Skeletal Radiology

, Volume 47, Issue 5, pp 609–618 | Cite as

Pulse-dose radiofrequency treatment in pain management—initial experience

  • Christine Ojango
  • Mario Raguso
  • Roberto Fiori
  • Salvatore Masala
Review Article


Radiofrequency procedures have been used for treating various chronic pain conditions for decades. These minimally invasive percutaneous treatments employ an alternating electrical current with oscillating radiofrequency wavelengths to eliminate or alter pain signals from the targeted site. The aim of the continuous radiofrequency procedure is to increase the temperature sufficiently to create an irreversible thermal lesion on nerve fibres and thus permanently interrupt pain signals. The pulsed radiofrequency procedure utilises short pulses of radiofrequency current with intervals of longer pauses to avert a temperature increase to the level of permanent tissue damage. The goal of these pulses is to alter the processing of pain signals, but to avoid relevant structural damage to nerve fibres, as seen in the continuous radiofrequency procedure. The pulse-dose radiofrequency procedure is a technical improvement of the pulsed radiofrequency technique in which the delivery mode of the current is adapted. During the pulse-dose radiofrequency procedure thermal damage is avoided. In addition, the amplitude and width of the consecutive pulses are kept the same. The method ensures that each delivered pulse keeps the same characteristics and therefore the dose is similar between patients. The current review outlines the pulse-dose radiofrequency procedure and presents our institution’s chronic pain management studies.


Musculoskeletal pain management Radiofrequency Pulsed radiofrequency Pulse-dose radiofrequency 


Compliance with ethical standards

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organisation or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licencing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Sweet WH, Wepsic JG. Controlled thermocoagulation of trigeminal ganglion and rootlets for differential destruction of pain fibers. J Neurosurg. 1974;40:143–56.CrossRefPubMedGoogle Scholar
  2. 2.
    Bogduk N. Pulsed radiofrequency. Pain Med. 2006;7:396–407.CrossRefPubMedGoogle Scholar
  3. 3.
    Mittal B, Thomas DGT. Controlled thermocoagulation in trigeminal neuralgia. J Neurol Neurosurg Psychiatry. 1986;49:932–6.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Shealy CN. Percutaneous radiofrequency denervation of spinal facets. J Neurosurg. 1975;43:448–51.CrossRefPubMedGoogle Scholar
  5. 5.
    Lopez BC, Hamlyn PJ, Zakrzewska JM, Burchiel KJ, Sandquist M, Henderson JM, et al. Systematic review of ablative neurosurgical techniques for the treatment of trigeminal neuralgia. Neurosurgery. 2004;54:973–83.CrossRefPubMedGoogle Scholar
  6. 6.
    Rea W, Kapur S, Mutagi H. Radiofrequency therapies in chronic pain. Contin Educ Anaesth Crit Care Pain. 2011;11:35–8.CrossRefGoogle Scholar
  7. 7.
    Maas ET, Ostelo RWJG, Niemisto L, Jousimaa J, Hurri H, Malmivaara A, van Tulder MW. Radiofrequency denervation for chronic low back pain. Cochrane Database of Systematic Reviews 2015, Issue 10. Art. No.: CD008572.
  8. 8.
    Shepherd TM, Hoch MJ, Cohen BA, Bruno MT, Fieremans E, Rosen G, et al. Palliative CT-guided cordotomy for medically intractable pain in patients with cancer. AJNR Am J Neuroradiol. 2017;38:387–90.CrossRefPubMedGoogle Scholar
  9. 9.
    Engel AJ. Utility of intercostal nerve conventional thermal radiofrequency ablations in the injured worker after blunt trauma. Pain Physician. 2012;15:E711–8.PubMedGoogle Scholar
  10. 10.
    Osman AM, El-Hammady DH, Kotb MM. Pulsed compared to thermal radiofrequency to the medial Calcaneal nerve for Management of Chronic Refractory Plantar Fasciitis: a prospective comparative study. Pain Physician. 19:E1181–7.Google Scholar
  11. 11.
    Sluijter ME, Cosman ER, Rittman WB, Van Kleef M. The effects of pulsed radiofrequency fields applied to the dorsal root ganglion—a preliminary report. Pain Clin. 1998;11:109–17.Google Scholar
  12. 12.
    NeurTherm Radio Frequency Lesion Generator Model NT1000 Operators Manual [Internet]. Medicall Nordic AB; [cited 2017 Jan 2]. Available from:
  13. 13.
    Byrd D, Mackey S. Pulsed radiofrequency for chronic pain. Curr Pain Headache Rep. 2008;12:37–41.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Chua NHL, Vissers KC, Sluijter ME. Pulsed radiofrequency treatment in interventional pain management: mechanisms and potential indications-a review. Acta Neurochir. 2011;153:763–71.CrossRefPubMedGoogle Scholar
  15. 15.
    Erdine S, Bilir A, Cosman ER, Cosman ER. Ultrastructural changes in axons following exposure to pulsed radiofrequency fields. Pain Pract. 2009;9:407–17.CrossRefPubMedGoogle Scholar
  16. 16.
    Cahana A, Zundert JV, Macrea L, Kleef MV, Sluijter M. Pulsed radiofrequency: current clinical and biological literature available. Pain Med. 2006;7:411–23.CrossRefPubMedGoogle Scholar
  17. 17.
    Racz GB, Ruiz-Lopez R. Radiofrequency procedures. Pain Pract. 2006;6:46–50.CrossRefPubMedGoogle Scholar
  18. 18.
    Karaman H, Tüfek A, Kavak GÖ, Yildirim ZB, Çelik F. Would pulsed radiofrequency applied to different anatomical regions have effective results for chronic pain treatment? J Pak Med Assoc. 2011;61:879–85.PubMedGoogle Scholar
  19. 19.
    Bhatia A, Peng P, Cohen SP. Radiofrequency procedures to relieve chronic knee pain: an evidence-based narrative review. Reg Anesth Pain Med. 2016;41:501–10.CrossRefPubMedGoogle Scholar
  20. 20.
    Sluijter ME, Imani F. Evolution and mode of action of pulsed radiofrequency. Anesth Pain Med. 2013;2:139–41.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Schianchi PM, Sluijter ME, Balogh SE. The treatment of joint pain with intra-articular pulsed radiofrequency. Anesth Pain Med. 2013;3:250–5.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Falco FJE, Manchikanti L, Datta S, Sehgal N, Geffert S, Onyewu O, et al. An update of the effectiveness of therapeutic lumbar facet joint interventions. Pain Physician. 2012;15:E909–53.PubMedGoogle Scholar
  23. 23.
    Tekin I, Mirzai H, Ok G, Erbuyun K, Vatansever D. A comparison of conventional and pulsed radiofrequency denervation in the treatment of chronic facet joint pain. Clin J Pain. 2007;23:524–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Kroll HR, Kim D, Danic MJ, Sankey SS, Gariwala M, Brown M. A randomized, double-blind, prospective study comparing the efficacy of continuous versus pulsed radiofrequency in the treatment of lumbar facet syndrome. J Clin Anesth. 2008;20:534–7.CrossRefPubMedGoogle Scholar
  25. 25.
    Lim JW, Cho Y-W, Lee DG, Chang MC. Comparison of intraarticular pulsed radiofrequency and intraarticular corticosteroid injection for management of cervical facet joint pain. Pain Physician. 2017;20:E961–7.PubMedGoogle Scholar
  26. 26.
    Hackworth RJ. Pulsed radio frequency. But what dose did you use? Pain Med. 2012;13:1662–3.CrossRefPubMedGoogle Scholar
  27. 27.
    Masala S, Fiori R, Raguso M, Morini M, Calabria E, Simonetti G. Pulse-dose radiofrequency for knee osteoartrithis. Cardiovasc Intervent Radiol. 2014;37:482–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Masala S, Fiori R, Raguso M, Calabria E, Cuzzolino A, Fusco A, et al. Pulse-dose radiofrequency can reduce chronic pain in trapezio-metacarpal osteoarthritis: a mini-invasive therapeutic approach. Int J Rheum Dis. 2015.Google Scholar
  29. 29.
    Masala S, Fiori R, Calabria E, Raguso M, De Vivo D, Cuzzolino A, et al. Management of pain on hallux valgus with percutaneous intra-articular pulse-dose radiofrequency. Int J Rheum Dis. 2014.Google Scholar
  30. 30.
    Masala S, Calabria E, Cuzzolino A, Raguso M, Morini M, Simonetti G. CT-guided percutaneous pulse-dose radiofrequency for pudendal neuralgia. Cardiovasc Intervent Radiol. 2014;37:476–81.CrossRefPubMedGoogle Scholar
  31. 31.
    Masala S, Fiori R, Raguso M, Ojango C, Morini M, Cuzzolino A, et al. Pulse-dose radiofrequency in athletic pubalgia: preliminary results. J Sport Rehabil [Internet]. 2015. Available from:
  32. 32.
    National Collaborating Centre for Chronic Conditions (UK). Osteoarthritis: National Clinical Guideline for Care and Management in Adults [Internet]. London: Royal College of Physicians (UK); 2008 [cited 2017 Oct 30]. Available from:
  33. 33.
    Goldring SR, Goldring MB. Clinical aspects, pathology and pathophysiology of osteoarthritis. J. Musculoskelet. Neuronal Interact. 2006;6(4):376–8.Google Scholar
  34. 34.
    Felson DT, Lawrence RC, Dieppe PA, Hirsch R, Helmick CG, Jordan JM, et al. Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann Intern Med. 2000;133:635–46.CrossRefPubMedGoogle Scholar
  35. 35.
    Karaman H, Tüfek A, Kavak GÖ, Yildirim ZB, Uysal E, Çelik F, et al. Intra-articularly applied pulsed radiofrequency can reduce chronic knee pain in patients with osteoarthritis. J Chin Med Assoc. 2011;74:336–40.CrossRefPubMedGoogle Scholar
  36. 36.
    Eyigor C, Eyigor S, Akdeniz S, Uyar M. Effects of intra-articular application of pulsed radiofrequency on pain, functioning and quality of life in patients with advanced knee osteoarthritis. J Back Musculoskelet Rehabil. 2015;28:129–34.CrossRefPubMedGoogle Scholar
  37. 37.
    Batra S, Kanvinde R. Osteoarthritis of the thumb trapeziometacarpal joint. Curr Orthop. 2007;21:135–44.CrossRefGoogle Scholar
  38. 38.
    Ankarath S. Chronic wrist pain: diagnosis and management. Curr Orthop. 2006;20:141–51.CrossRefGoogle Scholar
  39. 39.
    Menz HB, Fotoohabadi MR, Wee E, Spink MJ. Validity of self-assessment of hallux valgus using the Manchester scale. BMC Musculoskeletal Disorders. 2010;11:215.
  40. 40.
    D’Arcangelo PR, Landorf KB, Munteanu SE, Zammit GV, Menz HB. Radiographic correlates of hallux valgus severity in older people. J Foot Ankle Res. 2010;3:1–9.CrossRefGoogle Scholar
  41. 41.
    Nix SE, Vicenzino BT, Smith MD. Foot pain and functional limitation in healthy adults with hallux valgus: a cross-sectional study. BMC Musculoskelet Disord. 2012;13:197.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Labat J-J, Riant T, Robert R, Amarenco G, Lefaucheur J-P, Rigaud J. Diagnostic criteria for pudendal neuralgia by pudendal nerve entrapment (Nantes criteria). Neurourol Urodyn. 2008;27:306–10.CrossRefPubMedGoogle Scholar
  43. 43.
    Hibner M, Desai N, Robertson LJ, Nour M. Pudendal neuralgia. J Minim Invasive Gynecol. 2010;17:148–53.CrossRefPubMedGoogle Scholar
  44. 44.
    Balconi G. US in pubalgia. J Ultrasound. 2011;14:157–66.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© ISS 2017

Authors and Affiliations

  • Christine Ojango
    • 1
  • Mario Raguso
    • 1
  • Roberto Fiori
    • 1
  • Salvatore Masala
    • 1
  1. 1.Department of Diagnostic and Molecular Imaging, Interventional Radiology and Radiation TherapyUniversity of Rome “Tor Vergata”RomeItaly

Personalised recommendations