Multimodality imaging of subacromial impingement syndrome

  • Lionel Pesquer
  • Sophie Borghol
  • Philippe Meyer
  • Mickael Ropars
  • Benjamin Dallaudière
  • Pierre Abadie
Review Article
  • 199 Downloads

Abstract

Subacromial impingement syndrome results from irritation of the tendons of the rotator cuff muscles in the subacromial space and may manifest as a range of pathologies. However, subacromial impingement is a dynamic condition for which imaging reveals predisposing factors but no pathognomonic indicators. Also, the usual imaging features of subacromial impingement may be seen in symptomatic and asymptomatic patients. Therefore, imaging is able to detect tears and describe the risk factors of impingement but cannot confirm subacromial impingement. Radiographs allow assessment of the morphology of the acromion and its lateral extension by means of the acromial index and the critical shoulder angle, which may increase in cases of subacromial impingement. Ultrasound is necessary to evaluate a tendon tear and is the only tool that provides dynamic information, which is essential to assessing dynamic conditions. Magnetic resonance imaging (MRI) allows the assessment of associated intraarticular abnormalities, joint effusion, and bone marrow edema. The objective of this article is to provide an overview of the pathophysiology and clinical manifestations of subacromial impingement and discuss recent advances in the imaging of subacromial impingement and the role of radiography, ultrasound, and MRI in differentiating normal from pathologic findings.

Keywords

Shoulder Impingement Ultrasound MRI 

Notes

Authors contribution

The work presented here was carried out in collaboration between all authors. SB, BD, and LP defined the research theme. SB, BD, PA, and LP designed methods and analyzed the data, interpreted the results and wrote the paper. SB, BD, PA, MR, and LP discussed analyses, interpretation, and presentation. All authors have contributed to, seen and approved the manuscript.

Compliance with ethical standards

Conflict of interest

None.

References

  1. 1.
    Linsell L, Dawson J, Zondervan K, Rose P, Randall T, Fitzpatrick R, et al. Prevalence and incidence of adults consulting for shoulder conditions in UK primary care; patterns of diagnosis and referral. Rheumatology (Oxford). 2006;45(2):215–21.CrossRefGoogle Scholar
  2. 2.
    Neer CS. Impingement lesions. Clin Orthop. 1983;173:70–7.Google Scholar
  3. 3.
    Roy EA, Cheyne I, Andrews GT, Forster BB. Beyond the cuff: MR imaging of labroligamentous injuries in the athletic shoulder. Radiology. 2016;278(2):316–32.CrossRefPubMedGoogle Scholar
  4. 4.
    Myers JB, Laudner KG, Pasquale MR, Bradley JP, Lephart SM. Glenohumeral range of motion deficits and posterior shoulder tightness in throwers with pathologic internal impingement. Am J Sports Med. 2006;34(3):385–91.CrossRefPubMedGoogle Scholar
  5. 5.
    Heyworth BE, Williams RJ 3rd. Internal impingement of the shoulder. Am J Sports Med. 2009;37(5):1024–37.CrossRefPubMedGoogle Scholar
  6. 6.
    Gerber C, Sebesta A. Impingement of the deep surface of the subscapularis tendon and the reflection pulley on the anterosuperior glenoid rim: a preliminary report. J Shoulder Elbow Surg. 2000;9(6):483–90.CrossRefPubMedGoogle Scholar
  7. 7.
    Beaudreuil J, Nizard R, Thomas T, Peyre M, Liotard JP, Boileau P, et al. Contribution of clinical tests to the diagnosis of rotator cuff disease: a systematic literature review. Joint Bone Spine. 2009;76(1):15–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Nyffeler RW, Werner CML, Sukthankar A, Schmid MR, Gerber C. Association of a large lateral extension of the acromion with rotator cuff tears. J Bone Joint Surg Am. 2006;88(4):800–5.PubMedGoogle Scholar
  9. 9.
    Dietrich TJ, Moor BK, Puskas GJ, Pfirrmann CWA, Hodler J, Peterson CK. Is the lateral extension of the acromion related to the outcome of shoulder injections? Eur Radiol. 2015;25(1):267–73.CrossRefPubMedGoogle Scholar
  10. 10.
    Bhatia DN, Debeer JF, Toit DF. Association of a large lateral extension of the acromion with rotator cuff tears. J Bone Joint Surg Am. 2006;88(8):1889. (author reply, 1889–90)CrossRefPubMedGoogle Scholar
  11. 11.
    Van Holsbeeck M, Strouse PJ. Sonography of the shoulder: evaluation of the subacromial-subdeltoid bursa. AJR Am J Roentgenol. 1993;160(3):561–4.CrossRefPubMedGoogle Scholar
  12. 12.
    Magee T. 3-T MRI of the shoulder: is MR arthrography necessary? AJR Am J Roentgenol. 2009;192(1):86–92.CrossRefPubMedGoogle Scholar
  13. 13.
    Minagawa H, Itoi E, Konno N, Kido T, Sano A, Urayama M, et al. Humeral attachment of the supraspinatus and infraspinatus tendons: an anatomic study. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc. 1998;14(3):302–6.CrossRefGoogle Scholar
  14. 14.
    Fealy S, April EW, Khazzam M, Armengol-Barallat J, Bigliani LU. The coracoacromial ligament: morphology and study of acromial enthesopathy. J Shoulder Elb Surg. 2005;14(5):542–8.CrossRefGoogle Scholar
  15. 15.
    Prescher A. Anatomical basics, variations, and degenerative changes of the shoulder joint and shoulder girdle. Eur J Radiol. 2000;35(2):88–102.CrossRefPubMedGoogle Scholar
  16. 16.
    Kesmezacar H, Akgun I, Ogut T, Gokay S, Uzun I. The coracoacromial ligament: the morphology and relation to rotator cuff pathology. J Shoulder Elbow Surg. 2008;17(1):182–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Grimsby O, Gray J. Interrelation of the spine to the shoulder girdle. In: Donatelli R, editor. Physical therapy of the shoulder. New York: Churchill Livingstone; 1997. p. 95–129.Google Scholar
  18. 18.
    Papadonikolakis A, McKenna M, Warme W, Martin BI, Matsen FA. Published evidence relevant to the diagnosis of impingement syndrome of the shoulder. J Bone Joint Surg Am. 2011;93(19):1827–32.CrossRefPubMedGoogle Scholar
  19. 19.
    Alqunaee M, Galvin R, Fahey T. Diagnostic accuracy of clinical tests for subacromial impingement syndrome: a systematic review and meta-analysis. Arch Phys Med Rehabil. 2012;93(2):229–36.CrossRefPubMedGoogle Scholar
  20. 20.
    Bloom JE, Rischin A, Johnston RV, Buchbinder R. Image-guided versus blind glucocorticoid injection for shoulder pain. Cochrane Database Syst Rev. 2012;8:CD009147.Google Scholar
  21. 21.
    Saupe N, Pfirrmann CW, Schmid MR, Jost B, Werner CM, Zanetti M. Association between rotator cuff abnormalities and reduced acromiohumeral distance. AJR Am J Roentgenol. 2006;187(2):376–82.CrossRefPubMedGoogle Scholar
  22. 22.
    Goupille P, Anger C, Cotty P, Fouquet B, Soutif D, Valat JP. Value of standard radiographies in the diagnosis of rotator cuff rupture. Rev Rhum Ed Fr. 1993;60(6):440–4.PubMedGoogle Scholar
  23. 23.
    McCreesh KM, Crotty JM, Lewis JS. Acromiohumeral distance measurement in rotator cuff tendinopathy: is there a reliable, clinically applicable method? A systematic review. Br J Sports Med. 2015;49(5):298–305.CrossRefPubMedGoogle Scholar
  24. 24.
    Ames JB, Horan MP, Van der Meijden OAJ, Leake MJ, Millett PJ. Association between acromial index and outcomes following arthroscopic repair of full-thickness rotator cuff tears. J Bone Joint Surg Am. 2012;94(20):1862–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Moor BK, Bouaicha S, Rothenfluh DA, Sukthankar A, Gerber C. Is there an association between the individual anatomy of the scapula and the development of rotator cuff tears or osteoarthritis of the glenohumeral joint?: a radiological study of the critical shoulder angle. Bone Joint J. 2013;95-B(7):935–41.CrossRefPubMedGoogle Scholar
  26. 26.
    Bouaicha S, Ehrmann C, Slankamenac K, Regan WD, Moor BK. Comparison of the critical shoulder angle in radiographs and computed tomography. Skelet Radiol. 2014;43(8):1053–6.CrossRefGoogle Scholar
  27. 27.
    Garcia GH, Liu JN, Degen RM, Johnson CC, Wong A, Dines DM, et al. Higher critical shoulder angle increases the risk of retear after rotator cuff repair. J Shoulder Elb Surg. 2017;26(2):241–5.  https://doi.org/10.1016/j.jse.2016.07.009.CrossRefGoogle Scholar
  28. 28.
    Lee M, Chen JY, Liow MHL, Chong HC, Chang P, Lie D. Critical shoulder angle and Acromial index do not influence 24-month functional outcome after arthroscopic rotator cuff repair. Am J Sports Med. 2017;1:363546517717947.  https://doi.org/10.1177/0363546517717947.Google Scholar
  29. 29.
    Banas MP, Miller RJ, Totterman S. Relationship between the lateral acromion angle and rotator cuff disease. J Shoulder Elb Surg Am Shoulder Elb Surg Al. 1995;4(6):454–61.CrossRefGoogle Scholar
  30. 30.
    Balke M, Schmidt C, Dedy N, Banerjee M, Bouillon B, Liem D. Correlation of acromial morphology with impingement syndrome and rotator cuff tears. Acta Orthop. 2013;84(2):178–83.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Bigliani LU, Levine WN. Subacromial impingement syndrome. J Bone Joint Surg Am. 1997;79(12):1854–68.CrossRefPubMedGoogle Scholar
  32. 32.
    Natsis K, Tsikaras P, Totlis T, Gigis I, Skandalakis P, Appell HJ, et al. Correlation between the four types of acromion and the existence of enthesophytes: a study on 423 dried scapulas and review of the literature. Clin Anat. 2007;20(3):267–72.CrossRefPubMedGoogle Scholar
  33. 33.
    Moor BK, Wieser K, Slankamenac K, Gerber C, Bouaicha S. Relationship of individual scapular anatomy and degenerative rotator cuff tears. J Shoulder Elbow Surg. 2014;23(4):536–41.CrossRefPubMedGoogle Scholar
  34. 34.
    Park TS, Park DW, Kim SI, Kweon TH. Roentgenographic assessment of acromial morphology using supraspinatus outlet radiographs. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc. 2001;17(5):496–501.CrossRefGoogle Scholar
  35. 35.
    Tuite MJ, Toivonen DA, Orwin JF, Wright DH. Acromial angle on radiographs of the shoulder: correlation with the impingement syndrome and rotator cuff tears. AJR Am J Roentgenol. 1995;165(3):609–13.CrossRefPubMedGoogle Scholar
  36. 36.
    Zuckerman JD, Kummer FJ, Cuomo F, Simon J, Rosenblum S, Katz N. The influence of coracoacromial arch anatomy on rotator cuff tears. J Shoulder Elb Surg. 1992;1(1):4–14.CrossRefGoogle Scholar
  37. 37.
    Chan O. Axial view radiograph of the shoulder. BMJ. 2012;345:e6861.  https://doi.org/10.1136/bmj.e6861.CrossRefPubMedGoogle Scholar
  38. 38.
    Daghir AA, Sookur PA, Shah S, Watson M. Dynamic ultrasound of the subacromial-subdeltoid bursa in patients with shoulder impingement: a comparison with normal volunteers. Skelet Radiol. 2012;41(9):1047–53.CrossRefGoogle Scholar
  39. 39.
    Girish G, Lobo LG, Jacobson JA, Morag Y, Miller B, Jamadar DA. Ultrasound of the shoulder: asymptomatic findings in men. AJR Am J Roentgenol. 2011;197(4):W713–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Wang Y-C, Wang H-K, Chen W-S, Wang T-G. Dynamic visualization of the coracoacromial ligament by ultrasound. Ultrasound Med Biol. 2009;35(8):1242–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Jacobson JA. Shoulder US: anatomy, technique, and scanning pitfalls. Radiology. 2011;260(1):6–16.CrossRefPubMedGoogle Scholar
  42. 42.
    Desmeules F, Minville L, Riederer B, Côté CH, Frémont P. Acromio-humeral distance variation measured by ultrasonography and its association with the outcome of rehabilitation for shoulder impingement syndrome. Clin J Sport Med Off J Can Acad Sport Med. 2004;14(4):197–205.CrossRefGoogle Scholar
  43. 43.
    Bureau NJ, Beauchamp M, Cardinal E, Brassard P. Dynamic sonography evaluation of shoulder impingement syndrome. AJR Am J Roentgenol. 2006;187(1):216–20.CrossRefPubMedGoogle Scholar
  44. 44.
    Morag Y, Jacobson JA, Miller B, De Maeseneer M, Girish G, Jamadar D. MR imaging of rotator cuff injury: what the clinician needs to know. Radiogr Rev Publ Radiol Soc N Am Inc. 2006;26(4):1045–65.Google Scholar
  45. 45.
    Blanchard TK, Bearcroft PW. Magnetic resonance imaging of the coraco-acromial ligament. Clin Anat. 1997;10(2):88–91.CrossRefPubMedGoogle Scholar
  46. 46.
    Mayerhoefer ME, Breitenseher MJ, Roposch A, Treitl C, Wurnig C. Comparison of MRI and conventional radiography for assessment of acromial shape. AJR Am J Roentgenol. 2005;184(2):671–5.CrossRefPubMedGoogle Scholar
  47. 47.
    Epstein RE, Schweitzer ME, Frieman BG, Fenlin JM, Mitchell DG. Hooked acromion: prevalence on MR images of painful shoulders. Radiology. 1993;187(2):479–81.CrossRefPubMedGoogle Scholar
  48. 48.
    Needell SD, Zlatkin MB, Sher JS, Murphy BJ, Uribe JW. MR imaging of the rotator cuff: peritendinous and bone abnormalities in an asymptomatic population. AJR Am J Roentgenol. 1996;166(4):863–7.CrossRefPubMedGoogle Scholar
  49. 49.
    Lenza M, Buchbinder R, Takwoingi Y, Johnston RV, Hanchard NC, Faloppa F. Magnetic resonance imaging, magnetic resonance arthrography and ultrasonography for assessing rotator cuff tears in people with shoulder pain for whom surgery is being considered. Cochrane Database Syst Rev. 2013;9:CD009020.Google Scholar
  50. 50.
    White EA, Schweitzer ME, Haims AH. Range of normal and abnormal subacromial/subdeltoid bursa fluid. J Comput Assist Tomogr. 2006;30(2):316–20.CrossRefPubMedGoogle Scholar
  51. 51.
    Wright RW, Fritts HM, Tierney GS, Buss DD. MR imaging of the shoulder after an impingement test: how long to wait. AJR Am J Roentgenol. 1998;171(3):769–73.CrossRefPubMedGoogle Scholar
  52. 52.
    Razmjou H, Fournier-Gosselin S, Christakis M, Pennings A, ElMaraghy A, Holtby R. Accuracy of magnetic resonance imaging in detecting biceps pathology in patients with rotator cuff disorders: comparison with arthroscopy. J Shoulder Elb Surg. 2016;25(1):38–44.CrossRefGoogle Scholar
  53. 53.
    Tan V, Moore RS, Omarini L, Kneeland JB, Williams GR, Iannotti JP. Magnetic resonance imaging analysis of coracoid morphology and its relation to rotator cuff tears. Am J Orthop (Belle Mead NJ). 2002;31(6):329–33.Google Scholar
  54. 54.
    Tasaki A, Nimura A, Nozaki T, Yamakawa A, Niitsu M, Morita W, et al. Quantitative and qualitative analyses of subacromial impingement by kinematic open MRI. Knee Surg Sports Traumatol Arthrosc Off J ESSKA. 2015;23(5):1489–97.CrossRefGoogle Scholar
  55. 55.
    Magee T, Williams D. 3.0-T MRI of the supraspinatus tendon. AJR Am J Roentgenol. 2006;187(4):881–6.CrossRefPubMedGoogle Scholar
  56. 56.
    De Witte PB, Overbeek CL, Navas A, Nagels J, Reijnierse M, Nelissen RGHH. Heterogeneous MR arthrography findings in patients with subacromial impingement syndrome - diagnostic subgroups? J Electromyogr Kinesiol Off J Int Soc Electrophysiol Kinesiol. 2015;17:1873–5711.Google Scholar
  57. 57.
    Major NM, Browne J, Domzalski T, Cothran RL, Helms CA. Evaluation of the glenoid labrum with 3-T MRI: is intraarticular contrast necessary? AJR Am J Roentgenol. 2011;196(5):1139–44.CrossRefPubMedGoogle Scholar
  58. 58.
    Magee T, Williams D, Mani N. Shoulder MR arthrography: which patient group benefits most? AJR Am J Roentgenol. 2004;183(4):969–74.CrossRefPubMedGoogle Scholar
  59. 59.
    Maizlin ZV, Clement JJ, Patola WB, Fenton DM, Gillies JH, Vos PM, et al. T2 mapping of articular cartilage of glenohumeral joint with routine MRI correlation—initial experience. HSS J Musculoskelet J Hosp Spec Surg. 2009;5(1):61–6.Google Scholar
  60. 60.
    Nörenberg D, Armbruster M, Bender YN. Diagnostic performance of susceptibility-weighted magnetic resonance imaging for the assessment of sub-coracoacromial spurs causing subacromial impingement syndrome. Eur Radiol. 2017;27(3):1286–94.CrossRefPubMedGoogle Scholar

Copyright information

© ISS 2018

Authors and Affiliations

  • Lionel Pesquer
    • 1
  • Sophie Borghol
    • 1
  • Philippe Meyer
    • 1
  • Mickael Ropars
    • 2
  • Benjamin Dallaudière
    • 1
  • Pierre Abadie
    • 3
  1. 1.Department of RadiologyClinique du SportMérignac-BordeauxFrance
  2. 2.Department of Orthopedic SurgeryRennesFrance
  3. 3.Department of Orthopedic SurgeryClinique du SportMérignac-BordeauxFrance

Personalised recommendations