Modulation of the immune response and metabolism in germ-free rats colonized by the probiotic Lactobacillus salivarius LI01

Abstract

The gut microbiota plays an important role in multifaceted physiological functions in the host. Previous studies have assessed the probiotic effects of Lactobacillus salivarius LI01. In this study, we aimed to investigate the potential effects and putative mechanism of L. salivarius LI01 in immune modulation and metabolic regulation through the monocolonization of germ-free (GF) Sprague-Dawley (SD) rats with L. salivarius LI01. The GF rats were separated into two groups and administered a gavage of L. salivarius LI01 or an equal amount of phosphate-buffered saline. The levels of serum biomarkers, such as interleukin (IL)-1α, IL-5, and IL-10, were restored by L. salivarius LI01, which indicated the activation of Th0 cell differentiation toward immune homeostasis. L. salivarius LI01 also stimulated the immune response and metabolic process by altering transcriptional expression in the ileum and liver. A Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed significant enrichment of the 5′-adenosine monophosphate-activated protein kinase (AMPK) signaling pathway, which indicated that L. salivarius LI01 exerts an effect on energy accumulation. The LI01 group showed alterations in fecal carbohydrates accompanied by an increased body weight gain. In addition, L. salivarius LI01 produced indole-3-lactic acid (ILA) and enhanced arginine metabolism by rebalancing the interconversion between arginine and proline. These findings provide evidence showing that L. salivarius LI01 can directly impact the host by modulating immunity and metabolism.

Key points

Lactobacillus salivarius LI01 conventionalizes the cytokine profile and activates the immune response.

LI01 modulates carbohydrate metabolism and arginine transaction.

LI01 generates tryptophan-derived indole-3-lactic acid.

The cytochrome P450 family contributes to the response to altered metabolites.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abdel-Rahman MA, Tashiro Y, Sonomoto K (2013) Recent advances in lactic acid production by microbial fermentation processes. Biotechnol Adv 31:877–902. https://doi.org/10.1016/j.biotechadv.2013.04.002

    CAS  Article  PubMed  Google Scholar 

  2. Al-Asmakh M, Zadjali F (2015) Use of germ-free animal models in microbiota-related research. J Microbiol Biotechnol 25:1583–1588. https://doi.org/10.4014/jmb.1501.01039

    Article  PubMed  Google Scholar 

  3. Aragozzini F, Ferrari A, Pacini N, Gualandris R (1979) Indole-3-lactic acid as a tryptophan metabolite produced by Bifidobacterium spp. Appl Environ Microbiol 38:544–546. https://doi.org/10.1128/aem.38.3.544-546.1979

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI (2007) Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A 104:979–984. https://doi.org/10.1073/pnas.0605374104

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Bai G, Tsuruta T, Nishino N (2018) Dietary soy, meat, and fish proteins modulate the effects of prebiotic raffinose on composition and fermentation of gut microbiota in rats. Int J Food Sci Nutr 69:480–487. https://doi.org/10.1080/09637486.2017.1382454

    CAS  Article  PubMed  Google Scholar 

  6. Bartles JR, Zheng L, Li A, Wierda A, Chen B (1998) Small espin: a third actin-bundling protein and potential forked protein ortholog in brush border microvilli. J Cell Biol 143:107–119. https://doi.org/10.1083/jcb.143.1.107

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Bertolo RF, Brunton JA, Pencharz PB, Ball RO (2003) Arginine, ornithine, and proline interconversion is dependent on small intestinal metabolism in neonatal pigs. Am J Physiol Endocrinol Metab 284:E915–E922. https://doi.org/10.1152/ajpendo.00269.2002

    CAS  Article  PubMed  Google Scholar 

  8. Brint EK, MacSharry J, Fanning A, Shanahan F, Quigley EM (2011) Differential expression of toll-like receptors in patients with irritable bowel syndrome. Am J Gastroenterol 106:329–336. https://doi.org/10.1038/ajg.2010.438

    CAS  Article  PubMed  Google Scholar 

  9. Celebioglu HU, Ejby M, Majumder A, Købler C, Goh YJ, Thorsen K, Schmidt B, O’Flaherty S, Abou Hachem M, Lahtinen SJ, Jacobsen S, Klaenhammer TR, Brix S, Mølhave K, Svensson B (2016) Differential proteome and cellular adhesion analyses of the probiotic bacterium Lactobacillus acidophilus NCFM grown on raffinose-an emerging prebiotic. Proteomics 16:1361–1375. https://doi.org/10.1002/pmic.201500212

    CAS  Article  PubMed  Google Scholar 

  10. Cervantes-Barragan L, Chai JN, Tianero MD, Di Luccia B, Ahern PP, Merriman J, Cortez VS, Caparon MG, Donia MS, Gilfillan S, Cella M, Gordon JI, Hsieh CS, Colonna M (2017) Lactobacillus reuteri induces gut intraepithelial CD4(+)CD8αα(+) T cells. Science 357:806–810. https://doi.org/10.1126/science.aah5825

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Chang KK, Liu LB, Jin LP, Zhang B, Mei J, Li H, Wei CY, Zhou WJ, Zhu XY, Shao J, Li DJ, Li MQ (2017) IL-27 triggers IL-10 production in Th17 cells via a c-Maf/RORγt/Blimp-1 signal to promote the progression of endometriosis. Cell Death Dis 8:e2666. https://doi.org/10.1038/cddis.2017.95

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Chen YP, Chen MJ (2013) Effects of Lactobacillus kefiranofaciens M1 isolated from kefir grains on germ-free mice. PLoS One 8:e78789. https://doi.org/10.1371/journal.pone.0078789

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Chevalier C, Stojanović O, Colin DJ, Suarez-Zamorano N, Tarallo V, Veyrat-Durebex C, Rigo D, Fabbiano S, Stevanović A, Hagemann S, Montet X, Seimbille Y, Zamboni N, Hapfelmeier S, Trajkovski M (2015) Gut microbiota orchestrates energy homeostasis during cold. Cell 163:1360–1374. https://doi.org/10.1016/j.cell.2015.11.004

    CAS  Article  PubMed  Google Scholar 

  14. de Vos WM, de Vos EA (2012) Role of the intestinal microbiome in health and disease: from correlation to causation. Nutr Rev 70(Suppl 1):S45–S56. https://doi.org/10.1111/j.1753-4887.2012.00505.x

    Article  PubMed  Google Scholar 

  15. Derrien M, Van Baarlen P, Hooiveld G, Norin E, Müller M, de Vos WM (2011) Modulation of mucosal immune response, tolerance, and proliferation in mice colonized by the mucin-degrader Akkermansia muciniphila. Front Microbiol 2:166. https://doi.org/10.3389/fmicb.2011.00166

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dinarello CA, Novick D, Kim S, Kaplanski G (2013) Interleukin-18 and IL-18 binding protein. Front Immunol 4:289. https://doi.org/10.3389/fimmu.2013.00289

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Esmailbeig M, Ghaderi A (2017) Interleukin-18: a regulator of cancer and autoimmune diseases. Eur Cytokine Netw 28:127–140. https://doi.org/10.1684/ecn.2018.0401

    CAS  Article  PubMed  Google Scholar 

  18. Faust JJ, Millis BA, Tyska MJ (2019) Profilin-mediated actin allocation regulates the growth of epithelial microvilli. Curr Biol 29:3457–3465.e3. https://doi.org/10.1016/j.cub.2019.08.051

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Ferrary E, Cohen-Tannoudji M, Pehau-Arnaudet G, Lapillonne A, Athman R, Ruiz T, Boulouha L, El Marjou F, Doye A, Fontaine JJ, Antony C, Babinet C, Louvard D, Jaisser F, Robine S (1999) In vivo, villin is required for Ca(2+)-dependent F-actin disruption in intestinal brush borders. J Cell Biol 146:819–830. https://doi.org/10.1083/jcb.146.4.819

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Fu ZD, Selwyn FP, Cui JY, Klaassen CD (2017) RNA-seq profiling of intestinal expression of xenobiotic processing genes in germ-free mice. Drug Metab Dispos 45:1225–1238. https://doi.org/10.1124/dmd.117.077313

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Gagliani N, Amezcua Vesely MC, Iseppon A, Brockmann L, Xu H, Palm NW, de Zoete MR, Licona-Limón P, Paiva RS, Ching T, Weaver C, Zi X, Pan X, Fan R, Garmire LX, Cotton MJ, Drier Y, Bernstein B, Geginat J, Stockinger B, Esplugues E, Huber S, Flavell RA (2015) Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature 523:221–225. https://doi.org/10.1038/nature14452

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Gong S, Lan T, Zeng L, Luo H, Yang X, Li N, Chen X, Liu Z, Li R, Win S, Liu S, Zhou H, Schnabl B, Jiang Y, Kaplowitz N, Chen P (2018) Gut microbiota mediates diurnal variation of acetaminophen induced acute liver injury in mice. J Hepatol 69:51–59. https://doi.org/10.1016/j.jhep.2018.02.024

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Gu C, Wu L, Li X (2013) IL-17 family: cytokines, receptors and signaling. Cytokine 64:477–485. https://doi.org/10.1016/j.cyto.2013.07.022

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Hardie DG, Schaffer BE, Brunet A (2016) AMPK: an energy-sensing pathway with multiple inputs and outputs. Trends Cell Biol 26:190–201. https://doi.org/10.1016/j.tcb.2015.10.013

    CAS  Article  PubMed  Google Scholar 

  25. Honoré AH, Aunsbjerg SD, Ebrahimi P, Thorsen M, Benfeldt C, Knøchel S, Skov T (2016) Metabolic footprinting for investigation of antifungal properties of Lactobacillus paracasei. Anal Bioanal Chem 408:83–96. https://doi.org/10.1007/s00216-015-9103-6

    CAS  Article  PubMed  Google Scholar 

  26. Jie Z, Xia H, Zhong SL, Feng Q, Li S, Liang S, Zhong H, Liu Z, Gao Y, Zhao H, Zhang D, Su Z, Fang Z, Lan Z, Li J, Xiao L, Li J, Li R, Li X, Li F, Ren H, Huang Y, Peng Y, Li G, Wen B, Dong B, Chen JY, Geng QS, Zhang ZW, Yang H, Wang J, Wang J, Zhang X, Madsen L, Brix S, Ning G, Xu X, Liu X, Hou Y, Jia H, He K, Kristiansen K (2017) The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun 8:845. https://doi.org/10.1038/s41467-017-00900-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Jourová L, Anzenbacher P, Lišková B, Matušková Z, Hermanová P, Hudcovic T, Kozáková H, Hrnčířová L, Anzenbacherová E (2017) Colonization by non-pathogenic bacteria alters mRNA expression of cytochromes P450 in originally germ-free mice. Folia Microbiol (Praha) 62:463–469. https://doi.org/10.1007/s12223-017-0517-8

    CAS  Article  Google Scholar 

  28. Juturu V, Wu JC (2016) Microbial production of lactic acid: the latest development. Crit Rev Biotechnol 36:967–977. https://doi.org/10.3109/07388551.2015.1066305

    CAS  Article  PubMed  Google Scholar 

  29. Kenworthy R, Allen WD (1966) Influence of diet and bacteria on small intestinal morphology, with special reference to early weaning and Escherichia coli. Studies with germfree and gnotobiotic pigs. J Comp Pathol 76:291–296. https://doi.org/10.1016/0021-9975(66)90009-0

    CAS  Article  PubMed  Google Scholar 

  30. Kim WK, Jang YJ, Han DH, Jeon K, Lee C, Han HS, Ko G (2020) Lactobacillus paracasei KBL382 administration attenuates atopic dermatitis by modulating immune response and gut microbiota. Gut Microbes 12:1–14. https://doi.org/10.1080/19490976.2020.1819156

    CAS  Article  PubMed  Google Scholar 

  31. Kozakova H, Schwarzer M, Tuckova L, Srutkova D, Czarnowska E, Rosiak I, Hudcovic T, Schabussova I, Hermanova P, Zakostelska Z, Aleksandrzak-Piekarczyk T, Koryszewska-Baginska A, Tlaskalova-Hogenova H, Cukrowska B (2016) Colonization of germ-free mice with a mixture of three Lactobacillus strains enhances the integrity of gut mucosa and ameliorates allergic sensitization. Cell Mol Immunol 13:251–262. https://doi.org/10.1038/cmi.2015.09

    CAS  Article  PubMed  Google Scholar 

  32. Kurilshikov A, Wijmenga C, Fu J, Zhernakova A (2017) Host genetics and gut microbiome: challenges and perspectives. Trends Immunol 38:633–647. https://doi.org/10.1016/j.it.2017.06.003

    CAS  Article  PubMed  Google Scholar 

  33. Lécuyer E, Rakotobe S, Lengliné-Garnier H, Lebreton C, Picard M, Juste C, Fritzen R, Eberl G, McCoy KD, Macpherson AJ, Reynaud CA, Cerf-Bensussan N, Gaboriau-Routhiau V (2014) Segmented filamentous bacterium uses secondary and tertiary lymphoid tissues to induce gut IgA and specific T helper 17 cell responses. Immunity 40:608–620. https://doi.org/10.1016/j.immuni.2014.03.009

    CAS  Article  PubMed  Google Scholar 

  34. Lei-Leston AC, Murphy AG, Maloy KJ (2017) Epithelial cell inflammasomes in intestinal immunity and inflammation. Front Immunol 8:1168. https://doi.org/10.3389/fimmu.2017.01168

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Liu X, Zhang J, Zou Q, Zhong B, Wang H, Mou F, Wu L, Fang Y (2016) Lactobacillus salivarius isolated from patients with rheumatoid arthritis suppresses collagen-induced arthritis and increases Treg frequency in mice. J Interferon Cytokine Res 36:706–712. https://doi.org/10.1089/jir.2016.0057

    CAS  Article  PubMed  Google Scholar 

  36. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489:220–230. https://doi.org/10.1038/nature11550

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Lv LX, Hu XJ, Qian GR, Zhang H, Lu HF, Zheng BW, Jiang L, Li LJ (2014) Administration of Lactobacillus salivarius LI01 or Pediococcus pentosaceus LI05 improves acute liver injury induced by D-galactosamine in rats. Appl Microbiol Biotechnol 98:5619–5632. https://doi.org/10.1007/s00253-014-5638-2

    CAS  Article  PubMed  Google Scholar 

  38. Lv LX, Fang DQ, Shi D, Chen DY, Yan R, Zhu YX, Chen YF, Shao L, Guo FF, Wu WR, Li A, Shi HY, Jiang XW, Jiang HY, Xiao YH, Zheng SS, Li LJ (2016) Alterations and correlations of the gut microbiome, metabolism and immunity in patients with primary biliary cirrhosis. Environ Microbiol 18:2272–2286. https://doi.org/10.1111/1462-2920.13401

    CAS  Article  PubMed  Google Scholar 

  39. Manna SK, Patterson AD, Yang Q, Krausz KW, Idle JR, Fornace AJ, Gonzalez FJ (2011) UPLC-MS-based urine metabolomics reveals indole-3-lactic acid and phenyllactic acid as conserved biomarkers for alcohol-induced liver disease in the Ppara-null mouse model. J Proteome Res 10:4120–4133. https://doi.org/10.1021/pr200310s

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Mao B, Tang H, Gu J, Li D, Cui S, Zhao J, Zhang H, Chen W (2018) In vitro fermentation of raffinose by the human gut bacteria. Food Funct 9:5824–5831. https://doi.org/10.1039/c8fo01687a

    CAS  Article  PubMed  Google Scholar 

  41. Martín R, Jiménez E, Olivares M, Marín ML, Fernández L, Xaus J, Rodríguez JM (2006) Lactobacillus salivarius CECT 5713, a potential probiotic strain isolated from infant feces and breast milk of a mother-child pair. Int J Food Microbiol 112:35–43. https://doi.org/10.1016/j.ijfoodmicro.2006.06.011

    CAS  Article  PubMed  Google Scholar 

  42. Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122:107–118. https://doi.org/10.1016/j.cell.2005.05.007

    CAS  Article  PubMed  Google Scholar 

  43. McDaniel DK, Eden K, Ringel VM, Allen IC (2016) Emerging roles for noncanonical NF-κB signaling in the modulation of inflammatory bowel disease pathobiology. Inflamm Bowel Dis 22:2265–2279. https://doi.org/10.1097/mib.0000000000000858

    Article  PubMed  PubMed Central  Google Scholar 

  44. Meng D, Sommella E, Salviati E, Campiglia P, Ganguli K, Djebali K, Zhu W, Walker WA (2020) Indole-3-lactic acid, a metabolite of tryptophan, secreted by Bifidobacterium longum subspecies infantis is anti-inflammatory in the immature intestine. Pediatr Res 88:209–217. https://doi.org/10.1038/s41390-019-0740-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Meslin JC, Sacquet E (1984) Effects of microflora on the dimensions of enterocyte microvilli in the rat. Reprod Nutr Dev 24:307–314. https://doi.org/10.1051/rnd:19840309

    CAS  Article  PubMed  Google Scholar 

  46. Meurens F, Berri M, Siggers RH, Willing BP, Salmon H, Van Kessel AG, Gerdts V (2007) Commensal bacteria and expression of two major intestinal chemokines, TECK/CCL25 and MEC/CCL28, and their receptors. PLoS One 2:e677. https://doi.org/10.1371/journal.pone.0000677

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Milani C, Duranti S, Bottacini F, Casey E, Turroni F, Mahony J, Belzer C, Delgado Palacio S, Arboleya Montes S, Mancabelli L, Lugli GA, Rodriguez JM, Bode L, de Vos W, Gueimonde M, Margolles A, van Sinderen D, Ventura M (2017) The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota. Microbiol Mol Biol Rev 81. https://doi.org/10.1128/mmbr.00036-17

  48. Mirzaei MK, Maurice CF (2017) Menage a trois in the human gut: interactions between host, bacteria and phages. Nat Rev Microbiol 15:397–408. https://doi.org/10.1038/nrmicro.2017.30

    CAS  Article  PubMed  Google Scholar 

  49. Mosser DM, Zhang X (2008) Interleukin-10: new perspectives on an old cytokine. Immunol Rev 226:205–218. https://doi.org/10.1111/j.1600-065X.2008.00706.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Dore J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Meta HITC, Bork P, Ehrlich SD, Wang J (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65. https://doi.org/10.1038/nature08821

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, Peng Y, Zhang D, Jie Z, Wu W, Qin Y, Xue W, Li J, Han L, Lu D, Wu P, Dai Y, Sun X, Li Z, Tang A, Zhong S, Li X, Chen W, Xu R, Wang M, Feng Q, Gong M, Yu J, Zhang Y, Zhang M, Hansen T, Sanchez G, Raes J, Falony G, Okuda S, Almeida M, LeChatelier E, Renault P, Pons N, Batto JM, Zhang Z, Chen H, Yang R, Zheng W, Li S, Yang H, Wang J, Ehrlich SD, Nielsen R, Pedersen O, Kristiansen K, Wang J (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490:55–60. https://doi.org/10.1038/nature11450

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Roager HM, Licht TR (2018) Microbial tryptophan catabolites in health and disease. Nat Commun 9:3294. https://doi.org/10.1038/s41467-018-05470-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, Fluckiger A, Messaoudene M, Rauber C, Roberti MP, Fidelle M, Flament C, Poirier-Colame V, Opolon P, Klein C, Iribarren K, Mondragón L, Jacquelot N, Qu B, Ferrere G, Clémenson C, Mezquita L, Masip JR, Naltet C, Brosseau S, Kaderbhai C, Richard C, Rizvi H, Levenez F, Galleron N, Quinquis B, Pons N, Ryffel B, Minard-Colin V, Gonin P, Soria JC, Deutsch E, Loriot Y, Ghiringhelli F, Zalcman G, Goldwasser F, Escudier B, Hellmann MD, Eggermont A, Raoult D, Albiges L, Kroemer G, Zitvogel L (2018) Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359:91–97. https://doi.org/10.1126/science.aan3706

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Samuel BS, Gordon JI (2006) A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism. Proc Natl Acad Sci U S A 103:10011–10016. https://doi.org/10.1073/pnas.0602187103

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Sharon G, Cruz NJ, Kang DW, Gandal MJ, Wang B, Kim YM, Zink EM, Casey CP, Taylor BC, Lane CJ, Bramer LM, Isern NG, Hoyt DW, Noecker C, Sweredoski MJ, Moradian A, Borenstein E, Jansson JK, Knight R, Metz TO, Lois C, Geschwind DH, Krajmalnik-Brown R, Mazmanian SK (2019) Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell 177:1600–1618.e17. https://doi.org/10.1016/j.cell.2019.05.004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. Snijders AM, Langley SA, Kim YM, Brislawn CJ, Noecker C, Zink EM, Fansler SJ, Casey CP, Miller DR, Huang Y, Karpen GH, Celniker SE, Brown JB, Borenstein E, Jansson JK, Metz TO, Mao JH (2016) Influence of early life exposure, host genetics and diet on the mouse gut microbiome and metabolome. Nat Microbiol 2:16221. https://doi.org/10.1038/nmicrobiol.2016.221

    CAS  Article  PubMed  Google Scholar 

  57. Steinberg RS, Lima M, Gomes de Oliveira NL, Miyoshi A, Nicoli JR, Neumann E, Nunes AC (2014) Effect of intestinal colonisation by two Lactobacillus strains on the immune response of gnotobiotic mice. Benef Microbes 5:409–419. https://doi.org/10.3920/bm2013.0075

    CAS  Article  PubMed  Google Scholar 

  58. Sun M, He C, Chen L, Yang W, Wu W, Chen F, Cao AT, Yao S, Dann SM, Dhar TGM, Salter-Cid L, Zhao Q, Liu Z, Cong Y (2019) RORγt represses IL-10 production in Th17 cells to maintain their pathogenicity in inducing intestinal inflammation. J Immunol 202:79–92. https://doi.org/10.4049/jimmunol.1701697

    CAS  Article  PubMed  Google Scholar 

  59. Tomlinson C, Rafii M, Ball RO, Pencharz PB (2011) Arginine can be synthesized from enteral proline in healthy adult humans. J Nutr 141:1432–1436. https://doi.org/10.3945/jn.110.137224

    CAS  Article  PubMed  Google Scholar 

  60. Wong CB, Tanaka A, Kuhara T, Xiao JZ (2020) Potential effects of indole-3-lactic acid, a metabolite of human Bifidobacteria, on NGF-induced neurite outgrowth in PC12 cells. Microorganisms:–8. https://doi.org/10.3390/microorganisms8030398

  61. Xia Z, Huang L, Yin P, Liu F, Liu Y, Zhang Z, Lin J, Zou W, Li C (2019) L-Arginine alleviates heat stress-induced intestinal epithelial barrier damage by promoting expression of tight junction proteins via the AMPK pathway. Mol Biol Rep 46:6435–6451. https://doi.org/10.1007/s11033-019-05090-1

    CAS  Article  PubMed  Google Scholar 

  62. Xing HC, Li LJ, Xu KJ, Shen T, Chen YB, Sheng JF, Chen Y, Fu SZ, Chen CL, Wang JG, Yan D, Dai FW, Zheng SS (2006) Protective role of supplement with foreign Bifidobacterium and Lactobacillus in experimental hepatic ischemia-reperfusion injury. J Gastroenterol Hepatol 21:647–656. https://doi.org/10.1111/j.1440-1746.2006.04306.x

    Article  PubMed  Google Scholar 

  63. Yao K, Guan S, Li T, Huang R, Wu G, Ruan Z, Yin Y (2011) Dietary L-arginine supplementation enhances intestinal development and expression of vascular endothelial growth factor in weanling piglets. Br J Nutr 105:703–709. https://doi.org/10.1017/s000711451000365x

    CAS  Article  PubMed  Google Scholar 

  64. Ye P, Rodriguez FH, Kanaly S, Stocking KL, Schurr J, Schwarzenberger P, Oliver P, Huang W, Zhang P, Zhang J, Shellito JE, Bagby GJ, Nelson S, Charrier K, Peschon JJ, Kolls JK (2001) Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med 194:519–527. https://doi.org/10.1084/jem.194.4.519

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. Zartl B, Silberbauer K, Loeppert R, Viernstein H, Praznik W, Mueller M (2018) Fermentation of non-digestible raffinose family oligosaccharides and galactomannans by probiotics. Food Funct 9:1638–1646. https://doi.org/10.1039/c7fo01887h

    CAS  Article  PubMed  Google Scholar 

  66. Zeuthen LH, Fink LN, Metzdorff SB, Kristensen MB, Licht TR, Nellemann C, Frøkiaer H (2010) Lactobacillus acidophilus induces a slow but more sustained chemokine and cytokine response in naïve foetal enterocytes compared to commensal Escherichia coli. BMC Immunol 11:2. https://doi.org/10.1186/1471-2172-11-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. Zhang X, Zhang D, Jia H, Feng Q, Wang D, Liang D, Wu X, Li J, Tang L, Li Y, Lan Z, Chen B, Li Y, Zhong H, Xie H, Jie Z, Chen W, Tang S, Xu X, Wang X, Cai X, Liu S, Xia Y, Li J, Qiao X, Al-Aama JY, Chen H, Wang L, Wu QJ, Zhang F, Zheng W, Li Y, Zhang M, Luo G, Xue W, Xiao L, Li J, Chen W, Xu X, Yin Y, Yang H, Wang J, Kristiansen K, Liu L, Li T, Huang Q, Li Y, Wang J (2015) The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med 21:895–905. https://doi.org/10.1038/nm.3914

    CAS  Article  PubMed  Google Scholar 

  68. Zhang X, Gu S, You L, Xu Y, Zhou D, Chen Y, Yan R, Jiang H, Li Y, Lv L, Qian W (2020) Gut microbiome and metabolome were altered and strongly associated with platelet count in adult patients with primary immune thrombocytopenia. Front Microbiol 11:1550. https://doi.org/10.3389/fmicb.2020.01550

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Yongjun Li and Yifeng Gu at the State Key Laboratory for Diagnosis, National Clinical Research Center for Infectious Diseases for their contribution to the maintenance of the germ-free rats. We would like to thank Ping Yang at the Center of Cryo-Electron Microscopy (CCEM) at Zhejiang University for the technical assistance provided with the transmission electron microscopy.

Funding

This study was funded by the National Natural Science Foundation of China (81790631, 81570512), the National Key Research and Development Program of China (2018YFC2000500) and the Natural Science Foundation of Zhejiang Province, China (LQ19H030007).

Author information

Affiliations

Authors

Contributions

J.X., S.J., and L.L. conceived and designed the experiments. J.X., S.J., Q.X., J.Y., D.F., Y.L., J.W., X.B., L.Y., Q.W., and K.W. conducted the experiments and collected the samples. L. L., H.J., R.Y., and L.L. offered resources for the experiments. J.X. and W.W. analyzed the data. J.X. and R.Y. conducted the software analysis. J.X. and L.L. wrote the paper. All the authors have read and approved the manuscript.

Corresponding author

Correspondence to Lanjuan Li.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures were performed according to the 2011 National Institutes of Health Guide for the Care and Use of Laboratory Animals and were approved by the Animal Care and Use Committee of the First Affiliated Hospital, School of Medicine, Zhejiang University (permit no. 2019-1088).

Consent to participate

All the participants included in this study provided written informed consent prior to sample collection. The research is in accordance with the ethical guidelines of the 1975 Declaration of Helsinki and was approved by the Institutional Review Board of the First Affiliated Hospital of Zhejiang University.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 7213 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xia, J., Jiang, S., Lv, L. et al. Modulation of the immune response and metabolism in germ-free rats colonized by the probiotic Lactobacillus salivarius LI01. Appl Microbiol Biotechnol 105, 1629–1645 (2021). https://doi.org/10.1007/s00253-021-11099-z

Download citation

Keywords

  • Gut microbiota
  • Immune homeostasis
  • Metabolism
  • Germ-free model
  • Lactobacillus salivarius