Skip to main content

Advertisement

Log in

Lipidus migrans—a radiology imaging feature after ankle injury

  • Case Report
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

We present an uncommon imaging feature with fluid fat tracking within the tendon sheath of the flexor hallucis longus (FHL) after traumatic injury to the ankle joint. We propose a coined medical term “lipidus migrans” to define the presence of floating fat in a tendon sheath. This is due to lipohemarthrosis from intra-articular fracture of the ankle with leakage of fluid fat into the tendon sheath. Communication between the FHL tendon sheath and ankle joint can occur in up to 25% of patients. Radiologists should be aware of the presence of lipidus migrans as a potential posttraumatic complication after intra-articular ankle fracture and that fat in the tendon sheath may mimic fracture fragments or even a tendon sheath tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kling DH. Fat in traumatic effusions of the knee joint. Am J Surg. 1929;6(1):71–4.

    Article  Google Scholar 

  2. Draeger RW, Singh B, Parekh SG. Quantifying normal ankle joint volume: an anatomic study. Ind J Orthopaed. 2009;43(1):72–5.

    Article  Google Scholar 

  3. Schweitzer ME, van Leersum M, Ehrlich SS, Wapner K. Fluid in normal and abnormal ankle joints: amount and distribution as seen on MR images. AJR Am J Roentgenol. 1994;162(1):111–4.

    Article  CAS  Google Scholar 

  4. Czuczman GJ, Mandell JC, Khurana B. Iliopsoas bursal extension of lipohemarthrosis: a novel imaging finding associated with hip fracture. Skelet Radiol. 2017;46(2):253–7.

    Article  Google Scholar 

  5. Verhagen MV, Chesaru I. Fat drops in wrist tendon sheaths on MRI in conjunction with a radius fracture. Skelet Radiol. 2016;45(8):1129–31.

    Article  Google Scholar 

  6. Cooke MW, Lamb SE, Marsh J, Dale J. A survey of current consultant practice of treatment of severe ankle sprains in emergency departments in the United Kingdom. Emerg Med J : EMJ. 2003;20(6):505–7.

    Article  CAS  Google Scholar 

  7. Doherty C, Delahunt E, Caulfield B, Hertel J, Ryan J, Bleakley C. The incidence and prevalence of ankle sprain injury: a systematic review and meta-analysis of prospective epidemiological studies. Sports Med (Auckland, NZ). 2014;44(1):123–40.

    Article  Google Scholar 

  8. Arimoto HK, Forrester DM. Classification of ankle fractures: an algorithm. AJR Am J Roentgenol. 1980;135(5):1057–63.

    Article  CAS  Google Scholar 

  9. Clare MP. A rational approach to ankle fractures. Foot Ankle Clin. 2008;13(4):593–610.

    Article  Google Scholar 

  10. Braunstein M, Baumbach SF, Bocker W, Mutschler W, Polzer H. Arthroscopically assisted treatment of ankle fractures. Unfallchirurg. 2016;119(2):92–8.

    Article  CAS  Google Scholar 

  11. Chen XZ, Chen Y, Liu CG, Yang H, Xu XD, Lin P. Arthroscopy-assisted surgery for acute ankle fractures: a systematic review. Arthroscop : J Arthroscop Relat Surg : Off Publ Arthroscop Assoc North Am Int Arthroscop Assoc. 2015;31(11):2224–31.

    Article  Google Scholar 

  12. Stufkens SA, Knupp M, Horisberger M, Lampert C, Hintermann B. Cartilage lesions and the development of osteoarthritis after internal fixation of ankle fractures: a prospective study. J Bone Joint Surg Am. 2010;92(2):279–86.

    Article  Google Scholar 

  13. Russo A, Reginelli A, Zappia M, Rossi C, Fabozzi G, Cerrato M, et al. Ankle fracture: radiographic approach according to the Lauge–Hansen classification. Musculoskelet Surg. 2013;97(Suppl 2):S155–60.

    Article  Google Scholar 

  14. Stiell I, Wells G, Laupacis A, Brison R, Verbeek R, Vandemheen K, et al. Multicentre trial to introduce the Ottawa ankle rules for use of radiography in acute ankle injuries. Multicentre Ankle Rule Study Group. BMJ (Clinical research ed). 1995;311(7005):594–7.

    Article  CAS  Google Scholar 

  15. Stiell IG, Greenberg GH, McKnight RD, Nair RC, McDowell I, Reardon M, et al. Decision rules for the use of radiography in acute ankle injuries. Refinement and prospective validation. JAMA. 1993;269(9):1127–32.

    Article  CAS  Google Scholar 

  16. Stiell IG, Greenberg GH, McKnight RD, Nair RC, McDowell I, Worthington JR. A study to develop clinical decision rules for the use of radiography in acute ankle injuries. Ann Emerg Med. 1992;21(4):384–90.

    Article  CAS  Google Scholar 

  17. Stiell IG, McKnight RD, Greenberg GH, McDowell I, Nair RC, Wells GA, et al. Implementation of the Ottawa ankle rules. JAMA. 1994;271(11):827–32.

    Article  CAS  Google Scholar 

  18. Polzer H, Kanz KG, Prall WC, Haasters F, Ockert B, Mutschler W, et al. Diagnosis and treatment of acute ankle injuries: development of an evidence-based algorithm. Orthop Rev. 2012;4(1):e5.

    Article  Google Scholar 

  19. Waryasz GR, McClure P, Vopat BG. Septic ankle with purulence tracking up the flexor hallucis longus tendon sheath leading to deep venous thrombosis/pulmonary embolism and compartment syndrome. Foot Ankle Specialist. 2015;8(3):234–9.

    Article  Google Scholar 

  20. Chang G, Hughes T, Resnick D. Computed tomography (CT) of fractures of the ankle and foot: correlating fracture patterns with the presence of tenosynovial fat: tenosynovial fat in ankle and foot fractures. Clin Imaging. 2014;38(2):160–3.

    Article  Google Scholar 

  21. Lui TH. Endoscopic removal of loose bodies of the posterior ankle extra-articular space arising from flexor hallucis longus tenosynovial osteochondromatosis. Arthroscop Tech. 2016;5(6):e1247–52.

    Article  Google Scholar 

  22. Bancroft LW, Kransdorf MJ, Peterson JJ, O’Connor MI. Benign fatty tumors: classification, clinical course, imaging appearance, and treatment. Skelet Radiol. 2006;35(10):719–33.

    Article  Google Scholar 

  23. Moukaddam H, Smitaman E, Haims AH. Lipoma arborescens of the peroneal tendon sheath. J Magnet Reson Imag : JMRI. 2011;33(1):221–4.

    Article  Google Scholar 

  24. Sheldon PJ, Forrester DM, Learch TJ. Imaging of intraarticular masses. Radiograp : Rev Publ Radiol Soc North Am, Inc. 2005;25(1):105–19.

    Article  Google Scholar 

  25. MRI of bone and soft tissue tumors and tumorlike lesions: differential diagnosis and atlas. Radiology. 2009; 250(2):353–353.

  26. Poorteman L, Declercq H, Natens P, Wetzels K, Vanhoenacker F. Intra-articular synovial lipoma of the knee joint. BJR|Case Rep. 2015;1(2):20150061.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Piotr Gołofit for his diagrams depicting lipidus migrans and its etiology. We also thank Dr. Manuel Peterhans for his clinical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malwina Kaniewska.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaniewska, M., Steinbach, L.S., Neurauter, U. et al. Lipidus migrans—a radiology imaging feature after ankle injury. Skeletal Radiol 47, 1709–1715 (2018). https://doi.org/10.1007/s00256-018-2973-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-018-2973-x

Keywords

Navigation