  CAS  PubMed  Google Scholar 

  65. Hobbs RF, Song H, Watchman CJ, et al. A bone marrow toxicity model for 223Ra alpha-emitter radiopharmaceutical therapy. Phys Med Biol. 2012;57:3207–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Dant JT, Richardson RB, Nie LH. Monte Carlo simulation of age-dependent radiation dose from alpha- and beta-emitting radionuclides to critical trabecular bone and bone marrow targets. Phys Med Biol. 2013;58:3301–19.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Marta Cremonesi, Ph.D. (Istituto Europeo di Oncologia, Milan, Italy), for many constructive comments and helpful discussion during the preparation of the manuscript.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Pacilio.

Additional information

The authors declare that this study complied with the current laws of the country where it was performed (Italy) and received ethical approval.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pacilio, M., Ventroni, G., Basile, C. et al. Improving the dose–myelotoxicity correlation in radiometabolic therapy of bone metastases with 153Sm-EDTMP. Eur J Nucl Med Mol Imaging 41, 238–252 (2014). https://doi.org/10.1007/s00259-013-2552-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-013-2552-2

Keywords

Navigation