Multidisciplinary characterization of melanin pigments from the black fungus Cryomyces antarcticus

Abstract

Melanin is a natural pigment present in almost all biological groups, and is composed of indolic polymers and characterized by black-brown colorization. Furthermore, it is one of the pigments produced by extremophiles including those living in the Antarctic desert, and is mainly involved in their protection from high UV radiation, desiccation, salinity and oxidation. Previous studies have shown that melanized species have an increased capability to survive high level of radiation compared with the non-melanized counterpart. Understanding the molecular composition of fungal melanin could help to understand this peculiar capability. Here, we aimed to characterize the melanin pigment extracted from the Antarctic black fungus Cryomyces antarcticus, which is a good test model for radioprotection researches, by studying its chemical properties and spectral data. Our results demonstrated that, in spite of having a specific type of melanin as the majority of fungi, the fungus possesses the ability to produce both 1,8-dihydroxynaphthalene (DHN) and l 3-4 dihydroxyphenylalanine (L-DOPA) melanins, opening interesting scenarios for the protection role against radiation. Researches on fungal melanin have a huge application in different fields, including radioprotection, bioremediation, and biomedical applications.

Key Points

• Isolation and characterization by multidisciplinary approaches of fungal melanins.

• Discovery that pathways for producing DOPA and DHN are both active even in its extreme habitat.

• Hypothesis supporting the possibility of using melanin pigment for radioprotection.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Almeida-Paes R, Frases S, Fialho Monteiro PC, Gutierrez-Galhardo MC, Zancope-Oliveira RM, Nosanchuk JD (2009) Growth conditions influence melanization of Brazilian clinical Sporothrix schenckii isolates. Microbes Infect 11(5):554–562. https://doi.org/10.1016/j.micinf.2009.03.002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Arun G, Eyini M, Gunasekharan P (2015) Characterization and biological activities of extracellular melanin produced by Schizophyllum commune (Fries). Indian J Exp Biol 53:380–387

    CAS  PubMed  Google Scholar 

  3. Barth A (2007) Infrared spectroscopy of proteins. Biochim Biophys Acta 1767(9):1073–1101. https://doi.org/10.1016/j.bbabio.2007.06.004

  4. Bell AA, Wheeler MH (1986) Biosynthesis and functions of fungal melanins. Annu Rev Phytopathol 24(1):411–451. https://doi.org/10.1146/annurev.py.24.090186.002211

    CAS  Article  Google Scholar 

  5. Butler MJ, Lazarovits G, Higgins VJ, Lachance MA (1989) Identification of a black yeast isolated from oak bark as belonging to the genus Phaeococcomyces sp. Analysis of melanin produced by the yeast. Can J Microbiol 35(7):728–734. https://doi.org/10.1139/m89-118

    CAS  Article  Google Scholar 

  6. Centeno SA, Shamir J (2008) Surface enhanced Raman scattering (SERS) and FTIR characterization of the sepia melanin pigment used in works of art. J Mol Struct 873(1–3):149–159. https://doi.org/10.1016/j.molstruc.2007.03.026

    CAS  Article  Google Scholar 

  7. Chang PK, Cary JW, Lebar MD (2020) Biosynthesis of conidial and sclerotial pigments in Aspergillus species. Appl Microbiol Biotechnol 104(6):2277–2286. https://doi.org/10.1007/s00253-020-10347-y

    CAS  Article  PubMed  Google Scholar 

  8. Cordero RJ (2017) Melanin for space travel radioprotection. Environ Microbiol 19(7):2529–2532. https://doi.org/10.1111/1462-2920.13753

    Article  PubMed  Google Scholar 

  9. d’Ischia M, Wakamatsu K, Cicoira F, Di Mauro E, Garcia-Borron JC, Commo S, Ghaem G, Kenzo K, Meredith P, Pezzella A, Santato C, Sarna T, Simon J, Zecca L, Zucca F, Napolitano A, Ito S (2015) Melanins and melanogenesis: from pigment cells to human health and technological applications. Pigment Cell Melanoma R 28(5):520–544

    Article  Google Scholar 

  10. Eisenman HC, Greer EM, McGrail CW (2020) The role of melanins in melanotic fungi for pathogenesis and environmental survival. Appl Microbiol Biotechnol 104:1–11. https://doi.org/10.1007/s00253-020-10532-z

    CAS  Article  Google Scholar 

  11. Gadd GM (1982) Effects of media composition and light on colony differentiation and melanin synthesis in Microdochium bolleyi. Trans British Mycol Soc 78(1):115–122. https://doi.org/10.1016/S0007-1536(82)80083-1

    CAS  Article  Google Scholar 

  12. Gessler NN, Egorova AS, Belozerskaya TA (2014) Melanin pigments of fungi under extreme environmental conditions. Appl Biochem Microbiol 50(2):105–113. https://doi.org/10.1134/S0003683814020094

    CAS  Article  Google Scholar 

  13. Glass K, Ito S, Wilby PR, Sota T, Nakamura A, Bowers CR, Wakamatsu K, Simon J (2012) Direct chemical evidence for eumelanin pigment from the Jurassic period. PNAS 109(26):10218–10223. https://doi.org/10.1073/pnas

    Article  PubMed  Google Scholar 

  14. Gomoiu I, Chatzitheodoridis E, Vadrucci S, Walther I, Cojoc R (2016) Fungal spores viability on the international Space Station. Orig Life Evol Biosph 46(4):403–418. https://doi.org/10.1007/s11084-016-9502-5

    CAS  Article  PubMed  Google Scholar 

  15. Gonçalves RCR, Lisboa HCF, Pombeiro-Sponchiado SR (2012) Characterization of melanin pigment produced by Aspergillus nidulans. World J Microb Biot 28(4):1467–1474. https://doi.org/10.1007/s11274-011-0948-3

    CAS  Article  Google Scholar 

  16. Gunde-Cimerman N, Zalar P, de Hoog S, Plemenitaš A (2000) Hypersaline waters in salterns–natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32(3):235–240. https://doi.org/10.1111/j.1574-6941.2000.tb00716.x

    CAS  Article  Google Scholar 

  17. Henson JM, Butler MJ, Day AW (1999) The dark side of the mycelium: melanins of phytopathogenic fungi. Annu Rev Phytopathol 37(1):447–471. https://doi.org/10.1146/annurev.phyto.37.1.447

    CAS  Article  PubMed  Google Scholar 

  18. Horneck G, Klaus DM, Mancinelli RL (2010) Space microbiology. Microbiol Mol Biol Rev 74(1):121–156. https://doi.org/10.1128/MMBR.00016-09

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Jacobson ES (2000) Pathogenic roles for fungal melanins. Clin Microbiol Rev 13(4):708–717. https://doi.org/10.1128/cmr.13.4.708-717.2000

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Land EJ, Ramsden CA, Riley PA (2004) Quinone chemistry and melanogenesis. Methods Enzymol 378:88–109. https://doi.org/10.1016/S0076-6879(04)78005-2

    CAS  Article  PubMed  Google Scholar 

  21. Langfelder K, Jahn B, Gehringer H, Schmidt A, Wanner G, Brakhage AA (1998) Identification of a polyketide synthase gene (pksP) of Aspergillus fumigatus involved in conidial pigment biosynthesis and virulence. Med Microbiol Immunol 187(2):79–89. https://doi.org/10.1007/s004300050077

    CAS  Article  PubMed  Google Scholar 

  22. Langfelder K, Streibel M, Jahn B, Haase G, Brakhage AA (2003) Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genet Biol 38(2):143–158. https://doi.org/10.1016/S1087-1845(02)00526-1

    CAS  Article  PubMed  Google Scholar 

  23. Lin-Vien D, Colthup NB, Fateley WG, Grasselli JG (1991) The handbook of infrared and Raman characteristic frequencies of organic molecules. Elsevier, London

    Google Scholar 

  24. Liu D, Wei L, Guo T, Tan W (2014) Detection of DOPA-melanin in the dimorphic fungal pathogen Penicillium marneffei and its effect on macrophage phagocytosis in vitro. PLoS ONE 9:(3). https://doi.org/10.1371/journal.pone

  25. Liu Y, Zhang Y, Yu Z, Qi C, Tang R, Zhao B, Haowei W, Han Y (2020) Microbial dyes: dyeing of poplar veneer with melanin secreted by Lasiodiplodia theobromae isolated from wood. Appl Microbiol Biotechnol 104:3367–3377. https://doi.org/10.1007/s00253-020-10478-2

    CAS  Article  PubMed  Google Scholar 

  26. Magarelli M, Passamonti P, Renieri C (2010) Purification, characterization and analysis of sepia melanin from commercial sepia ink (Sepia officinalis). Rev CES Med Vet Zootec 5(2):18–29. https://doi.org/10.1007/s13197-013-0937-7

    CAS  Article  Google Scholar 

  27. Mbonyiryivuze A, Mwakikunga B, Dhlamini S M, Maaza M (2015) Fourier transform infrared spectroscopy for sepia melanin. Mat Chem Phys 3(2):25–29. https://doi.org/10.12691/pmc-3-2-2

  28. Meßen J, Sánchez FJ, Sadowsky A, de la Torre R, Ott S, de Vera JP (2013) Extremotolerance and resistance of lichens: comparative studies on five species used in astrobiological research II. Secondary lichen compounds. Origins Life Evol B 43(6):501–526. https://doi.org/10.1007/s11084-013-9348-z

    CAS  Article  Google Scholar 

  29. Mostert AB, Hanson GR, Sarna T, Gentle IR, Powell BJ, Meredith P (2013) Hydration-controlled X-band EPR spectroscopy: a tool for unravelling the complexities of the solid-state free radical in eumelanin. J Phys Chem B 117(17):4965–4972. https://doi.org/10.1021/jp401615e

    CAS  Article  PubMed  Google Scholar 

  30. Nguyen KH, Chollet-Krugler M, Gouault N, Tomasi S (2013) UV-protectant metabolites from lichens and their symbiotic partners. Nat Prod Rep 30(12):1490–1508. https://doi.org/10.1039/C3NP70064J

    CAS  Article  PubMed  Google Scholar 

  31. Nosanchuk JD, Valadon P, Feldmesser M, Casadevall A (1999) Melanization of Cryptococcus neoformans in murine infection. Mol Cell Biol 19(1):745–750. https://doi.org/10.1128/MCB.19.1.745

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Onofri S, de la Torre R, de Vera JP, Ott S, Zucconi L, Selbmann L, Scalzi G, Venkateswaran KJ, Rabbow E, Sánchez Iñigo FJ, Horneck G (2012) Survival of rock-colonizing organisms after 1.5 years in outer space. Astrobiology 12(5):508–516

    Article  Google Scholar 

  33. Onofri S, de Vera JP, Zucconi L, Selbmann L, Scalzi G, Venkateswaran KJ, Rabbow E, de la Torre R, Horneck G (2015) Survival of Antarctic cryptoendolithic fungi in simulated Martian conditions on board the International Space Station. Astrobiology 15(12):1052–1059

    CAS  Article  Google Scholar 

  34. Pacelli C, Selbmann L, Zucconi L, Raguse M, Moeller R, Shuryak I, Onofri S (2017a) Survival, DNA integrity, and ultrastructural damage in Antarctic cryptoendolithic eukaryotic microorganisms exposed to ionizing radiation. Astrobiology 17(2):126–135. https://doi.org/10.1089/ast.2015.1456

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Pacelli C, Bryan RA, Onofri S, Selbmann L, Shuryak I, Dadachova E (2017b) Melanin is effective in protecting fast and slow growing fungi from various types of ionizing radiation. Environ Microbiol 19(4):1612–1624. https://doi.org/10.1111/1462-2920.13681

    CAS  Article  PubMed  Google Scholar 

  36. Pacelli C, Bryan RA, Onofri S, Selbmann L, Zucconi L, Shuryak I, Dadachova E (2018) The effect of protracted X-ray exposure on cell survival and metabolic activity of fast and slow growing fungi capable of melanogenesis. Environ Microbiol Rep 10(3):255–263. https://doi.org/10.1111/1758-2229.12632

    CAS  Article  PubMed  Google Scholar 

  37. Pal AK, Gajjar DU, Vasavada AR (2013) DOPA and DHN pathway orchestrate melanin synthesis in Aspergillus species. Med Mycol 52(1):10–18. https://doi.org/10.3109/13693786.2013.826879

    CAS  Article  Google Scholar 

  38. Pasenkiewicz-Gierula M, Sealy RC (1986) Analysis of the ESR spectrum of synthetic dopa melanin. Biochim Biophys Acta 884(3):510–516. https://doi.org/10.1016/0304-4165(86)90202-3

    CAS  Article  PubMed  Google Scholar 

  39. Pavan ME, López NI, Pettinari MJ (2020) Melanin biosynthesis in bacteria, regulation and production perspectives. App Microbiol Biotechnol 104(4):1357–1370. https://doi.org/10.1007/s00253-019-10245-y

    CAS  Article  Google Scholar 

  40. Perez-Cuesta U, Aparicio-Fernandez L, Guruceaga X, Martin-Souto L, Abad-Diaz-de-Cerio A, Antoran A, Rementeria A (2019) Melanin and pyomelanin in Aspergillus fumigatus: from its genetics to host interaction. Int Microbiol 23:1–9. https://doi.org/10.1007/s10123-019-00078-0

    CAS  Article  Google Scholar 

  41. Plonka PM, Grabacka M (2006) Melanin synthesis in microorganisms – biotechnological and medical aspects. Acta Biochim Pol 53(3):429–443

    CAS  Article  Google Scholar 

  42. Raman NM, Ramasamy S (2017) Genetic validation and spectroscopic detailing of DHN-melanin extracted from an environmental fungus. Biochem Biophis Rep 12:98–107. https://doi.org/10.1016/j.bbrep.2017.08.008

    Article  Google Scholar 

  43. Riley PA (1997) Melanin. Int J Biochem Cell Biol 29(11):1235–1239. https://doi.org/10.1016/s1357-2725(97)00013-7

    CAS  Article  PubMed  Google Scholar 

  44. Rosas AL, Casadevall A (2001) Melanization decreases the susceptibility of Cryptococcus neoformans to enzymatic degradation. Mycopathologia 151(2):53–56. https://doi.org/10.1023/A:1010977107089

    CAS  Article  PubMed  Google Scholar 

  45. Rosas AL, Nosanchuk JD, Feldmesser M, Cox GM, McDade HC, Casadevall A (2000) Synthesis of polymerized melanin by Cryptococcus neoformans in infected rodents. Infect Immun 68(5):2845–2853. https://doi.org/10.1128/IAI.68.5.2845-2853.2000

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Schmaler-Ripcke J, Sugareva V, Gebhardt P, Winkler R, Kniemeyer O, Heinekamp T, Brakhage AA (2009) Production of pyomelanin, a second type of melanin, via the tyrosine degradation pathway in Aspergillus fumigatus. Appl Environ Microbiol 75(2):493–503. https://doi.org/10.1128/AEM.02077-08

    CAS  Article  PubMed  Google Scholar 

  47. Selbmann L, De Hoog GS, Mazzaglia A, Friedmann EI, Onofri S (2005) Fungi at the edge of life: cryptoendolithic black fungi from Antarctic desert. Stud Mycol 51(1):1–32. https://doi.org/10.3114/sim.2008.61.10

    Article  Google Scholar 

  48. Selbmann L, Zucconi L, Isola D, Onofri S (2015) Rock black fungi: excellence in the extremes, from the Antarctic to space. Curr Genet 61(3):335–345. https://doi.org/10.1007/s00294-014-0457-7

    CAS  Article  PubMed  Google Scholar 

  49. Selbmann L, Onofri S, Coleine C, Buzzini P, Canini F, Zucconi L (2017) Effect of environmental parameters on biodiversity of the fungal component in lithic Antarctic communities. Extremophiles 21(6):1069–1080. https://doi.org/10.1007/s00792-017-0967-6

    Article  PubMed  Google Scholar 

  50. Stoll S, Schweiger A (2006) EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J Magn Reson 178(1):42–55. https://doi.org/10.1016/j.jmr.2005.08.013

    CAS  Article  PubMed  Google Scholar 

  51. Wang Y, Casadevall A (1994) Decreased susceptibility of melanized Cryptococcus neoformans to UV light. Appl Environ Microbiol 60(10):3864–3866

    CAS  Article  Google Scholar 

  52. Watanabe A, Fujii I, Tsai HF, Chang YC, Kwon-Chung KJ, Ebizuka Y (2000) Aspergillus fumigatus alb1 encodes naphthopyrone synthase when expressed in Aspergillus oryzae. FEMS Microbiol Lett 192(1):39–44. https://doi.org/10.1111/j.1574-6968.2000.tb09356.x

    CAS  Article  PubMed  Google Scholar 

  53. Wheeler MH, Bell AA (1988) Melanins and their importance in pathogenic fungi. In Current topics in medical mycology. Springer, New York, pp 338–387

  54. Zhdanova NN, Zakharchenko VA, Vember VV, Nakonechnaya LT (2000) Fungi from Chernobyl: mycobiota of the inner regions of the containment structures of the damaged nuclear reactor. Mycol Res 104(12):1421–1426. https://doi.org/10.1017/S0953756200002756

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the CERIC-ERIC Consortium for the access to experimental facilities and financial support and the Italian National Antarctic Museum (MNA), Section of Mycology, for making available the strain of C. antarcticus. MS and DG acknowledge the financial support from Romanian Ministry of Research and Innovation in the frame of the Core Program PN19-03 (contract no. 21 N/08.02.2019).

Funding

This work was funded by ASI grant (ASI N. 2019-3-U.0, Life in Space). This work was performed also in the frame of Europlanet 2020 Research Infrastructure. Europlanet 2020 RI has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 654208.

Author information

Affiliations

Authors

Contributions

CP, AC, and SO designed the research; CP, AC, AM, FG, MS, and DG performed the analysis; CP, AC, AM, AMT, FG, BC, MS, DG, and SO analysed and interpreted the data. SO provided funding acquisition, project administration, and resources. CP wrote a first draft of the manuscript, which was corrected, revised, and approved by all authors.

Corresponding author

Correspondence to Alessia Cassaro.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical issue

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 612 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pacelli, C., Cassaro, A., Maturilli, A. et al. Multidisciplinary characterization of melanin pigments from the black fungus Cryomyces antarcticus. Appl Microbiol Biotechnol 104, 6385–6395 (2020). https://doi.org/10.1007/s00253-020-10666-0

Download citation

Keywords

  • Extremophiles
  • Melanin
  • Antarctica
  • Raman
  • Infrared spectroscopy
  • Radiation
  • Electron paramagnetic resonance