Skeletal Radiology

, Volume 47, Issue 4, pp 457–471 | Cite as

Shear wave sonoelastography of skeletal muscle: basic principles, biomechanical concepts, clinical applications, and future perspectives

  • Maud Creze
  • Antoine Nordez
  • Marc Soubeyrand
  • Laurence Rocher
  • Xavier Maître
  • Marie-France Bellin
Review Article
  • 492 Downloads

Abstract

Imaging plays an important role in the diagnosis and therapeutic response evaluation of muscular diseases. However, one important limitation is its incapacity to assess the in vivo biomechanical properties of the muscles. The emerging shear wave sonoelastography technique offers a quantifiable spatial representation of the viscoelastic characteristics of skeletal muscle. Elastography is a non-invasive tool used to analyze the physiologic and biomechanical properties of muscles in healthy and pathologic conditions. However, radiologists need to familiarize themselves with the muscular biomechanical concepts and technical challenges of shear wave elastography. This review introduces the basic principles of muscle shear wave elastography, analyzes the factors that can influence measurements and provides an overview of its potential clinical applications in the field of muscular diseases.

Keywords

Elastic modulus Elasticity imaging techniques Review Skeletal muscle 

Notes

Acknowledgements

We are grateful for the grant from the Société Française de Radiologie – Collège des Enseignants en Radiologie de France (SFR-CERF).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Maurer B, Walker UA. Role of MRI in diagnosis and management of idiopathic inflammatory myopathies. Curr Rheumatol Rep. 2015;17(11):67.PubMedCrossRefGoogle Scholar
  2. 2.
    Morrow JM, Sinclair CD, Fischmann A, Machado PM, Reilly MM, Yousry TA, et al. MRI biomarker assessment of neuromuscular disease progression: a prospective observational cohort study. Lancet Neurol. 2016;15(1):65–77.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Bercoff J, Tanter M, Muller M, Fink M. The role of viscosity in the impulse diffraction field of elastic waves induced by the acoustic radiation force. IEEE Trans Ultrason Ferroelectr Freq Control. 2004;51(11):1523–36.PubMedCrossRefGoogle Scholar
  4. 4.
    Muthupillai R, Ehman RL. Magnetic resonance elastography. Nat Med. 1996;2(5):601–3.PubMedCrossRefGoogle Scholar
  5. 5.
    Muthupillai R, Lomas DJ, Rossman PJ, Greenleaf JF, Manduca A, Ehman RL. Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science. 1995;269(5232):1854–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Arda K, Ciledag N, Aktas E, Aribas BK, Kose K. Quantitative assessment of normal soft-tissue elasticity using shear-wave ultrasound elastography. AJR Am J Roentgenol. 2011;197(3):532–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Gennisson JL, Deffieux T, Fink M, Tanter M. Ultrasound elastography: principles and techniques. Diagn Interven Imaging. 2013;94(5):487–95.CrossRefGoogle Scholar
  8. 8.
    Ng WL, Rahmat K, Fadzli F, Rozalli FI, Mohd-Shah MN, Chandran PA, et al. Shearwave elastography increases diagnostic accuracy in characterization of breast lesions. Medicine. 2016;95(12):e3146.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Nell S, Kist JW, Debray TP, de Keizer B, van Oostenbrugge TJ, Borel Rinkes IH, et al. Qualitative elastography can replace thyroid nodule fine-needle aspiration in patients with soft thyroid nodules. A systematic review and meta-analysis. Eur J Radiol. 2015;84(4):652–61.PubMedCrossRefGoogle Scholar
  10. 10.
    Chin JL, Chan G, Ryan JD. Noninvasive assessment of liver fibrosis and cirrhosis with ultrasound-based elastography in alcohol-related liver disease. Gastroenterology. 2016;150(5):1251–52.Google Scholar
  11. 11.
    Roberts TJ. Contribution of elastic tissues to the mechanics and energetics of muscle function during movement. J Exp Biol. 2016;219(Pt 2):266–75.PubMedCrossRefGoogle Scholar
  12. 12.
    Klauser AS, Miyamoto H, Bellmann-Weiler R, Feuchtner GM, Wick MC, Jaschke WR. Sonoelastography: musculoskeletal applications. Radiology. 2014;272(3):622–33.PubMedCrossRefGoogle Scholar
  13. 13.
    Sarvazyan A, Hall TJ, Urban MW, Fatemi M, Aglyamov SR, Garra BS. An overview of elastography—an emerging branch of medical imaging. Curr Med Imaging Rev. 2011;7(4):255–82.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Gennisson JL, Deffieux T, Mace E, Montaldo G, Fink M, Tanter M. Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging. Ultrasound Med Biol. 2010;36(5):789–801.PubMedCrossRefGoogle Scholar
  15. 15.
    Levinson SF, Shinagawa M, Sato T. Sonoelastic determination of human skeletal muscle elasticity. J Biomech. 1995;28(10):1145–54.PubMedCrossRefGoogle Scholar
  16. 16.
    Brandenburg JE, Eby SF, Song P, Zhao H, Brault JS, Chen S, et al. Ultrasound elastography: the new frontier in direct measurement of muscle stiffness. Arch Phys Med Rehabil. 2014;95(11):2207–19.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Bercoff J, Tanter M, Fink M. Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr Freq Control. 2004;51(4):396–409.PubMedCrossRefGoogle Scholar
  18. 18.
    Hug F, Tucker K, Gennisson JL, Tanter M, Nordez A. Elastography for muscle biomechanics: toward the estimation of individual muscle force. Exerc Sport Sci Rev. 2015;43(3):125–33.PubMedCrossRefGoogle Scholar
  19. 19.
    Eby SF, Song P, Chen S, Chen Q, Greenleaf JF, An KN. Validation of shear wave elastography in skeletal muscle. J Biomech. 2013;46(14):2381–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Dubois G, Kheireddine W, Vergari C, Bonneau D, Thoreux P, Rouch P, et al. Reliable protocol for shear wave elastography of lower limb muscles at rest and during passive stretching. Ultrasound Med Biol. 2015;41(9):2284–91.PubMedCrossRefGoogle Scholar
  21. 21.
    Dorado Cortez C, Hermitte L, Ramain A, Mesmann C, Lefort T, Pialat JB. Ultrasound shear wave velocity in skeletal muscle: a reproducibility study. Diagn Interv Imaging. 2016;97(1):71–9.Google Scholar
  22. 22.
    Miyamoto N, Hirata K, Kanehisa H, Yoshitake Y. Validity of measurement of shear modulus by ultrasound shear wave elastography in human pennate muscle. PLoS One. 2015;10(4):e0124311.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Fung YC. Biomechanics: mechanical properties of living tissues. 2nd ed. New York: Springer-Verlag; 1993.CrossRefGoogle Scholar
  24. 24.
    Shin HJ, Kim MJ, Kim HY, Roh YH, Lee MJ. Comparison of shear wave velocities on ultrasound elastography between different machines, transducers, and acquisition depths: a phantom study. Eur Radiol. 2016;26(10):3361–7.Google Scholar
  25. 25.
    MacDonald D, Wan A, McPhee M, Tucker K, Hug F. Reliability of abdominal muscle stiffness measured using elastography during trunk rehabilitation exercises. Ultrasound Med Biol. 2016;42(4):1018–25.Google Scholar
  26. 26.
    Koo TK, Guo JY, Cohen JH, Parker KJ. Quantifying the passive stretching response of human tibialis anterior muscle using shear wave elastography. Clin Biomech. 2014;29(1):33–9.CrossRefGoogle Scholar
  27. 27.
    Hirayama K, Akagi R, Takahashi H. Reliability of ultrasound elastography for the quantification of transversus abdominis elasticity. Acta Radiol Open. 2015;4(9):2058460115603420.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Ates F, Hug F, Bouillard K, Jubeau M, Frappart T, Couade M, et al. Muscle shear elastic modulus is linearly related to muscle torque over the entire range of isometric contraction intensity. J Electromyography Kinesiol: Off J Int Soc Electrophysiol Kinesiol. 2015;25(4):703–8.CrossRefGoogle Scholar
  29. 29.
    Kot BC, Zhang ZJ, Lee AW, Leung VY, Fu SN. Elastic modulus of muscle and tendon with shear wave ultrasound elastography: variations with different technical settings. PLoS One. 2012;7(8):e44348.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Kovanen V, Suominen H, Heikkinen E. Mechanical properties of fast and slow skeletal muscle with special reference to collagen and endurance training. J Biomech. 1984;17(10):725–35.PubMedCrossRefGoogle Scholar
  31. 31.
    Nordez A, Hug F. Muscle shear elastic modulus measured using supersonic shear imaging is highly related to muscle activity level. J Appl Physiol. 2010;108(5):1389–94.PubMedCrossRefGoogle Scholar
  32. 32.
    Koo TK, Hug F. Factors that influence muscle shear modulus during passive stretch. J Biomech. 2015;48(12):3539–42.PubMedCrossRefGoogle Scholar
  33. 33.
    Hug F, Lacourpaille L, Maisetti O, Nordez A. Slack length of gastrocnemius medialis and Achilles tendon occurs at different ankle angles. J Biomech. 2013;46(14):2534–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Ewertsen C, Carlsen JF, Christiansen IR, Jensen JA, Nielsen MB. Evaluation of healthy muscle tissue by strain and shear wave elastography—dependency on depth and ROI position in relation to underlying bone. Ultrasonics. 2016;71:127–33.PubMedCrossRefGoogle Scholar
  35. 35.
    Nakamura M, Hasegawa S, Umegaki H, Nishishita S, Kobayashi T, Fujita K, et al. The difference in passive tension applied to the muscles composing the hamstrings—comparison among muscles using ultrasound shear wave elastography. Man Ther. 2016;24:1–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Akagi R, Takahashi H. Acute effect of static stretching on hardness of the gastrocnemius muscle. Med Sci Sports Exerc. 2013;45(7):1348–54.PubMedCrossRefGoogle Scholar
  37. 37.
    Akagi R, Takahashi H. Effect of a 5-week static stretching program on hardness of the gastrocnemius muscle. Scand J Med Sci Sports. 2014;24(6):950–7.Google Scholar
  38. 38.
    Akagi R, Tanaka J, Shikiba T, Takahashi H. Muscle hardness of the triceps brachii before and after a resistance exercise session: a shear wave ultrasound elastography study. Acta Radiol. 2015;56(12):1487–93.PubMedCrossRefGoogle Scholar
  39. 39.
    Akagi R, Yamashita Y, Ueyasu Y. Age-related differences in muscle shear moduli in the lower extremity. Ultrasound Med Biol. 2015;41(11):2906–12.PubMedCrossRefGoogle Scholar
  40. 40.
    Akagi R, Kusama S. Comparison between neck and shoulder stiffness determined by shear wave ultrasound elastography and a muscle hardness meter. Ultrasound Med Biol. 2015;41(8):2266–71.PubMedCrossRefGoogle Scholar
  41. 41.
    Akagi R, Shikiba T, Tanaka J, Takahashi H. A six-week resistance training program does not change shear modulus of the triceps brachii. J Appl Biomech. 2016;32(4):373–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Akiyama K, Akagi R, Hirayama K, Hirose N, Takahashi H, Fukubayshi T. Shear modulus of the lower leg muscles in patients with medial tibial stress syndrome. Ultrasound Med Biol. 2016;42(8):1779–83.PubMedCrossRefGoogle Scholar
  43. 43.
    Andonian P, Viallon M, Le Goff C, de Bourguignon C, Tourel C, Morel J, et al. Shear-wave elastography assessments of quadriceps stiffness changes prior to, during and after prolonged exercise: a longitudinal study during an extreme mountain ultra-marathon. PLoS One. 2016;11(8):e0161855.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Andrade RJ, Lacourpaille L, Freitas SR, McNair PJ, Nordez A. Effects of hip and head position on ankle range of motion, ankle passive torque, and passive gastrocnemius tension. Scand J Med Sci Sports. 2016;26(1):41–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Ariji Y, Nakayama M, Nishiyama W, Nozawa M, Ariji E. Shear-wave sonoelastography for assessing masseter muscle hardness in comparison with strain sonoelastography: study with phantoms and healthy volunteers. Dentomaxillofac Radiol. 2016;45(2):20150251.Google Scholar
  46. 46.
    Botanlioglu H, Kantarci F, Kaynak G, Unal Y, Ertan S, Aydingoz O, et al. Shear wave elastography properties of vastus lateralis and vastus medialis obliquus muscles in normal subjects and female patients with patellofemoral pain syndrome. Skelet Radiol. 2013;42(5):659–66.CrossRefGoogle Scholar
  47. 47.
    Bouillard K, Nordez A, Hug F. Estimation of individual muscle force using elastography. PLoS One. 2011;6(12):e29261.PubMedCrossRefGoogle Scholar
  48. 48.
    Bouillard K, Nordez A, Hodges PW, Cornu C, Hug F. Evidence of changes in load sharing during isometric elbow flexion with ramped torque. J Biomech. 2012;45(8):1424–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Bouillard K, Hug F, Guevel A, Nordez A. Shear elastic modulus can be used to estimate an index of individual muscle force during a submaximal isometric fatiguing contraction. J Appl Physiol. 2012;113(9):1353–61.PubMedCrossRefGoogle Scholar
  50. 50.
    Bouillard K, Jubeau M, Fau-Nordez A, Nordez A, Fau-Hug F, Hug F. Effect of vastus lateralis fatigue on load sharing between quadriceps femoris muscles during isometric knee extensions. J Neurophysiol. 2014;111(4):768–76.Google Scholar
  51. 51.
    Brandenburg JE, Eby SF, Song P, Zhao H, Landry BW, Kingsley-Berg S, et al. Feasibility and reliability of quantifying passive muscle stiffness in young children by using shear wave ultrasound elastography. J Ultrasound Med: Off J Am Inst Ultrasound Med. 2015;34(4):663–70.CrossRefGoogle Scholar
  52. 52.
    Carpenter EL, Lau HA, Kolodny EH, Adler RS. Skeletal muscle in healthy subjects versus those with GNE-related myopathy: evaluation with shear-wave US—A pilot study. Radiology. 2015;277(2):546–54.Google Scholar
  53. 53.
    Chernak LA, DeWall RJ, Lee KS, Thelen DG. Length and activation dependent variations in muscle shear wave speed. Physiol Meas. 2013;34(6):713–21.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Chino K, Takahashi H. Measurement of gastrocnemius muscle elasticity by shear wave elastography: association with passive ankle joint stiffness and sex differences. Eur J Appl Physiol. 2016;116(4):823–30.Google Scholar
  55. 55.
    Chino K, Takahashi H. The association of muscle and tendon elasticity with passive joint stiffness: in vivo measurements using ultrasound shear wave elastography. Clin Biomech. 2015;30(10):1230–5.CrossRefGoogle Scholar
  56. 56.
    Creze M, Nyangoh Timoh K, Gagey O, Rocher L, Bellin MF, Soubeyrand M. Feasibility assessment of shear wave elastography to lumbar back muscles: a radioanatomic study. Clin Anat. 2017;30(6):774–80.Google Scholar
  57. 57.
    Du LJ, He W, Cheng LG, Li S, Pan YS, Gao J. Ultrasound shear wave elastography in assessment of muscle stiffness in patients with Parkinson's disease: a primary observation. Clin Imaging. 2016;40(6):1075–80.PubMedCrossRefGoogle Scholar
  58. 58.
    Eby SF, Cloud BA, Brandenburg JE, Giambini H, Song P, Chen S, et al. Shear wave elastography of passive skeletal muscle stiffness: influences of sex and age throughout adulthood. Clin Biomech. 2015;30(1):22–7.CrossRefGoogle Scholar
  59. 59.
    Eby S, Zhao H, Song P, Vareberg BJ, Kinnick R, Greenleaf JF, et al. Quantitative evaluation of passive muscle stiffness in chronic stroke. Am J Phys Med Rehabilitation. 2016;95(12):899–910.Google Scholar
  60. 60.
    Eriksson Crommert M, Lacourpaille L, Heales LJ, Tucker K, Hug F. Massage induces an immediate, albeit short-term, reduction in muscle stiffness. Scand J Med Sci Sports. 2015;25(5):e490–6.PubMedCrossRefGoogle Scholar
  61. 61.
    Guilhem G, Doguet V, Hauraix H, Lacourpaille L, Jubeau M, Nordez A, et al. Muscle force loss and soreness subsequent to maximal eccentric contractions depend on the amount of fascicle strain in vivo. Acta Physiol. 2016;217(2):152–63.CrossRefGoogle Scholar
  62. 62.
    Hirata KM-M, Kaneshisa EH, Miyamoto N. Muscle-specific acute changes in passive stiffness of human triceps surae after stretching. Eur J Appl Physiol. 2016;116(5):911–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Hirata K, Kanehisa H, Miyamoto-Mikami E, Miyamoto N. Evidence for intermuscle difference in slack angle in human triceps surae. J Biomech. 2015;48(6):1210–3.PubMedCrossRefGoogle Scholar
  64. 64.
    Hug F, Ouellette A, Vicenzino B, Hodges PW, Tucker K. Deloading tape reduces muscle stress at rest and during contraction. Med Sci Sports Exerc. 2014;46(12):2317–25.PubMedCrossRefGoogle Scholar
  65. 65.
    Deffieux T, Gennisson JL, Tanter M, Fink M. Assessment of the mechanical properties of the musculoskeletal system using 2-D and 3-D very high frame rate ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control. 2008;55(10):2177–90.PubMedCrossRefGoogle Scholar
  66. 66.
    Ichihashi N, Umegaki H, Ikezoe T, Nakamura M, Nishishita S, Fujita K, et al. The effects of a 4-week static stretching programme on the individual muscles comprising the hamstrings. J Sports Sci. 2016;34(23):2155–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Itoigawa Y, Sperling JW, Steinmann SP, Chen Q, Song P, Chen S, et al. Feasibility assessment of shear wave elastography to rotator cuff muscle. Clin Anat. 2015;28(2):213–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Lacourpaille L, Nordez A, Hug F, Couturier A, Dibie C, Guilhem G. Time-course effect of exercise-induced muscle damage on localized muscle mechanical properties assessed using elastography. Acta Physiol. 2014;211(1):135–46.CrossRefGoogle Scholar
  69. 69.
    Lacourpaille L, Hug F, Bouillard K, Hogrel JY, Nordez A. Supersonic shear imaging provides a reliable measurement of resting muscle shear elastic modulus. Physiol Meas. 2012;33(3):N19–28.PubMedCrossRefGoogle Scholar
  70. 70.
    Lacourpaille L, Hug F, Nordez A. Influence of passive muscle tension on electromechanical delay in humans. PLoS One. 2013;8(1):e53159.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Lapole T, Tindel J, Galy R, Nordez A. Contracting biceps brachii elastic properties can be reliably characterized using supersonic shear imaging. Eur J Appl Physiol. 2015;115(3):497–505.PubMedCrossRefGoogle Scholar
  72. 72.
    Leong HT, Hug F, Fu SN. Increased upper Trapezius muscle stiffness in overhead athletes with rotator cuff tendinopathy. PLoS One. 2016;11(5):e0155187.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Le Sant G, Ates F, Brasseur JL, Nordez A. Elastography study of hamstring behaviors during passive stretching. PLoS One. 2015;10(9):e0139272.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Maisetti O, Hug F, Bouillard K, Nordez A. Characterization of passive elastic properties of the human medial gastrocnemius muscle belly using supersonic shear imaging. J Biomech. 2012;45(6):978–84.PubMedCrossRefGoogle Scholar
  75. 75.
    Miyamoto N, Hirata K, Kanehisa H. Effects of hamstring stretching on passive muscle stiffness vary between hip flexion and knee extension maneuvers. Scand J Med Sci Sports. 2017:27(1):99–106.Google Scholar
  76. 76.
    Moreau B, Vergari C, Gad H, Sandoz B, Skalli W, Laporte S. Non-invasive assessment of human multifidus muscle stiffness using ultrasound shear wave elastography: a feasibility study. Proc Inst Mech Eng H J Eng Med. 2016;230(8):809–14.CrossRefGoogle Scholar
  77. 77.
    Nakamura M, Ikezoe T, Kobayashi T, Umegaki H, Takeno Y, Nishishita S, et al. Acute effects of static stretching on muscle hardness of the medial gastrocnemius muscle belly in humans: an ultrasonic shear-wave elastography study. Ultrasound Med Biol. 2014;40(9):1991–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Nakamura M, Ikezoe T, Umegaki H, Kobayashi T, Nishisita S, Ichihashi N. Shear elastic modulus is a reproducible index reflecting the passive mechanical properties of medial gastrocnemius muscle belly. Acta Radiol Open. 2016;5(4):2058460115604009.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Pournot H, Tindel J, Testa R, Mathevon L, Lapole T. The acute effect of local vibration as a recovery modality from exercise-induced increased muscle stiffness. J Sports Sci Med. 2016;15(1):142–7.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Raiteri BJ, Hug F, Cresswell AG, Lichtwark GA. Quantification of muscle co-contraction using supersonic shear wave imaging. J Biomech. 2016;49(3):493–5.PubMedCrossRefGoogle Scholar
  81. 81.
    Rosskopf AB, Ehrmann C, Buck FM, Gerber C, Fluck M, Pfirrmann CW. Quantitative shear-wave US elastography of the supraspinatus muscle: reliability of the method and relation to tendon integrity and muscle quality. Radiology. 2016;278(2):465–74.PubMedCrossRefGoogle Scholar
  82. 82.
    Sasaki K, Toyama S, Ishii N. Length-force characteristics of in vivo human muscle reflected by supersonic shear imaging. J Appl Physiol. 2014;117(2):153–62.PubMedCrossRefGoogle Scholar
  83. 83.
    Shinohara M, Sabra K, Gennisson JL, Fink M, Tanter M. Real-time visualization of muscle stiffness distribution with ultrasound shear wave imaging during muscle contraction. Muscle Nerve. 2010;42(3):438–41.PubMedCrossRefGoogle Scholar
  84. 84.
    Souron R, Bordat F, Farabet A, Belli A, Feasson L, Nordez A, et al. Sex differences in active tibialis anterior stiffness evaluated using supersonic shear imaging. J Biomech. 2016;49(14):3534–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Taniguchi K, Shinohara M, Nozaki S, Katayose M. Acute decrease in the stiffness of resting muscle belly due to static stretching. Scand J Med Sci Sports. 2015;25(1):32–40.PubMedCrossRefGoogle Scholar
  86. 86.
    Tran D, Podwojewski F, Beillas P, Ottenio M, Voirin D, Turquier F, et al. Abdominal wall muscle elasticity and abdomen local stiffness on healthy volunteers during various physiological activities. J Mech Behav Biomed Mater. 2016;60:451–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Umegaki H, Ikezoe T, Nakamura M, Nishishita S, Kobayashi T, Fujita K, et al. The effect of hip rotation on shear elastic modulus of the medial and lateral hamstrings during stretching. Man Ther. 2015;20(1):134–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Umegaki H, Ikezoe T, Nakamura M, Nishishita S, Kobayashi T, Fujita K, et al. Acute effects of static stretching on the hamstrings using shear elastic modulus determined by ultrasound shear wave elastography: differences in flexibility between hamstring muscle components. Man Ther. 2015;20(4):610–3.PubMedCrossRefGoogle Scholar
  89. 89.
    Umehara J, Ikezoe T, Nishishita S, Nakamura M, Umegaki H, Kobayashi T, et al. Effect of hip and knee position on tensor fasciae latae elongation during stretching: an ultrasonic shear wave elastography study. Clin Biomech. 2015;30(10):1056–9.CrossRefGoogle Scholar
  90. 90.
    Yoshida K, Itoigawa Y, Maruyama Y, Saita Y, Takazawa Y, Ikeda H, et al. Application of shear wave elastography for the gastrocnemius medial head to tennis leg. Clin Anat. 2017;30(1):114–9.Google Scholar
  91. 91.
    Yoshitake Y, Takai Y, Kanehisa H, Shinohara M. Muscle shear modulus measured with ultrasound shear-wave elastography across a wide range of contraction intensity. Muscle Nerve. 2014;50(1):103–13.PubMedCrossRefGoogle Scholar
  92. 92.
    Zhang ZJ, Ng GY, Lee WC, Fu SN. Increase in passive muscle tension of the quadriceps muscle heads in jumping athletes with patellar tendinopathy. Scand J Med Sci Sports. 2017;27(10):1099–104.Google Scholar
  93. 93.
    Koo TK, Guo JY, Cohen JH, Parker KJ. Relationship between shear elastic modulus and passive muscle force: an ex-vivo study. J Biomech. 2013;46(12):2053–9.PubMedCrossRefGoogle Scholar
  94. 94.
    Lv F, Tang J, Luo Y, Ban Y, Wu R, Tian J, et al. Muscle crush injury of extremity: quantitative elastography with supersonic shear imaging. Ultrasound Med Biol. 2012;38(5):795–802.PubMedCrossRefGoogle Scholar
  95. 95.
    Sapin-de Brosses E, Gennisson JL, Pernot M, Fink M, Tanter M. Temperature dependence of the shear modulus of soft tissues assessed by ultrasound. Phys Med Biol. 2010;55(6):1701–18.PubMedCrossRefGoogle Scholar
  96. 96.
    Hatta T, Giambini H, Uehara K, Okamoto S, Chen S, Sperling JW, et al. Quantitative assessment of rotator cuff muscle elasticity: reliability and feasibility of shear wave elastography. J Biomech. 2015;48(14):3853–8.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Hatta T, Giambini H, Sukegawa K, Yamanaka Y, Sperling JW, Steinmann SP, et al. Quantified mechanical properties of the deltoid muscle using the shear wave Elastography: potential implications for reverse shoulder Arthroplasty. PLoS One. 2016;11(5):e0155102.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Joy J, McLeod G, Lee N, Munirama S, Corner G, Eisma R, et al. Quantitative assessment of Thiel soft-embalmed human cadavers using shear wave elastography. Annals Anatomy = Anatomischer Anzeiger: Off Organ Anatomische Gesellschaft. 2015;202:52–6.CrossRefGoogle Scholar
  99. 99.
    Yoshitake Y, Miyamoto N, Taniguchi K, Katayose M, Kanehisa H. The skin acts to maintain muscle shear modulus. Ultrasound Med Biol. 2016;42(3):674–82.PubMedCrossRefGoogle Scholar
  100. 100.
    Hoyt K, Kneezel T, Castaneda B, Parker KJ. Quantitative sonoelastography for the in vivo assessment of skeletal muscle viscoelasticity. Phys Med Biol. 2008;53(15):4063–80.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Hug F, Gallot T, Catheline S, Nordez A. Electromechanical delay in biceps brachii assessed by ultrafast ultrasonography. Muscle Nerve. 2011;43(3):441–3.PubMedCrossRefGoogle Scholar
  102. 102.
    Proske U, Morgan DL. Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. J Physiol. 2001;537(Pt 2):333–45.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Wang CZ, Li TJ, Zheng YP. Shear modulus estimation on vastus intermedius of elderly and young females over the entire range of isometric contraction. PLoS One. 2014;9(7):e101769.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Ariji Y, Nakayama M, Nishiyama W, Nozawa M, Ariji E. Shear-wave sonoelastography for assessing masseter muscle hardness in comparison with strain sonoelastography: study with phantoms and healthy volunteers. Dento Maxillo Facial Radiol. 2016;45(2):20150251.CrossRefGoogle Scholar
  105. 105.
    Hirata K, Miyamoto-Mikami E, Kanehisa H, Miyamoto N. Muscle-specific acute changes in passive stiffness of human triceps surae after stretching. Eur J Appl Physiol. 2016;116(5);911–8.Google Scholar
  106. 106.
    Le Sant G, Nordez A, Andrade R, Hug F, Freitas S, Gross R. Stiffness mapping of lower leg muscles during passive dorsiflexion. J Anat. 2017;230(5):639–50.PubMedCrossRefGoogle Scholar
  107. 107.
    Point M, Guilhem G, Hug F, Nordez A, Frey A, Lacourpaille L. Cryotherapy induces an increase in muscle stiffness. Scand J Med Sci Sports. 2017.  https://doi.org/10.1111/sms.12872.
  108. 108.
    Debernard L, Robert L, Charleux F, Bensamoun SF. Analysis of thigh muscle stiffness from childhood to adulthood using magnetic resonance elastography (MRE) technique. Clin Biomech. 2011;26(8):836–40.CrossRefGoogle Scholar
  109. 109.
    Dresner MA, Rose GH, Rossman PJ, Muthupillai R, Manduca A, Ehman RL. Magnetic resonance elastography of skeletal muscle. J Magnetic Resonance Imaging: JMRI. 2001;13(2):269–76.CrossRefGoogle Scholar
  110. 110.
    Dahmane R, Djordjevic S, Simunic B, Valencic V. Spatial fiber type distribution in normal human muscle histochemical and tensiomyographical evaluation. J Biomech. 2005;38(12):2451–9.PubMedCrossRefGoogle Scholar
  111. 111.
    Brandenburg JE, Eby SF, Song P, Kingsley-Berg S, Bamlet W, Sieck GC, et al. Quantifying passive muscle stiffness in children with and without cerebral palsy using ultrasound shear wave elastography. Dev Med Child Neurol. 2016;58(12):1288–94.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Lacourpaille L, Hug F, Guevel A, Pereon Y, Magot A, Hogrel JY, et al. Non-invasive assessment of muscle stiffness in patients with Duchenne muscular dystrophy. Muscle Nerve. 2015;51(2):284–6.PubMedCrossRefGoogle Scholar
  113. 113.
    Lee SS, Gaebler-Spira D, Zhang LQ, Rymer WZ, Steele KM. Use of shear wave ultrasound elastography to quantify muscle properties in cerebral palsy. Clin Biomech. 2016;31:20–8.CrossRefGoogle Scholar
  114. 114.
    Yamauchi T, Hasegawa S, Nakamura M, Nishishita S, Yanase K, Fujita K, et al. Effects of two stretching methods on shoulder range of motion and muscle stiffness in baseball players with posterior shoulder tightness: a randomized controlled trial. J Shoulder Elb Surg. 2016;25(9):1395–403.CrossRefGoogle Scholar
  115. 115.
    Hatta T, Giambini H, Zhao C, Sperling JW, Steinmann SP, Itoi E, et al. Biomechanical effect of margin convergence techniques: quantitative assessment of supraspinatus muscle stiffness. PLoS One. 2016;11(9):e0162110.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Hatta T, Giambini H, Hooke AW, Zhao C, Sperling JW, Steinmann SP, et al. Comparison of passive stiffness changes in the supraspinatus muscle after double-row and knotless transosseous-equivalent rotator cuff repair techniques: a cadaveric study. Arthroscopy: J Arthroscopic Related Surg: Off Publ Arthroscopy Assoc North Am Int Arthroscopy Assoc. 2016;32(10):1973–81.CrossRefGoogle Scholar
  117. 117.
    Lacourpaille L, Hug F, Guevel A, Pereon Y, Magot A, Hogrel JY, et al. New insights on contraction efficiency in patients with Duchenne muscular dystrophy. J Appl Physiol. 2014;117(6):658–62.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Andersen P, Saltin B. Maximal perfusion of skeletal muscle in man. J Physiol 1985; 366:233-249.Google Scholar
  119. 119.
    Sarelius IH, Cohen KD, Murrant CL. Role for capillaries in coupling blood flow with metabolism. Clin Exp Pharmacol Physiol. 2000;27(10):826–9.PubMedCrossRefGoogle Scholar
  120. 120.
    Lutz GJ, Lieber RL. Skeletal muscle myosin II structure and function. Exerc Sport Sci Rev. 1999;27:63–77.PubMedCrossRefGoogle Scholar
  121. 121.
    Sallum AM, Varsani H, Holton JL, Marie SK, Wedderburn LR. Morphometric analyses of normal pediatric brachial biceps and quadriceps muscle tissue. Histol Histopathol. 2013;28(4):525–30.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Frontera WR, Reid KF, Phillips EM, Krivickas LS, Hughes VA, Roubenoff R, et al. Muscle fiber size and function in elderly humans: a longitudinal study. J Appl Physiol. 2008;105(2):637–42.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Evetovich TK, Housh TJ, Johnson GO, Smith DB, Ebersole KT, Perry SR. Gender comparisons of the mechanomyographic responses to maximal concentric and eccentric isokinetic muscle actions. Med Sci Sports Exerc. 1998;30(12):1697–702.PubMedCrossRefGoogle Scholar
  124. 124.
    Haizlip KM, Harrison BC, Leinwand LA. Sex-based differences in skeletal muscle kinetics and fiber-type composition. Physiology. 2015;30(1):30–9.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Toti L, Bartalucci A, Ferrucci M, Fulceri F, Lazzeri G, Lenzi P, et al. High-intensity exercise training induces morphological and biochemical changes in skeletal muscles. Biology Sport. 2013;30(4):301–9.CrossRefGoogle Scholar
  126. 126.
    Johns RJW, V. Relative importance of various tissues in joint stiffness. J Appl Physiol. 1962;17:824.CrossRefGoogle Scholar

Copyright information

© ISS 2017

Authors and Affiliations

  • Maud Creze
    • 1
    • 2
    • 3
    • 4
  • Antoine Nordez
    • 5
  • Marc Soubeyrand
    • 6
  • Laurence Rocher
    • 1
    • 3
  • Xavier Maître
    • 3
  • Marie-France Bellin
    • 1
    • 3
  1. 1.Radiology DepartmentBicêtre Hospital, APHPLe Kremlin-BicetreFrance
  2. 2.Laboratory Complexité, Innovations, Activités Motrices et Sportives, CIAMS (EA4532)University Paris-Sud, Université Paris-SaclayOrsayFrance
  3. 3.Imagerie par Résonance Magnétique Médicale et Multi-Modalités, IR4M, CNRS, Univ Paris-Sud, Université Paris-SaclayOrsayFrance
  4. 4.Service de Radiologie, CHU de BicêtreLe Kremlin-BicetreFrance
  5. 5.Laboratory “Movement, Interactions, Performance” (EA 4334), Faculty of Sport SciencesUniversity of NantesNantes Cedex 3France
  6. 6.Orthopedic DepartmentBicêtre Hospital, APHPLe Kremlin-BicetreFrance

Personalised recommendations