Anticancer potentiality and mode of action of low-carbohydrate proteins and peptides from mushrooms

Abstract

Severe side effects of chemotherapy as well as drug resistance highlight the ongoing need to discover novel natural bioactive compounds with anticancer potentiality. Mushroom-derived proteins are among the naturally occurring compounds that have been the subject of a body of research on their potentiality in cancer therapy. The greatest attention in relevant review articles has been paid to well-known mushroom-derived glycoproteins such as lectins and protein-bound polysaccharide complexes such as polysaccharide-K (PSK) or krestin and polysaccharopeptide (PSP), which contain substantial amounts of carbohydrates (50–90%). These complex compounds exert their anticancer activity mainly by binding to cell membranes leading to extrinsic (death receptor) apoptosis or intrinsic (mitochondrial) apoptotic pathways. However, several other research studies have reported pure, well-characterized, proteins or peptides from mushrooms, which are carbohydrate-free or have very low amounts of carbohydrate. These proteins may fall into four categories including fungal immunomodulatory proteins, ubiquitin-like proteins, enzymes, and unclassified proteins. Well-defined chemical structure, elucidated full amino acid or N-terminal sequences, purity, and having some distinct and specific pathways compared to glycoproteins have made these low-carbohydrate proteins attractive for cancer research. The aim of this review was therefore to improve the current understanding of mushroom-derived low-carbohydrate proteins and to consolidate the existing knowledge of the most promising mushroom species from which low-carbohydrate proteins have been derived, characterized, and examined for their anticancer activity. In addition, molecular targets and mechanisms of action of these proteins have been discussed.

Key points
• Mushroom-derived low-carbohydrate proteins lack or have low carbohydrate.
• Low-carbohydrate proteins show potent anticancer activities in vitro and in vivo.
• There are specific pathways for low-carbohydrate proteins to inhibit cancer cells.

This is a preview of subscription content, log in to check access.

Fig. 1

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Ann XH, Lun YZ, Zhang W, Liu B, Li XY, Zhong MT, Wang XL, Cao J, Ning AH, Huang M (2014) Expression and characterization of protein latcripin-3, an antioxidant and antitumor molecule from Lentinula edodesC91-3. Asian Pac J Cancer Prev 15:5055–5061. https://doi.org/10.7314/APJCP.2014.15.12.5055

    Article  PubMed  Google Scholar 

  2. Ayeka PA (2018) Potential of mushroom compounds as immunomodulators in cancer immunotherapy: A Review. Evid-Based Compl Alt 2018:9. https://doi.org/10.1155/2018/7271509

  3. Bao DP, Bai R, Gao YN, Wu YY, Wang Y (2018) Computational insights into the molecular mechanism of the high immunomodulatory activity of LZ-8 protein isolated from the lingzhi or reishi medicinal mushroom Ganoderma lucidum (Agaricomycetes). Int J Med Mushrooms 20:537–548. https://doi.org/10.1615/IntJMedMushrooms.2018026264

    Article  PubMed  Google Scholar 

  4. Batool S, Joseph TP, Hussain M, Vuai MS, Khinsar KH, Din SRU, Padhiar AA, Zhong M, Ning A, Zhang W, Cao J, Huang M (2018) LP1 from Lentinula edodes C91-3 induces autophagy, apoptosis and reduces metastasis in human gastric cancer cell line SGC-7901. Int J Mol Sci. 19. https://doi.org/10.3390/ijms19102986

  5. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chang Y, Hsiao YM, Wu MF, Ou CC, Lin YW, Lue KH, Ko JL (2013) Interruption of lung cancer cell migration and proliferation by fungal immunomodulatory protein FIP-fve from Flammulina velutipes. J Agric Food Chem 61:12044–12052. https://doi.org/10.1021/jf4030272

    CAS  Article  PubMed  Google Scholar 

  7. Chen Y, Jiang S, Jin Y, Yin Y, Yu G, Lan X, Cui M, Liang Y, Wong BHC, Guo L, Sun H (2012) Purification and characterization of an antitumor protein with deoxyribonuclease activity from edible mushroom Agrocybe aegerita. Food Res 56:1729–1738. https://doi.org/10.1002/mnfr.201200316

    CAS  Article  Google Scholar 

  8. Cheng HL, Zhao RY, Chen TJ, Yu WB, Wang F, Cheng KD, Zhu P (2013) Cloning and characterization of the glycoside hydrolases that remove xylosyl groups from 7-β-xylosyl-10-deacetyltaxol and its analogues. Mol Cell Proteomics 12:2236–2248. https://doi.org/10.1074/mcp.M113.030619

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Chu PY, Sun HL, Ko JL, Ku MS, Lin LJ, Lee YT, Liao PF, Pan HH, Lu HL, Lue KH (2015) Oral fungal immunomodulatory protein-Flammulina velutipes has influence on pulmonary inflammatory process and potential treatment for allergic airway disease: A mouse model. J Microbiol Immunol Infect 50:297–306. https://doi.org/10.1016/j.jmii.2015.07.013

    Article  PubMed  Google Scholar 

  10. Dan X, Liu W, Wong JH, Ng TB (2016) A ribonuclease isolated from wild Ganoderma lucidum suppressed autophagy and triggered apoptosis in colorectal cancer cells. Front Pharmacol 7:217. https://doi.org/10.3389/fphar.2016.00217

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Darvishi B, Farahmand L, Eslami-S Z, Majidzadeh-A K (2017) NF-κB as the main node of resistance to receptor tyrosine kinase inhibitors in triple-negative breast cancer. Tumor Biol 38:1–10. https://doi.org/10.1177/101042831770691

    Article  Google Scholar 

  12. De Mejía EG, Prisecaru VI (2005) Lectins as bioactive plant proteins: a potential in cancer treatment. Crit Rev Food Sci Nutr 45:425–445. https://doi.org/10.1080/10408390591034445

    CAS  Article  PubMed  Google Scholar 

  13. Di L (2015) Strategic approaches to optimizing peptide ADME properties. AAPS J 17:134–143. https://doi.org/10.1208/s12248-014-9687-3

    CAS  Article  PubMed  Google Scholar 

  14. Ding Y, Seow SV, Huang CH, Liew LM, Lim YC, Kuo IC, Chua KY (2009) Coadministration of the fungal immunomodulatory protein FIP-Fve and a tumor-associated antigen enhanced antitumor immunity. Immunology 128:e881–e894. https://doi.org/10.1111/j.1365-2567.2009.03099.x

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gao Y, Padhiar AA, Wang J, Zhang W, Zhong M, Liu B, Kang Z, Wang X, Li X, Huang M (2017) Recombinant latcripin 11 of Lentinula edodes C91-3 suppresses the proliferation of various cancer cells. Gene 642:212–219. https://doi.org/10.1016/j.gene.2017.10.080

    CAS  Article  PubMed  Google Scholar 

  16. Gao Y, Wáng Y, Wāng Y, Wu Y, Chen H, Yang R, Bao D (2019) Protective function of novel fungal immunomodulatory proteins Fip-lti1 and Fip-lti2 from Lentinus tigrinus in concanavalin A-induced liver oxidative injury. Oxidative Med Cell Longev 2019:15. https://doi.org/10.1155/2019/3139689

    CAS  Article  Google Scholar 

  17. Gerber DE (2008) Targeted therapies: a new generation of cancer treatments. Am Fam Physician 77:311–319

    PubMed  Google Scholar 

  18. Ghadirian R, Ansari AM, Farahmand L, Sanati H, Mesbah Moosavi ZS (2018) A proteomics approach in evaluating extremely low frequency electromagnetic field-induced apoptosis in breast cancer cells. Eur J Cancer 92:S135. https://doi.org/10.1016/S0959-8049(18)30629-4

    Article  Google Scholar 

  19. Grzywacz A, Gdula-Argasińska J, Kała K, Opoka W, Muszyńska B (2016) Anti-inflammatory activity of biomass extracts of the bay mushroom, Imleria badia (Agaricomycetes), in RAW 264.7 cells. Int J Med Mushrooms 18:769–779. https://doi.org/10.1615/IntJMedMushrooms.v18.i9.20

    Article  PubMed  Google Scholar 

  20. Guan GP, Wang HX, Ng TB (2007) A novel ribonuclease with antiproliferative activity from fresh fruiting bodies of the edible mushroom Hypsizigus marmoreus. BBA-Gen Subjects 1770:1593–1597. https://doi.org/10.1016/j.bbagen.2007.07.014

    CAS  Article  Google Scholar 

  21. Guo X, Wang X, Liu M, Chen L, Chanda W, Pahiar AA, Li X, Zhang W, Ning A, Huang M, Cao J, Zhong M (2018) Expression and antitumor function of latcripin-4 RCC and ANK domain protein on HepG2 from the shiitake medicinal mushroom, Lentinus edodes C91-3 (Agaricomycetes), transcriptome. Int J Med Mushrooms 20:1163–1172. https://doi.org/10.1615/IntJMedMushrooms.2018028430

    Article  PubMed  Google Scholar 

  22. Guzmán-Rodríguez JJ, Ochoa-Zarzosa A, López-Gómez R, López-Meza JE (2015) Plant antimicrobial peptides as potential anticancer agents. Biomed Res Int 2015:735087–735011. https://doi.org/10.1155/2015/735087

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Hattori TS, Komatsu N, Shichijo S, Itoh K (2004) Protein-bound polysaccharide K induced apoptosis of the human burkitt lymphoma cell line, Namalwa. Biomed Pharmacother 58:226–230. https://doi.org/10.1016/j.biopha.2004.02.004

  24. Hoeller D, Hecker CM, Dikic I (2006) Ubiquitin and ubiquitin-like proteins in cancer pathogenesis. Nat Rev Cancer 6:776–788. https://doi.org/10.1038/nrc1994

  25. Hsu HC, Hsu CI, Lin RH, Kao CL, Lin JY (1997) FIP-vvo, a new fungal immunomodulatory protein isolated from Volvariella volvacea. Biochem J 15:557–565. https://doi.org/10.1042/bj3230557

    Article  Google Scholar 

  26. Hu DD, Zhang RY, Zhang GQ, Wang HX, Ng TB (2011) A laccase with antiproliferative activity against tumor cells from an edible mushroom, white common Agrocybe cylindracea. Phytomedicine 18:374–379. https://doi.org/10.1016/j.phymed.2010.07.004

    CAS  Article  PubMed  Google Scholar 

  27. Hu Q, Du H, Ma G, Pei F, Ma N, Yuan B, Nakata PA, Yang W (2018) Purification, identification and functional characterization of an immunomodulatory protein from Pleurotus eryngii. Food Funct 9:3764–3775. https://doi.org/10.1039/c8fo00604k

    CAS  Article  PubMed  Google Scholar 

  28. Kinghorn AD, De Blanco EJC, Lucas DM, Rakotondraibe HL, Orjala J, Soejarto DD, Oberlies NH, Pearce CJ, Wani MC, Stockwell BR, Burdette JE, Swanson SM, Fuchs JR, Phelps MA, Xu L, Zhang X, Shen YY (2016) Discovery of anticancer agents of diverse natural origin. Anticancer Res 36:5623–5638. https://doi.org/10.21873/anticanres.11146

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Kino K, Yamashita A, Yamaoka K, Watanabe J, Tanaka S, Ko K, Shimizu K, Tsunoo H (1989) Isolation and characterization of a new immunomodulatory protein, Ling Zhi-8 (LZ-8), from Ganoderma lucidium. J Biol Chem 264:472–478. https://doi.org/10.1021/bi00427a056

    CAS  Article  PubMed  Google Scholar 

  30. Ko JL, Hsu CI, Lin RH, Kao CL, Lin JY (1994) A new fungal immunomodulatory protein, FIP-fve isolated from the edible mushroom, Flammulina velutipes and its complete amino acid sequence. Eur J Biochem 228:244–249

    Article  Google Scholar 

  31. Lam SK, Ng TB (2001) Hypsin, a novel thermostable ribosome-inactivating protein with antifungal and antiproliferative activities from fruiting bodies of the edible mushroom Hypsizigus marmoreus. Biochem Biophys Res Commun 285:1071–1075. https://doi.org/10.1006/bbrc.2001.5279

    CAS  Article  PubMed  Google Scholar 

  32. Lam YW, Ng TB, Wang HX (2001) Antiproliferative and antimitogenic activities in a peptide from puffball mushroom Calvatia caelata. Biochem Biophys Res Commun 289:744–749. https://doi.org/10.1006/bbrc.2001.6036

    CAS  Article  PubMed  Google Scholar 

  33. Lavanya J, Subhashini S (2013) Therapeutic proteins and peptides from edible and medicinal mushrooms- review. Eur Sci J 9:162–176

    Google Scholar 

  34. Li F, Wen HA, Zhang YJ, An M, Liu XZ (2011) Purification and characterization of a novel immunomodulatory protein from the medicinal mushroom Trametes versicolor. Sci China Life Sci 54:379–385. https://doi.org/10.1007/s11427-011-4153-2

  35. Li Y, Zhang B, Wang X, Yan H, Chen G, Zhang X (2011) Proteomic analysis of apoptosis induction in human lung cancer cells by recombinant MVL. Amino Acids 41:923–932. https://doi.org/10.1007/s00726-010-0791-0

  36. Li DF, Feng L, Hou YJ, Liu W (2012) The expression, purification and crystallization of a ubiquitin-conjugating enzyme E2 from Agrocybe aegerita underscore the impact of his-tag location on recombinant protein properties. Acta Crystallogr Sect F Struct Biol Cryst Commun 69:153–157. https://doi.org/10.1107/S1744309112051755

  37. Li F, Wen H, Liu X, Zhou F, Chen G (2012) Gene cloning and recombinant expression of a novel fungal immunomodulatory protein from Trametes versicolor. Protein Expr Purif 82:339–344. https://doi.org/10.1016/j.pep.2012.01.015

    CAS  Article  PubMed  Google Scholar 

  38. Li JR, Cheng CL, Yang WJ, Yang CR, Ou YC, Wu MJ, Ko JL (2014) FIP-gts potentiate autophagic cell death against cisplatin-resistant urothelial cancer cells. Anticancer Res 34:2973–2983

  39. Li X, Zhong M, Liu B, Wang X, Liu L, Zhang W, Huang M (2014) Antiproliferative protein from the culture supernatant of Lentinula edodes C 91-3 mycelia. J Agric Food Chem 62:5316–5320. https://doi.org/10.1021/jf500316f

  40. Li QZ, Zheng YZ, Zhou XW (2019) Fungal immunomodulatory proteins: characteristic, potential antitumor activities and their molecular mechanisms. Drug Discov Today 24:307–314. https://doi.org/10.1016/j.drudis.2018.09.014

    CAS  Article  PubMed  Google Scholar 

  41. Liang C, Li H, Zhou H, Zhang S, Liu Z, Zhou Q, Sun F (2011) Recombinant Lz-8 from Ganoderma lucidum induces endoplasmic reticulum stress-mediated autophagic cell death in SGC-7901 human gastric cancer cells. Oncol Rep 27:1079–1089. https://doi.org/10.3892/or.2011.1593

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Liu B, Zhong M, Lun Y, Wang X, Sun W, Li X, Ning A, Cao J, Zhang W, Liu L, Huang M (2012) A novel apoptosis correlated molecule: expression and characterization of protein latcripin-1 from Lentinula edodes C(91-3). Int J Mol Sci 13:6246–6265. https://doi.org/10.3390/ijms13056246

  43. Liu J, Jia L, Kan J, Jin C (2012) In vitro and in vivo antioxidant activity of ethanolic extract of white button mushroom (Agaricus bisporus). Food Chem Toxicol 51:310–316. https://doi.org/10.1016/j.fct.2012.10.014

  44. Liu Q, Chen H, Wang H, Ng TB (2015) Isolation and characterization of a ubiquitin-like ribonuclease from the cultured deep root mushroom, Oudemansiella radicata (higher Basidiomycetes). Int J Med Mushrooms 17:1037–1045. https://doi.org/10.1615/intjmedmushrooms.v17.i11.30

    Article  PubMed  Google Scholar 

  45. Lu MK, Lin TY, Chao CH, Hud CH, Hsu HY (2016) Molecular mechanism of Antrodia cinnamomea sulfated polysaccharide on the suppression of lung cancer cell growth and migration via induction of transforming growth factor β receptor degradation. Int J Biol Macromol 95:1144–1152. https://doi.org/10.1016/j.ijbiomac.2016.11.004

  46. Lv H, Kong Y, Yao Q, Zhang B, Leng F, Bian H, Balzarini J, Damme EV, Bao J (2009) Nebrodeolysin, a novel hemolytic protein from mushroom Pleurotus nebrodensis with apoptosis-inducing and anti-HIV-1 effects. Phytomedicine 16:198–205. https://doi.org/10.1016/j.phymed.2008.07.004

    CAS  Article  PubMed  Google Scholar 

  47. Marqus S, Pirogova E, Piva TJ (2017) Evaluation of the use of therapeutic peptides for cancer treatment. J Biomed Sci 24:21. https://doi.org/10.1186/s12929-017-0328-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Mohammadnejad S, Pourianfar HR, Drakhshan A, Jabaleh I, Rezayi M (2019) Potent antiproliferative and pro-apoptotic effects of a soluble protein fraction from culinary-medicinal mushroom Lentinus tigrinus on cancer cells. J Food Meas Charact 13:3015–3024. https://doi.org/10.1007/s11694-019-00222-4

    Article  Google Scholar 

  49. Moradi S, Soltani S, Ansari AM, Sardari S (2009) Peptidomimetics and their applications in antifungal drug design. Anti-Infective Agents Med Chem 8:327–344. https://doi.org/10.2174/187152109789760216

    CAS  Article  Google Scholar 

  50. Muñoz AG, Orozco KJB, Gartner GAL (2014) Finding of a novel fungal immunomodulatory protein coding sequence in Ganoderma austral. Rev Colomb Biotecnol 16:90–95. https://doi.org/10.15446/rev.colomb.biote.v16n2.38747

    Article  Google Scholar 

  51. Muszyńska B, Grzywacz-Kisielewska A, Kała K, Gdula-Argasińska J (2017) Anti-inflammatory properties of edible mushrooms: A review. Food Chem 243:373–381. https://doi.org/10.1016/j.foodchem.2017.09.149

    CAS  Article  PubMed  Google Scholar 

  52. Ng TB (2004) Peptides and proteins from fungi. Peptides 25 (6):1055–1073

  53. Ng T (2013) Fungal peptides with ribonuclease and ribosome inactivating activities. In: Kastin A (ed) handbook of biologically active peptides, 2rd edn. Elsevier, pp 162-165 Ng TB (2004) peptides and proteins from fungi. Peptides 25:1055–1073. https://doi.org/10.1016/j.peptides.2004.03.013

  54. Ng TB, Wang HX (2004) Flammin and velin: new ribosome inactivating polypeptides from the mushroom Flammulina velutipes. Peptides 25:929–933. https://doi.org/10.1016/j.peptides.2004.03.007

    CAS  Article  PubMed  Google Scholar 

  55. Ng TB, Lam SK, Chan SY (2002) A ubiquitin-like peptide from the mushroom Pleurotus sajor-caju exhibits relatively potent translation-inhibitory and ribonuclease activities. Peptides 23:1361–1365. https://doi.org/10.1016/S0196-9781(02)00073-6

    CAS  Article  PubMed  Google Scholar 

  56. Ng TB, Lam YW, Wang H (2003) Calcaelin, a new protein with translation inhibiting, antiproliferative and antimitogenic activities from the mosaic puffball mushroom Calvatia caelata. Planta Med 69:212–217. https://doi.org/10.1055/s-2003-38492

    CAS  Article  PubMed  Google Scholar 

  57. Ng TB, Wong JH, Wang H (2010) Recent progress in research on ribosome inactivating proteins. Curr Protein Pept Sci 11:37–53. https://doi.org/10.2174/138920310790274662

    CAS  Article  PubMed  Google Scholar 

  58. Ngai PHK, Ng TB (2003a) A ribonuclease with antimicrobial, antimitogenic and antiproliferative activities from the edible mushroom Pleurotus sajor-caju. Peptides 25:11–17. https://doi.org/10.1016/j.peptides.2003.11.012

    CAS  Article  Google Scholar 

  59. Ngai PHK, Ng TB (2003b) Lentin, a novel and potent antifungal protein from shitake mushroom with inhibitory effects on activity of human immunodeficiency virus-1 reverse transcriptase and proliferation of leukemia cells. Life Sci 73:3363–3374. https://doi.org/10.1016/j.lfs.2003.06.023

    CAS  Article  PubMed  Google Scholar 

  60. Ngai PH, Wang HX, Ng TB (2003) Purification and characterization of an ubiquitin-like peptide with macrophage stimulating, antiproliferative and ribonuclease activities from the mushroom Agrocybe cylindracea. Peptides 24:639–645. https://doi.org/10.1016/s0196-9781(03)00136-0

    CAS  Article  PubMed  Google Scholar 

  61. Ooi VEC, Liu F (2000) Immunomodulation and anti-cancer activity of polysaccharide protein complexes. Curr Med Chem 7:715–729. https://doi.org/10.2174/0929867003374705

    CAS  Article  PubMed  Google Scholar 

  62. Palacios I, Lozano M, Moro C, D’Arrigo M, Rostagno MA, Martínez JA, García-Lafuente A, Guillamón E, Villares A (2011) Antioxidant properties of phenolic compounds occurring in edible mushrooms. Food Chem 128:674–678. https://doi.org/10.1016/j.foodchem.2011.03.085

    CAS  Article  Google Scholar 

  63. Pan WL, Wong JH, Fang EF, Chan YS, Ye XJ, Ng TB (2012) Differential inhibitory potencies and mechanisms of the type I ribosome inactivating protein marmorin on estrogen receptor (ER) positive and ER-negative breast cancer cells. Biochim Biophys Acta 1833:987–996. https://doi.org/10.1016/j.bbamcr.2012.12.013

    CAS  Article  PubMed  Google Scholar 

  64. Park BT, Na KH, Jung EC, Park JW, Kim HH (2009) Antifungal and anticancer activities of a protein from the mushroom Cordyceps militaris. Korean J Physiol Pharmacol 13:49–54. https://doi.org/10.4196/kjpp.2009.13.1.49

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. Patterson SL, Maresso KC, Hawk E (2013) Cancer chemoprevention: successes and failures. Clin Chem 59:94–101. https://doi.org/10.1373/clinchem.2012.185389

    CAS  Article  PubMed  Google Scholar 

  66. Prateep A, Sumkhemthong S, Suksomtip M, Chanvorachote P, Chaotham C (2017) Peptides extracted from edible mushroom: Lentinus squarrosulus induces apoptosis in human lung cancer cells. Pharm Biol 55:1792–1799. https://doi.org/10.1080/13880209.2017.1325913

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. Pushparajah V, Fatima A, Chong CH, Gambule TZ, Chan CJ, Ng ST, Tan CS, Fung SY, Lee SS, Tan NH, Lim RL (2016) Characterization of a new fungal immunomodulatory protein from tiger milk mushroom, Lignosus rhinocerotis. Sci Rep 6:30010. https://doi.org/10.1038/srep30010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. Rakashanda S, Rana F, Rafiq S, Masood A, Amin S (2012) Role of proteases in cancer: A review. Biotech Mol Biol Rev 7:90–101. https://doi.org/10.5897/BMBR11.027

    CAS  Article  Google Scholar 

  69. Raval VH, Purohit MK, Singh S (2015) Extracellular proteases from halophilic and haloalkaliphilic bacteria: occurrence and biochemical properties. In: Maheshwari DK, Saraf M (eds) Halophiles, Sustainable. Springer International Publishing, Cham, pp 421–449

    Google Scholar 

  70. Reis FS, Martins A, Barros L, Ferreira IC (2012) Antioxidant properties and phenolic profile of the most widely appreciated cultivated mushrooms: a comparative study between in vivo and in vitro samples. Food Chem Toxicol 50:1201–1207. https://doi.org/10.1016/j.fct.2012.02.013

    CAS  Article  PubMed  Google Scholar 

  71. Shao KD, Mao PW, Li QZ, Li LDJ, Wang Y, Zhou XW (2019) Characterization of a novel fungal immunomodulatory protein, FIP-SJ75 shuffled from Ganoderma lucidum, Flammulina velutipes and Volvariella volvacea. Food Agric Immunol 30:1253–1270. https://doi.org/10.1080/09540105.2019.1686467

    CAS  Article  Google Scholar 

  72. Sheu F, Po-Jung C, Ai-Lin C, Chen YF, Chin KL (2004) Isolation and characterization of an immunomodulatory protein (APP) from the Jew’s ear mushroom Auricularia polytricha. Food Chem 87:593–600. https://doi.org/10.1016/j.foodchem.2004.01.015

    CAS  Article  Google Scholar 

  73. Sheu F, Chien PJ, Wang HK, Chang HH, Shyu YT (2007) New protein PCiP from edible golden oyster mushroom (Pleurotus citrinopileatus) activating murine macrophages and splenocytes. J Sci Food Agric 87:1550–1558. https://doi.org/10.1002/jsfa.2887

    CAS  Article  Google Scholar 

  74. Sumkhemthong S, Suksomtip M, Chanvorachote P, Chaotham C (2016) Anticancer activity of peptide extracted from edible mushroom; Lentinus squarrosulus in human lung cancer cells. Planta Med 82:S1–S381. https://doi.org/10.1055/s-0036-1596829

    Article  Google Scholar 

  75. Sun Y, Hu X, Li W (2017) Antioxidant, antitumor and immunostimulatory activities of the polypeptide from Pleurotus eryngii mycelium. Int J Biol Macromol 97:323–330. https://doi.org/10.1016/j.ijbiomac.2017.01.043

    CAS  Article  PubMed  Google Scholar 

  76. Tian L, Wang X, Li X, Liu B, Zhang W, Cao J, Ning A, Huang M, Zhong M (2016) In vitro antitumor activity of latcripin-15 regulator of chromosome condensation 1domain protein. Oncol Lett 5:3153–3160. https://doi.org/10.3892/ol.2016.5106

  77. Tian Y, Zhao Y, Zeng H, Zhang Y, Zheng B (2016) Structural characterization of a novel neutral polysaccharide from Lentinus giganteus and its antitumor activity through inducing apoptosis. Carbohydr Polym 154:231–240. https://doi.org/10.1016/j.carbpol.2016.08.059

  78. Tsao YW, Kuan YC, Wang JL, Sheu F (2013) Characterization of a novel maitake (Grifola frondosa) protein that activates natural killer and dendritic cells and enhances antitumor immunity in mice. J Agric Food Chem 61:9828–9838. https://doi.org/10.1021/jf4031184

    CAS  Article  PubMed  Google Scholar 

  79. Tung CH, Lin CC, Wang HJ, Chen SF, Sheu F, Lu TJ (2018) Application of thermal stability difference to remove flammutoxin in fungal immunomodulatory protein, FIP-fve, extract from Flammulina velutipes. J Food Drug Anal 26:1005–1014. https://doi.org/10.1016/j.jfda.2017.12.010

    CAS  Article  PubMed  Google Scholar 

  80. Usmani SS, Bedi G, Samuel JS, Singh S, Kalra S, Kumar P, Ahuja AA, Sharma M, Gautam A, Raghava GPS (2017) THPdb: database of FDA-approved peptide and protein therapeutics. PLoS One 12:e0181748. https://doi.org/10.1371/journal.pone.0181748

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  81. Wang HX, Ng TB (1999) Isolation of a new ribonuclease from fresh fruiting bodies of the straw mushroom. Biochem Biophys Res Commun 264:714–718. https://doi.org/10.1006/bbrc.1999.1571

    CAS  Article  PubMed  Google Scholar 

  82. Wang HX, Ng TB (2000) Flammulin: A novel ribosome-inactivating protein from fruiting bodies of the winter mushroom Flammulina velutipes. Biochem Cell Biol 78:699–702. https://doi.org/10.1139/o00-087

    CAS  Article  PubMed  Google Scholar 

  83. Wang HX, Ng TB (2001a) Pleureryn, a novel protease from fresh fruiting bodies of the edible mushroom Pleurotus eryngii. Biochem Biophys Res Commun 289:750–755. https://doi.org/10.1006/bbrc.2001.6037

  84. Wang HX, Ng TB (2001b) Isolation of pleuturegin, a novel ribosome inactivating protein from fresh sclerotia of the edible mushroom Pleurotus tuber-regium. Biochem Biophys Res Commun 288:718–721. https://doi.org/10.1006/bbrc.2001.5816

  85. Wang HX, Ng TB (2003a) A novel ribonuclease from the veiled lady mushroom Dictyophora indusiata. Biochem Cell Biol 81:373–377. https://doi.org/10.1139/o03-067

    CAS  Article  PubMed  Google Scholar 

  86. Wang HX, Ng TB (2003b) A ribonuclease with distinctive features from the wild green-headed mushroom Russulus virescens. Biochem Biophys Res Commun 312:965–968. https://doi.org/10.1016/j.bbrc.2003.10.201

    CAS  Article  PubMed  Google Scholar 

  87. Wang HX, Ng TB (2003c) Isolation of a ribonuclease from fruiting bodies of the wild mushroom Termitomyces globulus. Peptides 24:973–977. https://doi.org/10.1016/S0196-9781(03)00190-6

    CAS  Article  PubMed  Google Scholar 

  88. Wang HX, Ng TB (2004a) Isolation of a new ribonuclease from fruiting bodies of the silver plate mushroom Clitocybe maxima. Peptides 25:935–939. https://doi.org/10.1016/j.peptides.2004.03.008

    CAS  Article  PubMed  Google Scholar 

  89. Wang HX, Ng TB (2004b) Purification of a novel ribonuclease from dried fruiting bodies of the edible wild mushroom Thelephora ganbajun. Biochem Biophys Res Commun 324:855–859. https://doi.org/10.1016/j.bbrc.2004.09.132

    CAS  Article  PubMed  Google Scholar 

  90. Wang HX, Ng TB (2006) A novel ribonuclease from fresh fruiting bodies of the portabella mushroom Agaricus bisporus. Biochem Cell Biol 84:178–183. https://doi.org/10.1139/o06-033

    CAS  Article  PubMed  Google Scholar 

  91. Wang HX, Ng TB, Chiu SW (2004) A distinctive ribonuclease from fresh fruiting bodies of the medicinal mushroom Ganoderma lucidum. Biochem Biophys Res Commun 314:519–522. https://doi.org/10.1016/j.bbrc.2003.12.139

  92. Wang PH, Hsu CI, Tang SC, Huang YL, Lin JY, Ko JL (2004) Fungal immunomodulatory protein from Flammulina velutipes induces interferon-gamma production through p38 mitogen-activated protein kinase signaling pathway. J Agric Food Chem 52:2721–2725. https://doi.org/10.1021/jf034556s

  93. Wang XF, Su KQ, Bao TW, Cong WR, Chen YF, Li QZ, Zhou X (2012) Immunomodulatory effects of fungal proteins. Curr Top Nutraceut R 10:1–12

    Google Scholar 

  94. Wang J, Wan X, Gao Y, Zhong M, Sha L, Liu B, Zhang W, Tian L, Ruan W, Cao S, Huang M (2016) Latcripin-13 domain induces apoptosis and cell cycle arrest at the G1 phase in human lung carcinoma A549 cells. Oncol Rep 36:441–447. https://doi.org/10.3892/or.2016.4830

    CAS  Article  PubMed  Google Scholar 

  95. Watanabe Y, Nakanishi K, Komatsu N, Sakabe T, Terakawa H (1964) Flammulin, an antitumor substance. Bull Chem Soc Jpn 37:747–750. https://doi.org/10.1246/bcsj.37.747

    CAS  Article  Google Scholar 

  96. Wong JH, Wang HX, Ng TB (2008) Marmorin, a new ribosome inactivating protein with antiproliferative and HIV-1 reverse transcriptase inhibitory activities from the mushroom Hypsizigus marmoreus. Appl Microbiol Biotechnol 81:669–674. https://doi.org/10.1007/s00253-008-1639-3

    CAS  Article  PubMed  Google Scholar 

  97. Wong JH, Ng TB, Jiang Y, Liu F, Sze SC, Zhang KY (2010) Purification and characterization of a laccase with inhibitory activity toward HIV-1 reverse transcriptase and tumor cells from an edible mushroom (Pleurotus cornucopiae). Protein Pept Lett 17:1040–1047. https://doi.org/10.2174/092986610791498966

    CAS  Article  PubMed  Google Scholar 

  98. Wu L, Cao Y, Wu Z, Lin Q, Xie L (2009) YP3: a novel plant virus inhibitory protein from mushroom Pleurotus citrinopileatus. Nat Prod Res Dev 21:371–376 In chines

    CAS  Google Scholar 

  99. Wu JY, Chen H, Chang WH, Chung KT, Liu YW, Lu FJ, Chen CH (2010) Anti-cancer effects of protein extracts from Calvatia lilacina, Pleurotus ostreatus and Volvariella volvacea. Evid-Based Complement Altern Med 2011:10. https://doi.org/10.1093/ecam/neq057

  100. Wu X, Zheng S, Cui L, Wang H, Ng TB (2010) Isolation and characterization of a novel ribonuclease from the pink oyster mushroom Pleurotus djamor. J Gen Appl Microbiol 56:231–239. https://doi.org/10.2323/jgam.56.231

  101. Wu Y, Wang H, Ng T (2011) Purification and characterization of a novel RNase with antiproliferative activity from the mushroom Lactarius flavidulus. J Antibiot 65:67–72. https://doi.org/10.1038/ja.2011.112

    CAS  Article  PubMed  Google Scholar 

  102. Xia L, Chu KT, Ng TB (2005) A low-molecular mass ribonuclease from the brown oyster mushroom. J Pept Res 66:1–8. https://doi.org/10.1111/j.1399-3011.2005.00266.x

    CAS  Article  PubMed  Google Scholar 

  103. Xu H, Kong YY, Chen X, Guo MY, Bai XH, Lu YJ, Li W, Zhou XW (2016) Recombinant FIP-gat, a fungal immunomodulatory protein from Ganoderma atrum, induces growth inhibition and cell death in breast cancer cells. J Agric Food Chem 64:2690–2698. https://doi.org/10.1021/acs.jafc.6b00539

    CAS  Article  PubMed  Google Scholar 

  104. Yao QZ, Yu MM, Ooi LSM, Ng TB, Chang ST, Sun SSM, Ooi VEC (1998) Isolation and characterization of a type 1 ribosome-inactivating protein from fruiting bodies of the edible mushroom (Volvariella volvacea). J Agric Food Chem 46:788–792. https://doi.org/10.1021/jf970551h

    CAS  Article  PubMed  Google Scholar 

  105. Yap HYY, Fung SY, Ng ST, Tan CS, Tan NH (2015) Shotgun proteomic analysis of tigermilk mushroom (Lignosus rhinocerotis) and the isolation of a cytotoxic fungal serine protease from its sclerotium. J Ethnopharmacol 174:437–451. https://doi.org/10.1016/j.jep.2015.08.042

    CAS  Article  PubMed  Google Scholar 

  106. Yap HYY, Tan NH, Ng ST, Tan CS, Fung SY (2018) Molecular attributes and apoptosis-inducing activities of a putative serine protease isolated from Tiger Milk mushroom (Lignosus rhinocerus) sclerotium against breast cancer cells in vitro. PeerJ 6:e4940. https://doi.org/10.7717/peerj.4940

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  107. Ye XY, Ng TB (2002a) A novel and potent ribonuclease from fruiting bodies of the mushroom Pleurotus pulmonarius. Biochem Biophys Res Commun 293:857–861. https://doi.org/10.1016/S0006-291X(02)00301-7

    CAS  Article  PubMed  Google Scholar 

  108. Ye XY, Ng TB (2002b) A novel peptide with ribonuclease and translation-inhibitory activities from fruiting bodies of the oyster mushroom Pleurotus ostreatus. J Pept Sci 8:235–240. https://doi.org/10.1002/psc.382

    CAS  Article  PubMed  Google Scholar 

  109. Yuan B, Zhao L, Rakariyatham K, Han Y, Gao Z, Muinde Kimatu B, Hu Q, Xiao H (2017a) Isolation of a novel bioactive protein from an edible mushroom Pleurotus eryngii and its anti-inflammatory potential. Food Funct 8:2175–2183. https://doi.org/10.1039/c7fo00244k

  110. Yuan B, Ma N, Zhao L, Zhao E, Gao Z, Wang W, Song M, Zhang G, Hu Q, Xiao H (2017b) In vitro and in vivo inhibitory effects of a Pleurotus eryngii protein on colon cancer cells. Food Funct 8:3553–3562. https://doi.org/10.1039/c7fo00895c

    CAS  Article  PubMed  Google Scholar 

  111. Zhang GQ, Wang YF, Zhang XQ, Ng TB, Wang HX (2009) Purification and characterization of a novel laccase from the edible mushroom Clitocybe maxima. Process Biochem 45:627–633. https://doi.org/10.1016/j.procbio.2009.12.010

    CAS  Article  Google Scholar 

  112. Zhang RY, Zhang GQ, Hu DD, Wang HX, Ng TB (2010) A novel ribonuclease with antiproliferative activity from fresh fruiting bodies of the edible mushroom Lyophyllum shimeiji. Biochem Genet 48:658–668. https://doi.org/10.1007/s10528-010-9347-y

    CAS  Article  PubMed  Google Scholar 

  113. Zhang R, Zhao L, Wang H, Ng TB (2013) A novel ribonuclease with antiproliferative activity toward leukemia and lymphoma cells and HIV-1 reverse transcriptase inhibitory activity from the mushroom, Hohenbuehelia serotina. Int J Mol Med 33:209–214. https://doi.org/10.3892/ijmm.2013.1553

    CAS  Article  PubMed  Google Scholar 

  114. Zhang Y, Liu Z, Ng TB, Chen Z, Qiao W, Liu F (2014) Purification and characterization of a novel antitumor protein with antioxidant and deoxyribonuclease activity from edible mushroom Pholiota nameko. Biochimie 99:28–37. https://doi.org/10.1016/j.biochi.2013.10.016

    CAS  Article  PubMed  Google Scholar 

  115. Zhao S, Zhao YC, Li SH, Zhang GQ, Wang HX, Ng TB (2009) An antiproliferative ribonuclease from fruiting bodies of the wild mushroom Russula delica. J Microbiol Biotechnol 20:693–699. https://doi.org/10.4014/jmb.0911.11022

    CAS  Article  Google Scholar 

  116. Zhao S, Rong CB, Kong C, Liu Y, Xu F, Miao QJ, Wang SX, Wang HX, Zhang GQ (2014, 2014) A novel laccase with potent antiproliferative and HIV-1 reverse transcriptase inhibitory activities from mycelia of mushroom Coprinus comatus. Biomed Res Int:8. https://doi.org/10.1155/2014/417461

  117. Zhou R, Han YJ, Zhang MH, Zhang KR, Ng TB, Liu F (2017) Purification and characterization of a novel ubiquitin-like antitumor protein with hemagglutinating and deoxyribonuclease activities from the edible mushroom Ramaria botrytis. AMB Express 7:47. https://doi.org/10.1186/s13568-017-0346-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research project was funded by a grant (6012-20) to HR Pourianfar approved by Academic Centre for Education, Culture, and Research (ACECR), Iran.

Author information

Affiliations

Authors

Contributions

In this study, V Rezvani collected data and performed data mining, wrote the manuscript, and drew the tables and figures. HR Pourianfar supervised the author’s team and performed critical review of the manuscript. S Mohammadnejad did the literature review. AM Ansari performed critical review of the manuscript. L Farahmand co-supervised the authors’ team, particularly regarding the section of mechanism of action.

Corresponding authors

Correspondence to Hamid R. Pourianfar or Leila Farahmand.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rezvani, V., Pourianfar, H.R., Mohammadnejad, S. et al. Anticancer potentiality and mode of action of low-carbohydrate proteins and peptides from mushrooms. Appl Microbiol Biotechnol (2020). https://doi.org/10.1007/s00253-020-10707-8

Download citation

Keywords

  • Anticancer
  • Chemical structure
  • Mode of action
  • Mushroom
  • Low-carbohydrate protein