The recombinant protein combined vaccine based on the fragment C of tetanus toxin and the cross-reacting material 197

Abstract

Diphtheria and tetanus toxoids and acellular pertussis (DTaP) vaccines were widely used since 1940s. The exceptional success of childhood vaccination is undisputed. However, the anti-diphtheria and tetanus antibody will decrease with the increase of age in human body. A boosting vaccine for tetanus and diphtheria in adult is recommended by WHO. Recombinant protein vaccine has the advantages of single component and high safety, which is one of the directions to develop boosting vaccines. Therefore, in this study, we evaluated a recombinant TTc and CRM197 combination vaccine (RTCV) that uses the fragment C (TTc) of tetanus toxin and the cross-reacting material 197 (CRM197) of the diphtheria toxin mutant. Our results displayed that RTCV (composed of 10 μg/mL TTc, 20 μg/mL CRM197 antigens, and 500 μg/mL aluminum adjuvants) could induce high levels of IgG and IgG1 antibody in mice, which were similar as those induced by DTaP. These results will provide technical support for a novel boosting vaccine against diphtheria and tetanus.

Key points

We successfully expressed CRM197 protein in E. coli BL21 (DE3) using pET26b (+) vector.

The anti-TTc and anti-CRM197 antibody titer (IgG) of RTCV was similar with DTaP.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

All data generated during this study are included in this published article.

References

  1. Amanna IJ, Carlson NE, Slifka MK (2007) Duration of humoral immunity to common viral and vaccine antigens. N Engl J Med 357:1903–1915. https://doi.org/10.1056/NEJMoa066092

    CAS  Article  PubMed  Google Scholar 

  2. Bizzini B, Stoeckel K, Schwab M (2006) An antigenic polypeptide fragment isolated from tetanus toxin: chemical characterization, binding to gangliosides and retrograde axonal transport in various neuron systems. J Neurochem 28:529–542. https://doi.org/10.1111/j.1471-4159.1977.tb10423.x

    Article  Google Scholar 

  3. Bruce C, Baldwin RL, Lessnick SL, Wisnieski BJ (1990) Diphtheria toxin and its ADP-ribosyltransferase-defective homologue CRM197 possess deoxyribonuclease activity. Proc Natl Acad Sci U S A 87:2995–2998. https://doi.org/10.1073/pnas.87.8.2995

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Buzzi S, Rubboli D, Buzzi G, Buzzi AM, Morisi C, Pironi F (2004) CRM197 (nontoxic diphtheria toxin): effects on advanced cancer patients. Cancer Immunol Immunother 53:1041–1048. https://doi.org/10.1007/s00262-004-0546-4

    CAS  Article  PubMed  Google Scholar 

  5. Calabro S, Tortoli M, Baudner BC, Pacitto A, Cortese M, O’Hagan DT, De Gregorio E, Seubert A, Wack A (2011) Vaccine adjuvants alum and MF59 induce rapid recruitment of neutrophils and monocytes that participate in antigen transport to draining lymph nodes. Vaccine 29:1812–1823. https://doi.org/10.1016/j.vaccine.2010.12.090

    CAS  Article  PubMed  Google Scholar 

  6. Chai P, Pu X, Li J, Xia X, Ge J, Luo A, Su H, Zhang W, Ma J (2020) Expression and purification of tetanus toxin fragment C in Escherichia coli BL21(DE3). Protein Pept Lett 27(11):1132–1140. https://doi.org/10.2174/0929866527666200528113327

    CAS  Article  PubMed  Google Scholar 

  7. Emsley P, Fotinou C, Black I, Fairweather NF, Charles IG, Watts C, Hewitt E, Isaacs NW (2000) The structures of the HC fragment of tetanus toxin with carbohydrate subunit complexes provide insight into ganglioside binding. J Biol Chem 275:8889–8894. https://doi.org/10.1074/jbc.275.12.8889

    CAS  Article  PubMed  Google Scholar 

  8. Fotinou C, Emsley P, Black I, Ando H, Ishida H, Kiso M, Sinha KA, Fairweather NF, Isaacs NW (2001) The crystal structure of tetanus toxin Hc fragment complexed with a synthetic GT1b analogue suggests cross-linking between ganglioside receptors and the toxin. J Biol Chem 276:32274–32281. https://doi.org/10.1074/jbc.M103285200

    CAS  Article  PubMed  Google Scholar 

  9. Galazka AM, Robertson SE (1996) Immunization against diphtheria with special emphasis on immunization of adults. Vaccine 14:845–857. https://doi.org/10.1016/0264-410x(96)00021-7

    CAS  Article  PubMed  Google Scholar 

  10. Glenn GM, Keney RT, Hammond SA, Ellingsworth LR (2003) Transcutaneous immunization and immunostimulant strategies. Immunol Allergy Clin N Am 23:787–813. https://doi.org/10.1016/s0889-8561(03)00094-8

    Article  Google Scholar 

  11. Gupta RK, Siber GR (1995) Adjuvants for human vaccines—current status, problems and future prospects. Vaccine 13:1263–1276. https://doi.org/10.1016/0264-410x(95)00011-o

    CAS  Article  PubMed  Google Scholar 

  12. Herreros J, Lalli G, Schiavo G (2000) C-terminal half of tetanus toxin fragment C is sufficient for neuronal binding and interaction with a putative protein receptor. Biochem J 347:199–204. https://doi.org/10.1042/0264-6021:3470199

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Inoue M, Yonemura T, Baber J, Shoji Y, Aizawa M, Cooper D, Eiden J, Gruber WC, Jansen KU, Anderson AS, Gurtman A (2018) Safety, tolerability, and immunogenicity of a novel 4-antigen Staphylococcus aureus vaccine (SA4Ag) in healthy Japanese adults. Hum Vaccin Immunother 14(11):2682–2691. https://doi.org/10.1080/21645515.2018.1496764

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kenney RT, Yu J, Guebre-Xabier M, Frech SA, Lambert A, Heller BA, Ellingsworth LR, Eyles JE, Williamson ED, Glenn GM (2004) Induction of protective immunity against lethal anthrax challenge with a patch. J Infect Dis 190:774–782. https://doi.org/10.1086/422694

    Article  PubMed  Google Scholar 

  15. Lacy DB, Tepp W, Cohen AC, Dasgupta BR, Stevens RC (1998) Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat Struct Biol 5:898–902. https://doi.org/10.1038/2338

    CAS  Article  PubMed  Google Scholar 

  16. Li J, Chen S, Ge J, Lu F, Ren S, Zhao Z, Pu X, Chen X, Sun J, Gu Y (2017a) A novel therapeutic vaccine composed of a rearranged human papillomavirus type 16 E6/E7 fusion protein and Fms-like tyrosine kinase-3 ligand induces CD8(+) T cell responses and antitumor effect. Vaccine 35:6459–6467. https://doi.org/10.1016/j.vaccine.2017.09.003

    CAS  Article  Google Scholar 

  17. Li J, Ge J, Ren S, Zhou T, Sun Y, Sun H, Gu Y, Huang H, Xu Z, Chen X, Xu X, Zhuang X, Song C, Jia F, Xu A, Yin X, Du SX (2017b) Hepatitis B surface antigen (HBsAg) and core antigen (HBcAg) combine CpG oligodeoxynucletides as a novel therapeutic vaccine for chronic hepatitis B infection. Vaccine 33:4247–4254. https://doi.org/10.1016/j.vaccine.2015.03.079

    CAS  Article  Google Scholar 

  18. Lu F, Hogenesch H (2013) Kinetics of the inflammatory response following intramuscular injection of aluminum adjuvant. Vaccine. 31(37):3979–3986. https://doi.org/10.1016/j.vaccine.2013.05.107

    CAS  Article  PubMed  Google Scholar 

  19. Mahamad P, Boonchird C, Panbangred W (2016) High level accumulation of soluble diphtheria toxin mutant (CRM197) with co-expression of chaperones in recombinant Escherichia coli. Appl Microbiol Biotechnol 100:6319–6330. https://doi.org/10.1007/s00253-016-7453-4

    CAS  Article  PubMed  Google Scholar 

  20. Mawas F, Peyre M, Beignon AS, Frost L, Giudice GD, Rappuoli R, Muller S, Sesardic D, Partidos CD (2004) Successful induction of protective antibody responses against Haemophilus influenzae type b and diphtheria after transcutaneous immunization with the glycoconjugate polyribosyl ribitol phosphate-cross-reacting material 197 vaccine. J Infect Dis 190:1172–1182. https://doi.org/10.1086/423327

    Article  Google Scholar 

  21. McQuillan GM, Kruszon-Moran D, Deforest A, Chu SY, Wharton M (2002) Serologic immunity to diphtheria and tetanus in the United States. Ann Intern Med 136:660–666. https://doi.org/10.7326/0003-4819-136-9-200205070-00008

    Article  PubMed  Google Scholar 

  22. Mills KH, Cosgrove C, McNeela EA, Sexton A, Giemza R, Jabbal-Gill I, Church A, Lin W, Illum L, Podda A, Rappuoli R, Pizza M, Griffin GE, Lewis DJ (2003) Protective levels of diphtheria-neutralizing antibody induced in healthy volunteers by unilateral priming-boosting intranasal immunization associated with restricted ipsilateral mucosal secretory immunoglobulin a. Infect Immun 71:726–732. https://doi.org/10.1128/iai.71.2.726-732.2003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Moro PL, Yue X, Lewis P, Haber P, Broder K (2011) Adverse events after tetanus toxoid, reduced diphtheria toxoid and acellular pertussis (Tdap) vaccine administered to adults 65 years of age and older reported to the vaccine adverse event reporting system (VAERS), 2005–2010. Vaccine 29:9404–9408. https://doi.org/10.1016/j.vaccine.2011.05.100

    Article  PubMed  Google Scholar 

  24. Moro PL, Cragan J, Tepper N, Zheteyeva Y, Museru O, Lewis P, Broder K (2016) Enhanced surveillance of tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis (Tdap) vaccines in pregnancy in the Vaccine Adverse Event Reporting System (VAERS), 2011-2015. Vaccine:2349–2353. https://doi.org/10.1016/j.vaccine.2016.03.049

  25. Muttil P, Pulliam B, Garcia-Contreras L, Fallon JK, Wang C, Hickey AJ, Edwards DA (2010) Pulmonary immunization of guinea pigs with diphtheria CRM197 antigen as nanoparticle aggregate dry powders enhance local and systemic immune responses. AAPS J 12:699–707. https://doi.org/10.1208/s12248-010-9229-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Ohlsson L, Exley C, Darabi A, Sandén E, Siesjö P, Eriksson H (2013) Aluminium based adjuvants and their effects on mitochondria and lysosomes of phagocytosing cells. J Inorg Biochem 128:229–236. https://doi.org/10.1016/j.jinorgbio.2013.08.003

    CAS  Article  PubMed  Google Scholar 

  27. Park AR, Jang SW, Kim JS, Park YG, Koo BS, Lee HC (2018) Efficient recovery of recombinant CRM197 expressed as inclusion bodies in E.coli. PLoS One 13:e0201060. https://doi.org/10.1371/journal.pone.0201060

    Article  PubMed  PubMed Central  Google Scholar 

  28. Qazi O, Sesardic D, Tierney R, Söderbäck Z, Crane D, Bolgiano B, Fairweather N (2006) Reduction of the ganglioside binding activity of the tetanus toxin HC fragment destroys immunogenicity: implications for development of novel tetanus vaccines. Infect Immun 74:4884–4891. https://doi.org/10.1128/IAI.00500-06

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Rummel A, Bade S, Alves J, Bigalke H, Binz T (2003) Two carbohydrate binding sites in the H (CC)-domain of tetanus neurotoxin are required for toxicity. J Mol Biol 326:835–847. https://doi.org/10.1016/s0022-2836(02)01403-1

    CAS  Article  PubMed  Google Scholar 

  30. Stefan A, Conti M, Rubboli D, Ravagli L, Presta E, Hochkoeppler A (2011) Overexpression and purification of the recombinant diphtheria toxin variant CRM197 in Escherichia coli. J Biotechnol 156:245–252. https://doi.org/10.1016/j.jbiotec.2011.08.024

    CAS  Article  PubMed  Google Scholar 

  31. Tierney R, Beignon AS, Rappuoli R, Muller S, Sesardic D, Partidos CD (2003) Transcutaneous immunization with tetanus toxoid and mutants of Escherichia coli heat-labile enterotoxin as adjuvants elicits strong protective antibody responses. J Infect Dis 188:753–758. https://doi.org/10.1086/377287

    CAS  Article  PubMed  Google Scholar 

  32. Tierney R, Nakai T, Parkins CJ, Caposio P, Fairweather NF, Sesardic D, Jarvis MA (2012) A single-dose cytomegalovirus-based vaccine encoding tetanus toxin fragment C induces sustained levels of protective tetanus toxin antibodies in mice. Vaccine 30:3047–3052. https://doi.org/10.1016/j.vaccine.2012.02.043

    CAS  Article  PubMed  Google Scholar 

  33. Uchida T, Pappenheimer AM Jr, Greany R (1973) Diphtheria toxin and related proteins. I. Isolation and properties of mutant proteins serologically related to diphtheria toxin. J Biol Chem 248:3838–3844

    CAS  Article  Google Scholar 

  34. Völzke H, Kloker KM, Kramer A, Guertler L, Dören M, Baumeister SE, Hoffmann W, John U (2006) Susceptibility to diphtheria in adults: prevalence and relationship to gender and social variables. Clin Microbiol Infect 12:961–967. https://doi.org/10.1111/j.1469-0691.2006.01477.x

    Article  PubMed  Google Scholar 

  35. Weinberger B (2016) Adult vaccination against tetanus and diphtheria: the European perspective. Clin Exp Immunol 187:93–99. https://doi.org/10.1111/cei.12822

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. World Health Organization (2017) Diphtheria vaccine: WHO position paper, August 2017 - Recommendations. Vaccine 36:199–201. https://doi.org/10.1016/j.vaccine.2017.08.024

    Article  PubMed  Google Scholar 

  37. Yang Y, Yu R, Yang X, Liu S, Fang T, Song X, Hou L, Yu C, Xu J, Fu L, Yi S, Chen W (2017) Protection against Staphylococcus aureus and tetanus infections by a combined vaccine containing SasA and TeNT-Hc in mice. Mol Med Rep 15:2369–2373. https://doi.org/10.3892/mmr.2017.6227

    CAS  Article  PubMed  Google Scholar 

  38. Yotsumoto F, Fukagawa S, Miyata K, Nam SO, Katsuda T, Miyahara D, Odawara T, Manabe S, Ishikawa T, Yasunaga S, Miyamoto S (2017) HB-EGF is a promising therapeutic target for lung cancer with secondary mutation of EGFR T790M. Anticancer Res 37:3825–3831. https://doi.org/10.21873/anticanres.11761

    CAS  Article  PubMed  Google Scholar 

  39. Yu R, Hou L, Liu S, Yu C, Zhang X, Liu Y, Chen W (2011) Production and immunogenicity analysis of conformation-stable fragment-C mutant of tetanus toxin. Chin J Biotechnol 27:226–232

    CAS  Google Scholar 

  40. Yu R, Fang T, Liu S, Song X, Yu C, Li J, Fu L, Hou L, Xu J, Chen W (2016) Comparative immunogenicity of the tetanus toxoid and recombinant tetanus vaccines in mice, rats, and cynomolgus monkeys. Toxins 8:194. https://doi.org/10.3390/toxins8070194

    CAS  Article  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 81260070) and the Fundamental Research Funds for Key Laboratory of Drug, Screening and Deep Processing for Traditional Chinese and Tibetan Medicine of Gansu Province (No.20180808).

Author information

Affiliations

Authors

Contributions

PC, JL, and XP designed the research; PC and XX performed the experiment; PC analyzed data and wrote the manuscript; JG, WW, SR, and AL provided ideas and revised the manuscript; all authors read and approved the final manuscript.

Corresponding author

Correspondence to Jianqiang Li.

Ethics declarations

Ethics approval

Following the guidelines of the Animal Ethics Committee at Lanzhou University of Technology. The sampling procedures complied with the “Guidelines on Ethical Treatment of Experimental Animals” set by the Ministry of Science and Technology, China. The procedures in the present study had received prior approval from the Experimental Animal Manage Committee of Lanzhou University of Technology.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chai, P., Pu, X., Ge, J. et al. The recombinant protein combined vaccine based on the fragment C of tetanus toxin and the cross-reacting material 197. Appl Microbiol Biotechnol 105, 1683–1692 (2021). https://doi.org/10.1007/s00253-021-11139-8

Download citation

Keywords

  • Tetanus
  • Diphtheria
  • The fragment C
  • CRM197
  • A booster vaccine