Lactic acid accumulation under heat stress related to accelerated glycolysis and mitochondrial dysfunction inhibits the mycelial growth of Pleurotus ostreatus

Abstract

High temperature is a major threat to Pleurotus ostreatus cultivation. In this study, a potential mechanism by which P. ostreatus mycelia growth is inhibited under heat stress was explored. Lactate, as a microbial fermentation product, was found unexpectedly in the mycelia of P. ostreatus under heat stress, and the time-dependent accumulation and corresponding inhibitory effect of lactate on mycelial growth was further confirmed. The addition of a glycolysis inhibitor, 2-deoxy-d-glucose (2DG), reduced the lactate content in mycelia and slightly restored mycelial growth under high-temperature conditions, which indicated the accumulation of lactate can be inhibited by glycolysis inhibition. Further data revealed mitochondrial dysfunction under high-temperature conditions, with evidence of decreased oxygen consumption and adenosine triphosphate (ATP) synthesis and increased reactive oxygen species (ROS). The removal of ROS with ascorbic acid decreased the lactate content, and mycelial growth recovered to a certain extent, indicating lactate accumulation could be affected by the mitochondrial ROS. Moreover, metabolic data showed that glycolysis and the tricarboxylic acid cycle were enhanced. This study reported the accumulation of lactate in P. ostreatus mycelia under heat stress and the inhibitory effect of lactate on the growth of mycelia, which might provide further insights into the stress response mechanism of edible fungi.

Key Points
Lactate can accumulate in Pleurotus ostreatus mycelia under heat stress and inhibit its growth.
The accumulation of lactate may be due to the acceleration of glycolysis and the dysfunction of mitochondria of P. ostreatus mycelia under high-temperature stress.
The glycolysis and tricarboxylic acid cycle of P. ostreatus mycelia were accelerated under high-temperature stress.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Ali MA, Yasui F, Matsugo S, Konishi T (2000) The lactate-dependent enhancement of hydroxyl radical generation by the Fenton reaction. Free Radic Res 32:429–438. https://doi.org/10.1080/10715760000300431

    CAS  Article  PubMed  Google Scholar 

  2. Atlante A, de Bari L, Bobba A, Marra E, Passarella S (2007) Transport and metabolism of L-lactate occur in mitochondria from cerebellar granule cells and are modified in cells undergoing low potassium dependent apoptosis. BBA-Bioenergetics 1767:1285–1299. https://doi.org/10.1016/j.bbabio.2007.08.003

    CAS  Article  PubMed  Google Scholar 

  3. Banh S, Wiens L, Sotiri E, Treberg JR (2016) Mitochondrial reactive oxygen species production by fish muscle mitochondria: potential role in acute heat-induced oxidative stress. Comp Biochem Physiol B 191:99–107. https://doi.org/10.1016/j.cbpb.2015.10.001

    CAS  Article  PubMed  Google Scholar 

  4. Boone CHT, Grove RA, Adamcova D, Seravalli J, Adamec J (2017) Oxidative stress, metabolomics profiling, and mechanism of local anesthetic induced cell death in yeast. Redox Biol 12:139–149. https://doi.org/10.1016/j.redox.2017.01.025

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Chen WC, Wei LL, Zhang Y, Shi DY, Ren WC, Zhang ZH, Wang J, Shao WY, Liu XL, Chen CJ, Gao QL (2019) Involvement of the two L-lactate dehydrogenase in development and pathogenicity in Fusarium graminearum. Curr Genet 65:591–605. https://doi.org/10.1007/s00294-018-0909-6

    CAS  Article  PubMed  Google Scholar 

  6. Chiao YA, Kolwicz SC, Basisty N, Gagnidze A, Zhang J, Gu HW, Djukovic D, Beyer RP, Raftery D, MacCoss M, Tian R, Rabinovitch PS (2016) Rapamycin transiently induces mitochondrial remodeling to reprogram energy metabolism in old hearts. Aging-US 8:314–326. https://doi.org/10.18632/aging.100881

    CAS  Article  Google Scholar 

  7. Chow L, From A, Seaquist E (2010) Skeletal muscle insulin resistance: the interplay of local lipid excess and mitochondrial dysfunction. Metabolism 59:70–85. https://doi.org/10.1016/j.metabol.2009.07.009

    CAS  Article  PubMed  Google Scholar 

  8. Corbet C, Pinto A, Martherus R, de Jesus JPS, Polet F, Feron O (2016) Acidosis drives the reprogramming of fatty acid metabolism in cancer cells through changes in mitochondrial and histone acetylation. Cell Metab 24:311–323. https://doi.org/10.1016/j.cmet.2016.07.003

    CAS  Article  PubMed  Google Scholar 

  9. DeBerardinis RJ, Chandel NS (2016) Fundamentals of cancer metabolism. Sci Adv 2:UNSP e1600200. https://doi.org/10.1126/sciadv.1600200

    CAS  Article  Google Scholar 

  10. Heiden MGV, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033. https://doi.org/10.1126/science.1160809

    CAS  Article  Google Scholar 

  11. Jha MK, Lee IK, Suk K (2016) Metabolic reprogramming by the pyruvate dehydrogenase kinase-lactic acid axis: linking metabolism and diverse neuropathophysiologies. Neurosci Biobehav R 68:1–19. https://doi.org/10.1016/j.neubiorev.2016.05.006

    CAS  Article  Google Scholar 

  12. Kim SY, Choi JS, Park C, Jeong JW (2010) Ethyl pyruvate stabilizes hypoxia-inducible factor 1 alpha via stimulation of the TCA cycle. Cancer Lett 295:236–241. https://doi.org/10.1016/j.canlet.2010.03.006

    CAS  Article  PubMed  Google Scholar 

  13. Kong WW, Huang CY, Chen Q, Zou YJ, Zhang JX (2012) Nitric oxide alleviates heat stress-induced oxidative damage in Pleurotus eryngii var. tuoliensis. Fungal Genet Biol 49:15–20. https://doi.org/10.1016/j.fgb.2011.12.003

    CAS  Article  PubMed  Google Scholar 

  14. Lei M, Wu XL, Huang CY, Qiu ZH, Wang LN, Zhang RY, Zhang JX (2019) Trehalose induced by reactive oxygen species relieved the radial growth defects of Pleurotus ostreatus under heat stress. Appl Microbiol Biotechnol 103:5379–5390. https://doi.org/10.1007/s00253-019-09834-8

    CAS  Article  PubMed  Google Scholar 

  15. Liu R, Cao PF, Ren A, Wang SL, Yang T, Zhu T, Shi L, Zhu J, Jiang AL, Zhao MW (2018a) SA inhibits complex III activity to generate reactive oxygen species and thereby induces GA overproduction in Ganoderma lucidum. Redox Biol 16:388–400. https://doi.org/10.1016/j.redox.2018.03.018

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Liu R, Zhang X, Ren A, Shi DK, Shi L, Zhu J, Yu HS, Zhao MW (2018b) Heat stress-induced reactive oxygen species participate in the regulation of HSP expression, hyphal branching and ganoderic acid biosynthesis in Ganoderma lucidum. Microbiol Res 209:43–54. https://doi.org/10.1016/j.micres.2018.02.006

    CAS  Article  PubMed  Google Scholar 

  17. Lockman KA, Baren JP, Pemberton CJ, Baghdadi H, Burgess KE, Plevris-Papaioannou N, Lee P, Howie F, Beckett G, Pryde A, Jaap AJ, Hayes PC, Filippi C, Plevris JN (2012) Oxidative stress rather than triglyceride accumulation is a determinant of mitochondrial dysfunction in in vitro models of hepatic cellular steatosis. Liver Int 32:1079–1092. https://doi.org/10.1111/j.1478-3231.2012.02775.x

    CAS  Article  PubMed  Google Scholar 

  18. Maas RHW, Springer J, Eggink G, Weusthuis RA (2008) Xylose metabolism in the fungus Rhizopus oryzae: effect of growth and respiration on L (+)-lactate production. J Ind Microbiol Biotechnol 35:569–578. https://doi.org/10.1007/s10295-008-0318-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Mans R, Hassing E-J, Wijsman M, Giezekamp A, Pronk JT, Daran J-M, Maris AJAV (2017) A CRISPR/Cas9-based exploration into the elusive mechanism for lactate export in Saccharomyces cerevisiae. FEMS Yeast Res 17:fox085. https://doi.org/10.1093/femsyr/fox085

    CAS  Article  Google Scholar 

  20. Miller FJ, Rosenfeldt FL, Zhang CF, Linnane AW, Nagley P (2003) Precise determination of mitochondrial DNA copy number in human skeletal and cardiac muscle by a PCR-based assay: lack of change of copy number with age. Nucleic Acids Res 31:61e–661e. https://doi.org/10.1093/nar/gng060

    CAS  Article  Google Scholar 

  21. Mishra P, Chan DC (2016) Metabolic regulation of mitochondrial dynamics. J Cell Biol 212:379–387. https://doi.org/10.1083/jcb.201511036

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Moussaieff A, Rouleau M, Kitsberg D, Cohen M, Levy G, Barasch D, Nemirovski A, Shen-Orr S, Laevsky I, Amit M, Bomze D, Elena-Herrmann B, Scherf T, Nissim-Rafinia M, Kempa S, Itskovitz-Eldor J, Meshorer E, Aberdam D, Nahmias Y (2015) Glycolysis-mediated changes in acetyl-coA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab 21:392–402. https://doi.org/10.1016/j.cmet.2015.02.002

    CAS  Article  PubMed  Google Scholar 

  23. Passarella S, Schurr A (2018) L-Lactate transport and metabolism in mitochondria of Hep G2 cells—the Cori cycle revisited. Front Oncol 8:120. https://doi.org/10.3389/fonc.2018.00120

    Article  PubMed  PubMed Central  Google Scholar 

  24. Passarella S, Bari LD, Valenti D, Pizzuto R, Paventi G, Atlante A (2008) Mitochondria and L-lactate metabolism. FEBS Lett 582:3569–3576. https://doi.org/10.1016/j.febslet.2008.09.042

    CAS  Article  PubMed  Google Scholar 

  25. Paventi G, Pizzuto R, Chieppa G, Passarella S (2007) L-Lactate metabolism in potato tuber mitochondria. FEBS J 274:1459–1469. https://doi.org/10.1111/j.1742-4658.2007.05687.x

    CAS  Article  PubMed  Google Scholar 

  26. Pavlova NN, Thompson CB (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23:27–47. https://doi.org/10.1016/j.cmet.2015.12.006

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Pickles S, Vigie P, Youle RJ (2018) Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr Biol 28:R170–R185. https://doi.org/10.1016/j.cub.2018.01.004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Pizzuto R, Paventi G, Porcile C, Sarnataro D, Daniele A, Passarella S (2012) L-Lactate metabolism in HEP G2 cell mitochondria due to the L-lactate dehydrogenase determines the occurrence of the lactate/pyruvate shuttle and the appearance of oxaloacetate, malate and citrate outside mitochondria. BBA-Bioenergetics 1817:1679–1690. https://doi.org/10.1016/j.bbabio.2012.05.010

    CAS  Article  PubMed  Google Scholar 

  29. Plecita-Hlavata L, Tauber J, Li M, Zhang H, Flockton AR, Pullamsetti SS, Chelladurai P, D’Alessandro A, El Kasmi KC, Jezek P, Stenmark KR (2016) Constitutive reprogramming of fibroblast mitochondrial metabolism in pulmonary hypertension. Am J Resp Cell Mol 55:47–57. https://doi.org/10.1165/rcmb.2015-0142OC

    CAS  Article  Google Scholar 

  30. Qiu ZH, Wu XL, Zhang JX, Huang CY (2017) High temperature enhances the ability of Trichoderma asperellum to infect Pleurotus ostreatus mycelia. PLoS One 12:e0187055. https://doi.org/10.1371/journal.pone.0187055

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Rikhvanov EG, Fedoseeva IV, Pyatrikas DV, Borovskii GB, Voinikov VK (2014) Role of mitochondria in the operation of calcium signaling system in heat stressed plants. Russ J Plant Physl 61:141–153. https://doi.org/10.1134/S1021443714020125

    CAS  Article  Google Scholar 

  32. Schrauwen P, Hesselink MKC (2008) Reduced tricarboxylic acid cycle flux in type 2 diabetes mellitus? Diabetologia 51:1694–1697. https://doi.org/10.1007/s00125-008-1069-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Song EB, Tang S, Xu J, Yin B, Bao ED, Hartung J (2016) Lenti-siRNA Hsp60 promote bax in mitochondria and induces apoptosis during heat stress. Biochem Bioph Res Co 481:125–131. https://doi.org/10.1016/j.bbrc.2016.10.153

    CAS  Article  Google Scholar 

  34. Sørensen LM, Lametsch R, Andersen MR, Nielsen PV, Frisvad JC (2009) Proteome analysis of Aspergillus niger: lactate added in starch-containing medium can increase production of the mycotoxin fumonisin B2 by modifying acetyl-CoA metabolism. BMC Microbiol 9:255. https://doi.org/10.1186/1471-2180-9-255

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Szal B, Jastrzebska A, Kulka M, Lesniak K, Podgorska A, Parnik T, Ivanova H, Keerberg O, Gardestrom P, Rychter AM (2010) Influence of mitochondrial genome rearrangement on cucumber leaf carbon and nitrogen metabolism. Planta 232:1371–1382. https://doi.org/10.1007/s00425-010-1261-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Tian JL, Ren A, Wang T, Zhu J, Hu YR, Shi L, Yu HS, Zhao MW (2019) Hydrogen sulfide, a novel small molecule signalling agent, participates in the regulation of ganoderic acids biosynthesis induced by heat stress in Ganoderma lucidum. Fungal Genet Biol 130:19–30. https://doi.org/10.1016/j.fgb.2019.04.014

    CAS  Article  PubMed  Google Scholar 

  37. Wang ZJ, Sun Q, Sun N, Liang MY, Tian ZM (2017) Mitochondrial dysfunction and altered renal metabolism in Dahl salt-sensitive rats. Kidney Blood Press Res 42:587–597. https://doi.org/10.1159/000479846

    CAS  Article  PubMed  Google Scholar 

  38. Xing LJ, Li MC, Wei DS (2010) General mycology. Higher Education Press, Beijing

    Google Scholar 

  39. Zhang RY, Hu DD, Zhang YY, Goodwin PH, Huang CY, Chen Q, Gao W, Wu XL, Zou YJ, Qu JB, Zhang JX (2016a) Anoxia and anaerobic respiration are involved in “spawn-burning” syndrome for edible mushroom Pleurotus eryngii grown at high temperatures. Sci Hortic 199:75–80. https://doi.org/10.1016/j.scienta.2015.12.035

    Article  Google Scholar 

  40. Zhang X, Ren A, Li MJ, Cao PF, Chen TX, Zhang G, Shi L, Jiang AL, Zhao MW (2016b) Heat stress modulates mycelium growth, heat shock protein expression, ganoderic acid biosynthesis, and hyphal branching of Ganoderma lucidum via cytosolic Ca2+. Appl Environ Microbiol 82:4112–4125. https://doi.org/10.1128/AEM.01036-16

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Zhang X, St Leger RJ, Fang WG (2017) Pyruvate accumulation is the first line of cell defense against heat stress in a fungus. mBio 8:e01284–e01217. https://doi.org/10.1128/mBio.01284-17

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Zhao LJ, Huang YX, Paglia K, Vaniya A, Wancewicz B, Keller AA (2018) Metabolomics reveals the molecular mechanisms of copper induced cucumber leaf (Cucumis sativus) senescence. Environ Sci Technol 52:7092–7100. https://doi.org/10.1021/acs.est.8b00742

    CAS  Article  PubMed  Google Scholar 

  43. Zou YJ, Zhang MJ, Qu JB, Zhang JX (2018) iTRAQ-based quantitative proteomic analysis reveals proteomic changes in mycelium of Pleurotus ostreatus in response to heat stress and subsequent recovery. Front Microbiol 9:2368. https://doi.org/10.3389/fmicb.2018.02368

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We sincerely thank Dr. Mingwen Zhao (Nanjing Agricultural University) for the critical comments on this manuscript.

Funding

This work was supported by the China Agricultural Research System (CARS-20) and Fundamental Research Funds for Central Non-profit Scientific Institution (No.1610132020033).

Author information

Affiliations

Authors

Contributions

ZY conceived, designed, and performed the experiments, analyzed the data, and wrote and revised the manuscript. XW and MZ designed and revised the manuscript. JZ conceived and designed the experiments.

Corresponding author

Correspondence to Jinxia Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 135 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Wu, X., Zhao, M. et al. Lactic acid accumulation under heat stress related to accelerated glycolysis and mitochondrial dysfunction inhibits the mycelial growth of Pleurotus ostreatus. Appl Microbiol Biotechnol 104, 6767–6777 (2020). https://doi.org/10.1007/s00253-020-10718-5

Download citation

Keywords

  • Pleurotus ostreatus
  • High-temperature
  • Mycelial growth inhibition
  • Lactate
  • Mitochondria