Investigation into the impact of tyrosine on the product formation and quality attributes of mAbs in rCHO cell cultures

Abstract

Tyrosine (Tyr) is crucial to the maintenance of the monoclonal antibody (mAb) titers and quality attributes in fed-batch cultures of recombinant Chinese hamster ovary (rCHO) cells. However, the relation between tyrosine and these aspects is not yet fully defined. In order to further elucidate such a relation, two groups of fed-batch experiments with high tyrosine (H-T) or low tyrosine (L-T) additions producing an IgG1 monoclonal antibody against CD20 were implemented to investigate the intracellular and extracellular effects of tyrosine on the culture performance. It was found that the scarcity of tyrosine led to the distinctive reduction in both viable cell density and antibody specific production rate, hence the sharply reduced titer, possibly related to the impaired translation efficiency caused by the substrate limitation of tyrosine. In addition, alterations to the critical quality attributes were detected in the L-T group, compared to those in the H-T condition. Notable decrease in the contents of intact antibody was found under the L-T condition because of the elevated reductive level in the supernatant. Moreover, the aggregate content in the L-T condition was also reduced, probably resulting from the accumulation of extracellular cystine. In particular, the lysine variant content noticeably increased with tyrosine limitation owing to the downregulation of two carboxypeptidases, i.e., CpB and CpH. Overall, understanding the role of tyrosine in these aspects is fundamental to the increase of product titers and control of critical quality attributes in the monoclonal antibody production of rCHO cell fed-batch cultures.

Key points

• Tyrosine is essential in the maintenance of product titers and the control of product qualities in high cell density cultivations in rCHO cell.

• This study revealed the bottleneck of decreased q mAb upon the deficiency of tyrosine.

• The impact of tyrosine on the critical product qualities and the underlying mechanisms were also thoroughly assessed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data Availability

All processed data are available without restriction upon inquiry.

References

  1. Bar-Peled L, Sabatini DM (2014) Regulation of mTORC1 by amino acids. Trends Cell Biol 24(7):400–406. https://doi.org/10.1016/j.tcb.2014.03.003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Banks DD, Gadgil HS, Pipes GD, Bondarenko PV, Hobbs V, Scavezze JL, Kim J, Jiang XR, Mukku V, Dillon TM (2008) Removal of cysteinylation from an unpaired sulfhydryl in the variable region of a recombinant monoclonal IgG1 antibody improves homogeneity, stability, and biological activity. J Pharm Sci 97(2):775–790. https://doi.org/10.1002/jps.21014

    CAS  Article  PubMed  Google Scholar 

  3. Brych SR, Gokarn Y, Hultgen H, Stevenson R, Rajan R, Matsumura M (2010) Characterization of antibody aggregation: role of buried, unpaired cysteines in particle formation. J Pharm Sci 99(2):764–781. https://doi.org/10.1002/jps.21868

    CAS  Article  PubMed  Google Scholar 

  4. Chakrabarti A, Chen AW, Varner JD (2011) A review of the mammalian unfolded protein response. Biotechnol Bioeng 108(12):2777–2793. https://doi.org/10.1002/bit.23282

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Chen CC, Zhu Y, Evans LB (1989) Phase partitioning of biomolecules: solubilities of amino acids. Biotechnol Prog 5(3):111–118. https://doi.org/10.1002/btpr.5420050309

    CAS  Article  Google Scholar 

  6. Clincke ME, Mölleryd C, Zhang Y, Lindskog E, Walsh K, Chotteau V (2013) Very high density of CHO cells in perfusion by ATF or TFF in wave bioreactor™. Part i. effect of the cell density on the process. Biotechnol Progr 29. doi: https://doi.org/10.1002/btpr.1704

  7. Cromwell MEM, Hilario E, Jacobson F (2006) Protein aggregation and bioprocessing. AAPS J 8(3):E572–E579. https://doi.org/10.1208/aapsj080366

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Cruz HJ, Freitas CM, Alves PM, Moreira JL, Carrondo MJT (2000) Effects of ammonia and lactate on growth, metabolism, and productivity of BHK cells. Enzym Microb Technol 27(1–2):43–52. https://doi.org/10.1016/s0141-0229(00)00151-4

    CAS  Article  Google Scholar 

  9. Dinnis DM, James DC (2005) Engineering mammalian cell factories for improved recombinant monoclonal antibody production: lessons from nature? Biotechnol Bioeng 91(2):180–189. https://doi.org/10.1002/bit.20499

    CAS  Article  PubMed  Google Scholar 

  10. Drew R, Miners JO (1984) The effects of buthionine sulphoximine (BSO) on glutathione depletion and xenobiotic biotransformation. Biochem Pharmacol 33(19):2989–2994. https://doi.org/10.1016/0006-2952(84)90598-7

    CAS  Article  PubMed  Google Scholar 

  11. Du Y, Walsh A, Ehrick R, Xu W, May K, Liu H (2012) Chromatographic analysis of the acidic and basic species of recombinant monoclonal antibodies. mAbs 4(5): 578-585. doi: https://doi.org/10.4161/mabs.21328

  12. Efeyan A, Zoncu R, Sabatini DM (2012) Amino acids and mTORC1: from lysosomes to disease. Trends Mol Med 18(9):524–533. https://doi.org/10.1016/j.molmed.2012.05.007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Feeney L, Carvalhal V, Yu XC, Chan B, Michels DA, Wang YJ (2013) Eliminating tyrosine sequence variants in CHO cell lines producing recombinant monoclonal antibodies. Biotechnol Bioeng 110(4):1087–1097. https://doi.org/10.1002/bit.24759

    CAS  Article  PubMed  Google Scholar 

  14. Flydal MI, Martinez A (2013) Phenylalanine hydroxylase: function, structure, and regulation. IUBMB Life 65(4):341–349. https://doi.org/10.1002/iub.1150

    CAS  Article  PubMed  Google Scholar 

  15. Fomina-Yadlin D, Gosink JJ, McCoy R, Follstad B, Morris A, Russell CB, McGrew JT (2013) Cellular responses to individual amino-acid depletion in antibody-expressing and parental CHO cell lines. Biotechnol Bioeng 111(5):965–979. https://doi.org/10.1002/bit.25155

    CAS  Article  PubMed  Google Scholar 

  16. Gramer MJ, Eckblad JJ, Donahue R, Brown J, Shultz C, Vickerman K (2011) Modulation of antibody galactosylation through feeding of uridine, manganese chloride, and galactose. Biotechnol Bioeng 108(7):1591–1602. https://doi.org/10.1002/bit.23075

    CAS  Article  PubMed  Google Scholar 

  17. Grubb S, Guo L, Fisher AE, Brodsky JL (2012) Protein disulfide isomerases contribute differentially to the endoplasmic reticulum–associated degradation of apolipoprotein B and other substrates. Mol Biol Cell 23(4):520–532. https://doi.org/10.1091/mbc.E11-08-0704

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Handlogten MM, Zhu M, Ahuja S (2017) Glutathione and thioredoxin systems contribute to recombinant monoclonal antibody interchain disulfide bond reduction during bioprocessing. Biotechnol Bioeng 114(7):1469–1477. https://doi.org/10.1002/bit.26278

    CAS  Article  PubMed  Google Scholar 

  19. Hatahet F, Ruddock LW (2009) Protein disulfide isomerase: a critical evaluation of its function in disulfide bond formation. Antioxid Redox Sign 11(11):2807–2850. https://doi.org/10.1089/ars.2009.2466

    CAS  Article  Google Scholar 

  20. Hara K, Yonezawa K, Weng QP, Kozlowski MT, Belham C, Avruch J (1998) Amino acid sufficiency and mTOR regulate p70 S6 kinase and eiF-4E BP1 through a common effector mechanism. J Biol Chem 273(23):14484–14494. https://doi.org/10.1074/jbc.273.23.14484

    CAS  Article  PubMed  Google Scholar 

  21. Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13(2):89–102. https://doi.org/10.1038/nrm3270

    CAS  Article  Google Scholar 

  22. Huang YM, Hu WW, Rustandi E, Chang K, Yusuf-Makagiansar H, Ryll T (2010) Maximizing productivity of CHO cell-based fed-batch culture using chemically defined media conditions and typical manufacturing equipment. Biotechnol Prog 26(5):1400–1410. https://doi.org/10.1002/btpr.436

    CAS  Article  PubMed  Google Scholar 

  23. Jing Y, Borys M, Nayak S, Egan S, Qian Y, Pan SH (2012) Identification of cell culture conditions to control protein aggregation of IgG fusion proteins expressed in Chinese hamster ovary cells. Process Biochem 47(1):69–75. https://doi.org/10.1016/j.procbio.2011.10.009

    CAS  Article  Google Scholar 

  24. Jardon MA, Sattha B, Braasch K, Leung AO, Côté HCF, Butler M, Piret JM (2011) Inhibition of glutamine-dependent autophagy increases t-PA production in CHO cell fed-batch processes. Biotechnol Bioeng 109(5):1228–1238. https://doi.org/10.1002/bit.24393

    CAS  Article  PubMed  Google Scholar 

  25. Ju HK, Hwang SJ, Jeon CJ, Lee GM, Yoon SK (2009) Use of NaCl prevents aggregation of recombinant COMP–angiopoietin-1 in Chinese hamster ovary cells. J Biotechnol 143(2):145–150. https://doi.org/10.1016/j.jbiotec.2009.06.017

    CAS  Article  PubMed  Google Scholar 

  26. Kang S, Mullen J, Miranda LP, Deshpande R (2012) Utilization of tyrosine- and histidine-containing dipeptides to enhance productivity and culture viability. Biotechnol Bioeng 109(9):2286–2294. https://doi.org/10.1002/bit.24507

    CAS  Article  PubMed  Google Scholar 

  27. Kao YH, Hewitt DP, Trexler-Schmidt M, Laird MW (2010) Mechanism of antibody reduction in cell culture production processes. Biotechnol Bioeng 107(4):622–632. https://doi.org/10.1002/bit.22848

    CAS  Article  PubMed  Google Scholar 

  28. Kilberg MS, Pan YX, Chen H, Leung-Pineda V (2005) Nutritional control of gene expression: how mammalian cells respond to amino acid limitation. Annu Rev Nutr 25(1):59–85. https://doi.org/10.1146/annurev.nutr.24.012003.132145

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Kilberg MS, Shan J, Su N (2009) ATF4-dependent transcription mediates signaling of amino acid limitation. Trends Endocrinol Metab 20(9):436–443. https://doi.org/10.1016/j.tem.2009.05.008

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Kim NS, Lee GM (2002) Response of recombinant Chinese hamster ovary cells to hyperosmotic pressure: effect of Bcl-2 overexpression. J Biotechnol 95(3):237–248. https://doi.org/10.1016/s0168-1656(02)00011-1

    CAS  Article  PubMed  Google Scholar 

  31. Kimura R, Miller WM (1996) Effects of elevated pCO2 and/or osmolality on the growth and recombinant tPA production of CHO cells. Biotechnol Bioeng 52(1):152–160. https://doi.org/10.1002/(sici)1097-0290(19961005)52:1<152::aid-bit15>3.0.co;2-q

    CAS  Article  PubMed  Google Scholar 

  32. Lacy ER, Baker M, Brigham-Burke M (2008) Free sulfhydryl measurement as an indicator of antibody stability. Anal Biochem 382(1):66–68. https://doi.org/10.1016/j.ab.2008.07.016

    CAS  Article  PubMed  Google Scholar 

  33. Lai T, Yang Y, Ng SK (2013) Advances in mammalian cell line development technologies for recombinant protein production. Pharmaceuticals 6(5):579–603. https://doi.org/10.3390/ph6050579

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Lichter-Konecki U, Hipke CM, Konecki DS (1999) Human phenylalanine hydroxylase gene expression in kidney and other nonhepatic tissues. Mol Genet Metab 67(4):308–316. https://doi.org/10.1006/mgme.1999.2880

    CAS  Article  PubMed  Google Scholar 

  35. Lin J, Takagi M, Qu Y, Gao P, Yoshida T (1999) Enhanced monoclonal antibody production by gradual increase of osmotic pressure. Cytotechnology 29(1):27–33. https://doi.org/10.1023/a:1008016806599

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Liu H, Gaza-Bulseco G, Faldu D, Chumsae C, Sun J (2008) Heterogeneity of monoclonal antibodies. J Pharm Sci 97(7):2426–2447. https://doi.org/10.1002/jps.21180

    CAS  Article  PubMed  Google Scholar 

  37. Luo J, Zhang J, Ren D, Tsai WL, Li F, Amanullah A (2012) Probing of C-terminal lysine variation in a recombinant monoclonal antibody production using Chinese hamster ovary cells with chemically defined media. Biotechnol Bioeng 109(9):2306–2315. https://doi.org/10.1002/bit.24510

    CAS  Article  PubMed  Google Scholar 

  38. Ma XM, Blenis J (2009) Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 10(5):307–318. https://doi.org/10.1038/nrm2672

    CAS  Article  PubMed  Google Scholar 

  39. Mcqueen A, Bailey JE (1990) Effect of ammonium ion and extracellular pH on hybridoma cell metabolism and antibody production. Biotechnol Bioeng 35(11):1067–1077. https://doi.org/10.1002/bit.260351102

    CAS  Article  PubMed  Google Scholar 

  40. Mosser M, Chevalot I, Olmos E, Blanchard F, Kapel R, Oriol E (2013) Combination of yeast hydrolysates to improve CHO cell growth and igG production. Cytotechnology 65(4):629–641. https://doi.org/10.1007/s10616-012-9519-1

    CAS  Article  PubMed  Google Scholar 

  41. Mulukutla BC, Kale J, Kalomeris T, Jacobs M, Hiller GW (2017) Identification and control of novel growth inhibitors in fed-batch cultures of Chinese hamster ovary cells. Biotechnol Bioeng 114:1779–1790. https://doi.org/10.1002/bit.26313

    CAS  Article  PubMed  Google Scholar 

  42. Nishiuch Y, Sasaki M, Nakayasu M, Oikawa A (1976) Cytotoxicity of cysteine in culture media. In Vitro Cell Dev-Pl 12(9): 635–638. doi: https://doi.org/10.1007/BF02797462

  43. Nyberg GB, Balcarcel RR, Follstad BD, Stephanopoulos G, Wang DIC (1999) Metabolism of peptide amino acids by Chinese hamster ovary cells grown in a complex medium. Biotechnol Bioeng 62(3):324–335. https://doi.org/10.1002/(sici)1097-0290(19990205)62:3<324::aid-bit9>3.0.co;2-c

    CAS  Article  PubMed  Google Scholar 

  44. Ozturk SS, Palsson BO (1991) Growth, metabolic, and antibody production kinetics of hybridoma cell culture: 1. Analysis of data from controlled batch reactors. Biotechnol Prog 7:471–480. https://doi.org/10.1021/bp00012a001

    CAS  Article  PubMed  Google Scholar 

  45. Ozturk SS, Riley MR, Palsson BO (1992) Effects of ammonia and lactate on hybridoma growth, metabolism, and antibody production. Biotechnol Bioeng 39(4):418–431. https://doi.org/10.1002/bit.260390408

    CAS  Article  PubMed  Google Scholar 

  46. Siu F, Bain PJ, Leblanc-Chaffin R, Chen H, Kilberg MS (2002) ATF4 is a mediator of the nutrient-sensing response pathway that activates the human asparagine synthetase gene. J Bio Chem 277(27):24120–24127. https://doi.org/10.1074/jbc.M201959200

    CAS  Article  Google Scholar 

  47. Steve KW, Vig P, Chua F, Teo WK, Yap MGS (1993) Substantial overproduction of antibodies by applying osmotic pressure and sodium butyrate. Biotechnol Bioeng 42:601–610. https://doi.org/10.1002/bit.260420508

    Article  Google Scholar 

  48. Stokes AH, Lewis DY, Lash LH, Jerome WG, Vrana KE (2000) Dopamine toxicity in neuroblastoma cells: role of glutathione depletion by L-BSO and apoptosis. Brain Res 858(1):1–8. https://doi.org/10.1016/S0006-8993(99)02329-X

    CAS  Article  PubMed  Google Scholar 

  49. Tang H, Zhang X, Zhang W, Fan L, Wang H, Tan WS, Zhao L (2019) Insight into the roles of tyrosine on rCHO cell performance in fed-batch cultures. Appl Microbiol Biotechnol 103:6483–6494. https://doi.org/10.1007/s00253-019-09921-w

    CAS  Article  PubMed  Google Scholar 

  50. Van den Bremer ET, Beurskens FJ, Voorhorst M, Engelberts PJ, De Jong RN, Van der Boom BG, Parren PW (2015) Human IgG is produced in a pro-form that requires clipping of C-terminal lysines for maximal complement activation. MAbs 7(4):672–680. https://doi.org/10.1080/19420862.2015.1046665

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Vázquez-Rey M, Lang DA (2011) Aggregates in monoclonal antibody manufacturing processes. Biotechnol Bioeng 108(7):1494–1508. https://doi.org/10.1002/bit.23155

    CAS  Article  PubMed  Google Scholar 

  52. Vlasak J, Ionescu R (2011) Fragmentation of monoclonal antibodies. MAbs 3(3):253–263. https://doi.org/10.4161/mabs.3.3.15608

    Article  PubMed  PubMed Central  Google Scholar 

  53. Vogel C, Marcotte EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 13:679–232. https://doi.org/10.1038/nrg3185

    CAS  Article  Google Scholar 

  54. Wurm F (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22:1393–1398. https://doi.org/10.1038/nbt1026

    CAS  Article  PubMed  Google Scholar 

  55. Xiang T, Chumsae C, Liu H (2009) Localization and quantitation of free sulfhydryl in recombinant monoclonal antibodies by differential labeling with 12C and 13C iodoacetic acid and LC−MS analysis. Anal Chem 81(19):8101–8108. https://doi.org/10.1021/ac901311y

    CAS  Article  PubMed  Google Scholar 

  56. Yang M, Butler M (2000) Effects of ammonia on CHO cell growth, erythropoietin production, and glycosylation. Biotechnol Bioeng 68(4):370–380. https://doi.org/10.1002/(SICI)1097-0290(20000520)68:4<370::AID-BIT2>3.0.CO;2-K

    CAS  Article  PubMed  Google Scholar 

  57. Yang WC, Minkler DF, Kshirsagar R, Ryll T, Huang YM (2016) Concentrated fed-batch cell culture increases manufacturing capacity without additional volumetric capacity. J Biotechnol 217:1–11. https://doi.org/10.1016/j.jbiotec.2015.10.009

    CAS  Article  PubMed  Google Scholar 

  58. Yu M, Hu Z, Pacis E, Vijayasankaran N, Shen A, Li F (2011) Understanding the intracellular effect of enhanced nutrient feeding toward high titer antibody production process. Biotechnol Bioeng 108(5):1078–1088. https://doi.org/10.1002/bit.23031

    CAS  Article  PubMed  Google Scholar 

  59. Zhang W, Czupryn MJ (2002) Free sulfhydryl in recombinant monoclonal antibodies. Biotechnol Progr 18(3): 509–513. doi: https://doi.org/10.1021/bp025511z

  60. Zhang X, Tang H, Sun YT, Liu X, Fan L, Tang WS (2015) Elucidating the effects of arginine and lysine on a monoclonal antibody C-terminal lysine variation in CHO cell cultures. Appl Microbiol Biotechnol 99(16):6643–6652. https://doi.org/10.1007/s00253-015-6617-y

    CAS  Article  PubMed  Google Scholar 

  61. Zhang YB, Howitt J, Mccorkle S, Lawrence P, Springer K, Freimuth P (2004) Protein aggregation during overexpression limited by peptide extensions with large net negative charge. Protein Expr Purif 36(2):207–216. https://doi.org/10.1016/j.pep.2004.04.020

    CAS  Article  PubMed  Google Scholar 

  62. Zhu MM, Goyal A, Rank DL, Gupta SK, Boom TV, Lee SS (2008) Effects of elevated pCO2 and osmolality on growth of CHO cells and production of antibody-fusion protein B1: a case study. Biotechnol Prog 21:70–77. https://doi.org/10.1021/bp049815s

    CAS  Article  Google Scholar 

  63. Zimmer A, Mueller R, Wehsling M, Schnellbaecher A, Hagen JV (2014) Improvement and simplification of fed-batch bioprocesses with a highly soluble phosphotyrosine sodium salt. J Biotechnol 186:110–118. https://doi.org/10.1016/j.jbiotec.2014.06.026

    CAS  Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Fundamental Research Funds for the Central Universities (No. 22221818014).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Liang Zhao.

Ethics declarations

This work does not involve any human participation nor live animals performed by any of the listed authors.

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 251 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Liu, X., Tang, H. et al. Investigation into the impact of tyrosine on the product formation and quality attributes of mAbs in rCHO cell cultures. Appl Microbiol Biotechnol (2020). https://doi.org/10.1007/s00253-020-10744-3

Download citation

Keywords

  • Chinese hamster ovary cells
  • Tyrosine
  • Fed-batch cultures
  • Critical quality attribute
  • CD20
  • Monoclonal antibody