Microorganisms of Lake Baikal—the deepest and most ancient lake on Earth

Abstract

Lake Baikal (Russia) is the largest (by volume) and deepest lake on Earth. The lake remains relatively pristine due to the low population density around its basin. Being very distant from any marine water body but having a remarkable number of similarities to oceans (depth, oxygen content, oligotrophy) provides a unique model of pelagic microbiota that is submitted to marine-like conditions minus the salt content of the water. It is also a model of lakes located at high latitudes and submitted to yearly ice cover (from January to April). The analysis by different approaches has indeed provided a view of the microbiota of this lake. It contains novel microbes that are closely related to marine groups not known to be present in freshwater like Chloroflexi or Pelagibacter. The deep water mass contains large communities of chemolithotrophs that use ammonia generated in the photic zone or methane from the sediments.

Key Points

• The chemical composition and limnic features of the deepest lake on Earth determine the vital activity of microorganisms.

• The diversity, ecology, and role of individual taxa of microorganisms were studied using cultivation and molecular methods.

• Data of large metagenomic datasets in the epipelagic and bathypelagic layers of the water column in southern Baikal were discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Ahn TS, Hong SH, Kim DJ, Suck JH, Drucker VV (1999) The bacterial community of southern Lake Baikal in winter. J Microbiol 37(1):10–13

    Google Scholar 

  2. Anantharaman K, Brown CT, Hug LA, Sharon I, Castelle CJ, Probst AJ, Thomas BC, Singh A, Wilkins MJ, Karaoz U, Brodie EL, Williams KH, Hubbard SS, Banfield JF (2016) Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat Commun 7(1):13219. https://doi.org/10.1038/ncomms13219

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. Andrei A-Ş, Salcher MM, Mehrshad M, Rychtecký P, Znachor P, Ghai R (2019) Niche-directed evolution modulates genome architecture in freshwater Planctomycetes. ISME J 13(4):1056–1071. https://doi.org/10.1038/s41396-0-0332-5

    PubMed  PubMed Central  Article  Google Scholar 

  4. Atlas of Lake Baikal (1993). In: Galaziy GI (ed.). Roskartografiya, Moscow, 160 p

  5. Azarova IN, Parfenova VV, Baram GI, Terkina IA, Pavlova ON, Suslova MY (2003) Degradation of bis-(2-ethylhexyl)phthalate by microorganisms of the water and bottom sediments of the Selenga River and Lake Baikal under experimental conditions. Appl Biochem Microbiol 39:585–589. https://doi.org/10.1023/A:1026282502521

    CAS  Article  Google Scholar 

  6. Belikov SI, Grachev MA, Zemskaya TI, Manakova EN, Parfenova VV (1996) Determination of the taxonomic position of bacteria from Lake Baikal by sequencing 16S rRNA fragments. Microbiology 65(6):855–864

    CAS  PubMed  Google Scholar 

  7. Bel'kova NL, Denisova LYA, Manakova EN, Zaichikov EF, Grachev MA (1996) Species diversity of deep-water microorganisms of Lake Baikal, identified by 16S rRNA sequences. Dokl Biochem 348(5):692–695

    CAS  Google Scholar 

  8. Bel'kova NL, Drucker VV, Hong SH, Ann TS (2003a) A study of the composition of the aquatic bacterial community of Lake Baikal by in situ hybridization method. Microbiology 72:244–245. https://doi.org/10.1023/A:1023288602726

    CAS  Article  Google Scholar 

  9. Bel'kova NL, Parfenova VV, Kostornova TYA, Denisova LYA, Zaichikov EF (2003b) Microbial biodiversity in the water of Lake Baikal. Microbiology 72:203–213. https://doi.org/10.1023/A:1023224215929

    CAS  Article  Google Scholar 

  10. Bondarenko NA, Guselnikova NE (1989) Value of pico- and nanoplankton algae in production processes in Lake Baikal. Biol Science Hydrobiol 12:34–36

    Google Scholar 

  11. Bondarenko NA, Guselnikova NE, Logacheva NF, Pomazkina GV (1996) Spatial distribution of phytoplankton in Lake Baikal, spring 1991. Freshw Biol 35(3):517–523. https://doi.org/10.1111/j.1365-2427.1996.tb01765.x

    Article  Google Scholar 

  12. Cabello-Yeves PJ, Rodriguez-Valera F (2019) Marine-freshwater prokaryotic transitions require extensive changes in the predicted proteome. Microbiome 7(1):1–12. https://doi.org/10.1186/s40168-019-0731-5

    Article  Google Scholar 

  13. Cabello-Yeves PJ, Haro-Moreno JM, Martin-Cuadrado AB, Ghai R, Picazo A, Camacho A, Rodriguez-Valera F (2017a) Novel Synechococcus genomes reconstructed from freshwater reservoirs. Front Microbiol 8:1151. https://doi.org/10.3389/fmicb.2017.01151

    PubMed  PubMed Central  Article  Google Scholar 

  14. Cabello-Yeves PJ, Ghai R, Mehrshad M, Picazo A, Camacho A, Rodriguez-Valera F (2017b) Reconstruction of diverse verrucomicrobial genomes from metagenome datasets of freshwater reservoirs. Front Microbiol 8:2131. https://doi.org/10.3389/fmicb.2017.02131

    PubMed  PubMed Central  Article  Google Scholar 

  15. Cabello-Yeves PJ, Zemskaya TI, Rosselli R, Coutinho FH, Zakharenko AS, Blinov VV, Rodriguez-Valera F (2018a) Genomes of novel microbial lineages assembled from the sub-ice waters of Lake Baikal. Appl Environ Microbiol 84(1):1–21. https://doi.org/10.1128/aem.02132-17

    CAS  Article  Google Scholar 

  16. Cabello-Yeves PJ, Picazo A, Camacho A, Callieri C, Rosselli R, Roda-Garcia JJ, Coutinho FH, Rodriguez-Valera F (2018b) Ecological and genomic features of two widespread freshwater picocyanobacteria. Environ Microbiol 20(10):3757–3771. https://doi.org/10.1111/1462-2920.14377

    CAS  PubMed  Article  Google Scholar 

  17. Cabello-Yeves PJ, Zemskaya TI, Zakharenko AS, Sakirko MV, Ivanov VG, Chai R, Rodriguez-Valera F (2019) Microbiome of the deep Lake Baikal, a unique oxic bathypelagic habitat. Limnol Oceanogr 9999:1–18. https://doi.org/10.1002/lno.11401

    CAS  Article  Google Scholar 

  18. Callieri C (2017) Synechococcus plasticity under environmental changes. FEMS Microbiol Lett 364(23):fnx229. https://doi.org/10.1093/femsle/fnx229

    CAS  Article  Google Scholar 

  19. Corno G, Modenutti BE, Callieri C, Balseiro EG, Bertoni R, Caravatia E (2009) Bacterial diversity and morphology in deep ultraoligotrophic Andean lakes: role of UVR on vertical distribution. Limnol Oceanogr 54:1098–1112. https://doi.org/10.4319/lo.2009.54.4.1098

    CAS  Article  Google Scholar 

  20. Denisova LYA, Belkova NL, Tulokhonov II, Zaichikov EF (1999) Bacterial diversity at at various depths in the southern part of Lake Baikal as revealed by 16S rDNA sequencing. Microbiology 68(4):475–483

    CAS  Google Scholar 

  21. Drucker VV, Kovadlo AS (2006) Natural conditions for Caulobacter bacteria in Lake Baikal ecosystem. Geogr Natur Res 2:69–72

    Google Scholar 

  22. Falkner KK, Measures CI, Herbelin SE, Edmond JM, Weiss RF (1991) The major and minor element geochemistry of Lake Baikal. Limnol Oceanogr 36(3):413–423. https://doi.org/10.4319/lo.1991.36.3.0413

    CAS  Article  Google Scholar 

  23. Genkai-Kato M, Sekino T, Yoshida T, Miyasaka H, Khodzher TV, Belykh OI, Melnik NG, Kawabata Z, Higashi M, Nakanishi M (2002) Nutritional diagnosis of phytoplankton in Lake Baikal. Ecol Res 17(2):135–142. https://doi.org/10.1046/j.1440-1703.2002.00473.x

    Article  Google Scholar 

  24. Glockner FO, Zaichikov E, Belkova N, Denissova L, Pernthaler J, Pernthaler A, Amann R (2000) Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of actinobacteria. Appl Environ Microbiol 66(11):5053–5065. https://doi.org/10.1128/aem.66.11.5053-5065.2000

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Gloeckner FO, Fuchs BM, Amann R (1999) Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl Environ Microbiol 65(8):3721–3726. https://doi.org/10.1128/aem.65.8.3721-3726.1999

    Article  Google Scholar 

  26. Gorbenko YA (1961) On the preferable amount of dry nutrient agar in media for cultivation of marine microorganisms. Microbiology 30(1):168–172

    PubMed  Google Scholar 

  27. Grachev MA (2002) On the current state of Lake Baikal ecosystem. SB RAS Publishers, Novosibirsk, p 156

    Google Scholar 

  28. Grachev MA, Domysheva VM, Khodzher TV, Korovyakova IV, Golobokova LP, Pogodaeva TV, Vereshchagin AL, Granin NG, Gnatovsky RY, Kostornova TYA (2004) Deep water of Lake Baikal – natural standard of fresh water. Chem Sustain Dev 12:417–429

    CAS  Google Scholar 

  29. Granin NG, Jewson D, Gnatovsky RY, Levin LA, Zhdanov AA, Averin AI, Gorbunova LA, Tsekhanovsky VV, Doroschenko LF, Min’kov NP, Grachev MA (1999) Turbulent mixing of Lake Baikal water in a layer directly adjacent to the ice and its role in the development of diatom algae. Dokl Earth Sci 366(6):835–839

    CAS  Google Scholar 

  30. Granin NG, Jewson D, Gnatovsky RY, Levin LA, Zhdanov AA, Gorbunova LA, Tsekhanovsky VV, Doroschenko LF, Mogilev NY (2000) Turbulent mixing under ice and the growth of diatoms in Lake Baikal. SIL Proceedings, 1922-2010 27(5):2812–2814. https://doi.org/10.1080/03680770.1998.11898179

    Article  Google Scholar 

  31. Granina LZ (2008) Early diagenesis of bottom sediments in Lake Baikal. Acad Publ house “geo”, Novosibirsk, p 159

    Google Scholar 

  32. Gukov AY (2001) Anthropogenic contamination of the estuarine parts of Lena River. In: Khlebovich VV, Korotaev VN (eds) Hydrobiology of the estuarine parts of the Lena River. Nauchnyi Mir, Moscow, pp 219–242

    Google Scholar 

  33. Haro-Moreno JM, López-Pérez M, José R, Picazo A, Camacho A, Rodriguez-Valera F (2018) Fine metagenomic profile of the Mediterranean stratified and mixed water columns revealed by assembly and recruitment. Microbiome 6(1):128. https://doi.org/10.1186/s40168-018-0513-5

    PubMed  PubMed Central  Article  Google Scholar 

  34. Henson MW, Lanclos VC, Faircloth BC, Thrash JC (2018) Cultivation and genomics of the first freshwater SAR11 (LD12) isolate. ISME J 12(7):1846–1860. https://doi.org/10.1038/s41396-018-0092-2

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Hohmann R, Kipfer R, Peeters F, Piepke G, Imboden DM, Shimaraev MN (1997) Processes of deep-water renewal in Lake Baikal. Limnol Oceanogr 42(5):841–855. https://doi.org/10.4319/lo.1997.42.5.0841

    CAS  Article  Google Scholar 

  36. Hugerth LW, Larsson J, Alneberg J, Lindh MV, Legrand C, Pinhassi J, Andersson AF (2015) Metagenome-assembled genomes uncover a global brackish microbiome. Genome Biol 16(1):279. https://doi.org/10.1186/s13059-015-0834-7

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Khlystov OM, Gorshkov AG, Egorov AV, Zemskaya TI, Granin NG, Kalmychkov GV, Vorob’eva SS, Pavlova ON, Yakup MA, Makarov MM, Moskvin VI, Grachev MA (2007) Oil in the lake of world heritage. Dokl Earth Sci 415(1):682–685. https://doi.org/10.1134/S1028334X07050042

    CAS  Article  Google Scholar 

  38. Khodzher TV, Domysheva VM, Sorokovikova LM, Golobokova LP (2016) Methods for monitoring the chemical composition of Baikal water. In: Mueller L, Sheudshen AK, Eulenstein F (eds) Novel methods for monitoring and managing land and water resources in Siberia. Springer Nature, Switzerland, pp 113–132. https://doi.org/10.1007/978-3-319-24409-9_3

    Google Scholar 

  39. Khodzher TV, Domysheva VM, Sorokovikova LM, Tomberg IV, Sakirko MV (2018) Hydrochemical studies in Lake Baikal: history and nowadays. Limnol Freshwater Biol 1(1):2–9. https://doi.org/10.31951/2658-3518-2018-A-1-2

    Article  Google Scholar 

  40. Killworth PD, Carmack EC, Weiss RF, Matear R (1996) Modeling deep-water renewal in Lake Baikal. Limnol Oceanogr 41(7):1521–1538. https://doi.org/10.4319/lo.1996.41.7.1521

    CAS  Article  Google Scholar 

  41. Kozhov MM (1962) Biology of Lake Baikal. Publ house of USSR Academy of Sciences, Moscow, p 315

    Google Scholar 

  42. Kozhov MM (1972) Essays on Baikal science. Irk State Univ, Irkutsk, p 254

    Google Scholar 

  43. Kurilkina MI, Zakharova YR, Galachyants YP, Petrova DP, Bukin YS, Domysheva VM, Blinov VV, Likhoshway YV (2016) Bacterial community composition in the water column of the deepest freshwater Lake Baikal as determined by next-generation sequencing. FEMS Microbiol Ecol 92(7):1–19. https://doi.org/10.1093/femsec/fiw094

    CAS  Article  Google Scholar 

  44. Lapteva NA, Bel'kova NL, Parfenova VV (2007) Spatial distribution and species composition of prosthecate bacteria in Lake Baikal. Microbiology 76(4):480–486. https://doi.org/10.1134/S0026261707040145

    CAS  Article  Google Scholar 

  45. Liang Y, Zhang Y, Zhang Y, Luo T, Rivkin RB, Jiao N (2017) Distributions and relationships of virio-and picoplankton in the epi-, meso-and bathypelagic zones of the Western Pacific Ocean. FEMS Microbiol Ecol 93(2):fiw238. https://doi.org/10.1093/femsec/fiw238

    CAS  PubMed  Article  Google Scholar 

  46. Likhoshvay A, Khanaeva T, Gorshkov A, Zemskaya T, Grachev M (2013) Do oil–degrading Rhodococci contribute to the genesis of deep water bitumen mounds in Lake Baikal? Geomicrobiol J 30(3):209–213. https://doi.org/10.1080/01490451.2012.665149

    Article  Google Scholar 

  47. Likhoshway EV, Kuzmina AE, Potyomkina TG, Potemkin VL, Shimaraev MN (1996) The distribution of diatoms near a thermal bar in Lake Baikal. J Great Lakes Res 22(1):5–14. https://doi.org/10.1016/S0380-1330(96)70929-2

    Article  Google Scholar 

  48. Lisitsyn AP (2001) The flows of matter and energy in the external and internal spheres of the earth // global changes in the natural environment. Geo, Novosibirsk, pp 163–249

    Google Scholar 

  49. Maksimenko SY, Zemskaya TI, Drozdov VN, Sergeeva VN, Kostornova TYA (2004) Studies on microbial community structure in Lake Baikal water with fluorescence hybridization in situ (FISH). In: First Baikal workshop on evolutionary biology. Irkutsk, Russia, pp 11–12

    Google Scholar 

  50. Maksimenko SYu, Zemskaya TI, Belkova NL, Drozdov VN (2005) Study of the seasonal dynamics of the bacterioplankton composition by the in situ hybridization method (FISH). In: Intern workshop "biosphere origin and evolution". Novosibirsk, Russia, pp 252–253

  51. Maksimenko SY, Zemskaya TI, Pavlova ON, Ivanov VG, Buryukhaev SP (2008) Microbial community of the water column of Selenga river–Lake Baikal biogeochemical barrier. Microbiology 77:587–594. https://doi.org/10.1134/s0026261708050123

    CAS  Article  Google Scholar 

  52. Maksimova EA, Maximov VN (1989) Microbiology of Baikal waters. Irk State Univ, Irkutsk, p 168

    Google Scholar 

  53. Mehrshad M, Amoozegar MA, Ghai R, Fazeli SAS, Rodriguez-Valera F (2016) Genome reconstruction from metagenomic datasets reveals novel microbes in the brackish waters of the Caspian Sea. Appl Environ Microbiol 82(5):1599–1612. https://doi.org/10.1128/aem.03381-15

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. Mehrshad M, Salcher MM, Okazaki Y, Nakano S, Šimek K, Andrei A-S, Ghai R (2018) Hidden in plain sight–highly abundant and diverse planktonic freshwater Chloroflexi. Microbiome 6(1):176. https://doi.org/10.1186/s40168-018-0563-8

    PubMed  PubMed Central  Article  Google Scholar 

  55. Mikhailov IS, Zakharova YR, Galachyants YP, Usoltseva MV, Petrova DP, Sakirko MV, Likhoshway YV, Grachev MA (2015) Similarity of structure of taxonomic bacterial communities in the photic layer of Lake Baikal’s three basins differing in spring phytoplankton composition and abundance. Dokl Biochem Biophys 465(1):413–419. https://doi.org/10.1134/s1607672915060198

    CAS  PubMed  Article  Google Scholar 

  56. Mikhailov IS, Bukin YS, Zakharova YR, Usoltseva MV, Galachyants YP, Sakirko MV, Blinov VV, Likhoshway YV (2019) Co-occurrence patterns between phytoplankton and bacterioplankton across the pelagic zone of Lake Baikal during spring. J Microbiol 57(4):252–262. https://doi.org/10.1007/s12275-019-8531-y

    CAS  PubMed  Article  Google Scholar 

  57. Nagata T, Takai K, Kawanobe K, Kim DS, Nakazato R, Guselnikova N, Bondarenko N, Mologawaya O, Kostornova T, Drucker V, Satoh YA, Watanabe YA (1994) Autotrophic picoplankton in southern Lake Baikal: abundance, growth and grazing mortality during summer. J Plankton Res 16(8):945–959. https://doi.org/10.1093/plankt/16.8.945

    Article  Google Scholar 

  58. Namsaraev BB, Dulov LE, Dubinina GA, Zemskaya TI, Granina LZ, Karabanov EB (1994) The participation of bacteria in the processes of synthesis and destruction of organic matter in the microbial mats of Lake Baikal. Microbiology 63(2):345–351

    Google Scholar 

  59. Neuenschwander SM, Ghai R, Pernthaler J, Salcher MM (2017) Microdiversification in genome-streamlined ubiquitous freshwater Actinobacteria. ISME J 12(1):185–198. https://doi.org/10.1038/ismej.2017.156

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. Parfenova VV, Shimaraev MN, Kostornova TYA, Levin LA, Drucker VV, Zhdanov AA, Gnatovsky RYU (1999) Preclonal processes and microbial distribution in Lake Baikal. Contemp Probl Ecol 6:613–618

    Google Scholar 

  61. Parfenova VV, Shimaraev MN, Kostornova TYA, Domysheva VM, Levin LA, Dryukker VV, Zhdanov AA, Gnatovskii RYU, Tsekhanovsky VV, Logacheva NF (2000) On the vertical distribution of microorganisms in Lake Baikal during spring deep-water renewal. Microbiology 69(3):433–440

    CAS  PubMed  Article  Google Scholar 

  62. Parfenova VV, Terkina IA, Suslova MY, Pavlova ON, Ahn TS (2005) Structure and enzyme activity of microbial community in water and sediments of Lake Baikal. Geophys Res Abstr 7:06360

    Google Scholar 

  63. Parfenova VV, Belkova NL, Denisova LYA, Zaichikov EF, Maksimenko SYU, Zakharova YUR, Poddubnyak NYU, Molozhavaya OA, Nikulina IG (2006) The study of the species composition of cultivated heterotrophic microorganisms. Inland Water Biol 1:8–15

    Google Scholar 

  64. Parfenova VV, Pavlova ON, Kravchenko OS, Tulupova YR, Kostornova TYA (2010) Investigation of distribution, species composition, and degree of resistance to antibiotics of the bacteria of the Enterococcus genus in Lake Baikal. Contemp Probl Ecol 3(4):457–462. https://doi.org/10.1134/S1995425510040090

    Article  Google Scholar 

  65. Parfenova VV, Gladkikh AS, Belykh OI (2013) Comparative analysis of biodiversity in the planktonic and biofilm bacterial communities in Lake Baikal. Microbiology 82(1):91–101. https://doi.org/10.1134/S0026261713010128

    CAS  Article  Google Scholar 

  66. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, Hugenholtz P (2018) A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 36(10):996–1004. https://doi.org/10.1038/nbt.4229

    CAS  PubMed  Article  Google Scholar 

  67. Pavlova ON, Drucker VV, Kostornova TYA, Nikulina IG (2003) Features of the of the Pseudomonas bacteria distribution in Lake Baikal. Contemp Probl Ecol 3:267–272

    Google Scholar 

  68. Pavlova ON, Parfenova VV, Zemskaya TI, Suslova MY, Gorshkov AG (2005) Biodegradation of oil and hydrocarbons by the microbial community of Lake Baikal. In: Fourth Vereshchagin Baikal Conf. Inst Geogr SB RAS Publishers, Irkutsk, pp 146–147

    Google Scholar 

  69. Peregovich BE, Hoops E, Rachold V (1999) Sediment transport to the Laptev Sea (Siberian Arctic) during the Holocene – evidence from the heavy mineral composition of fluvial and marine sediments. Boreas 28(1):205–214. https://doi.org/10.1080/030094899421263

    Article  Google Scholar 

  70. Popovskaya GI (2000) Ecological monitoring of phytoplankton in Lake Baikal. Aquat Ecosyst Health Manag 3:215–225

    Article  Google Scholar 

  71. Romaniuk PJ, Zoltowska B, Trust TJ, Lane DJ, Olsen GJ, Pace NR, Stahl DA (1987) Campylobacter pylori, the spiral bacterium associated with human gastritis, is not a true Campylobacter sp. J Bacteriol 169(5):2137–2141. https://doi.org/10.1128/jb.169.5.2137-2141.1987

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. Sakirko MV, Domysheva VM, Pestunov DA, Netsvetaeva OG, Panchenko MV (2015) Concentration of nutrients in the water of southern Baikal in summer. In: Romanovskii OA (ed) Proc of SPIE 9680:1–7. https://doi.org/10.1117/12.2205753

  73. Salcher MM, Schaefle D, Kaspar M, Neuenschwander SM, Ghai R (2019) Evolution in action: habitat transition from sediment to the pelagial leads to genome streamlining in Methylophilaceae. ISME J 13(11):2764–2777. https://doi.org/10.1038/s41396-019-0471-3

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. Semenova EA, Kuznedelov KD, Grachev MA (2001) Variation in the nucleotide sequences of a 16S rRNA gene fragment from cyanobacteria from picoplankton from Lake Baika from natural samples and laboratory cultures. Mol Biol 35(3):477–483

    CAS  Article  Google Scholar 

  75. Shimaraev MN (1977) Elements of the thermal regime of Lake Baikal. Nauka, Novosibirsk, p 147

    Google Scholar 

  76. Shimaraev MN, Verbolov VI, Granin NG, Sherstyankin PP (1994) Physical limnology of Lake Baikal: a review. In: Shimaraev MN, Okuda S (eds) Baikal International Center for Ecological Research, center for ecological research. Okayama/Irkutsk, 81 p

  77. Shimaraev MN, Domysheva VM, Verbolov VI, Granin NG, Zhdanov AA, Gnatovsky RY, Tsekhanovskii VV, Gorbunova LA, Semovskii SV, Korovyakova IV (1999) Hydrophysical processes and distribution of dissolved silicon in Lake Baikal. Geol Geophys 40(10):1502–1505

    CAS  Google Scholar 

  78. Shimaraev MN, Gnatovsky RY, Blinov VV, Ivanov VG (2011) On the issue of updating deep waters in Baikal. Dokl Earth Sci 438(1):121–124

    Article  Google Scholar 

  79. Shimaraev MN, Troitskaya ES, Blinov VV, Ivanov VG, Gnatovsky RY (2012) Upwellings in Lake Baikal. Dokl Earth Sci 442(2):272–276. https://doi.org/10.1134/S1028334X12020183

    CAS  Article  Google Scholar 

  80. Shimaraev MN, Granin NG, Gnatovsky RY, Blinov VV (2015) The mechanism of oxygen aeration of bottom waters of Lake Baikal. Dokl Earth Sci 461(2):379–383. https://doi.org/10.1134/S1028334X15040078

    CAS  Article  Google Scholar 

  81. Sorokovikova LM, Popovskaya GI, Belykh OI, Tomberg IV, Maksimenko SY, Bashenkhaeva NV, Ivanov VG, Zemskaya TI (2012) Plankton composition and water chemistry in the mixing zone of the Selenga River with Lake Baikal. Hydrobiologia 695(1):329–341. https://doi.org/10.1007/s10750-012-1200-3

    CAS  Article  Google Scholar 

  82. Straškrábová V, Izmest'yeva LR, Maksimova EA, Fietz S, Nedoma J, Borovec J, Kobanova GI, Shchetinina EV, Pislegina EV (2005) Primary production and microbial activity in the euphotic zone of Lake Baikal (Southern Basin) during late winter. Glob Planet Chang 46(1–4):57–73. https://doi.org/10.1016/j.gloplacha.2004.11.006

    Article  Google Scholar 

  83. Suslova MJ, Parfenova VV (2003) Bacteria of genus Bacillus in bottom sediments of Lake Baikal. In: Bacilius satellite symposium at FEMS congress. Applications and Systematics of Bacillus and Relatives, Ljubjana, p 18

    Google Scholar 

  84. Terkina IA, Drukker VV, Parfenova VV, Kostornova TYA (2002) The biodiversity of Actinomycetes in Lake Baikal. Microbiology 71(3):346–349. https://doi.org/10.1023/A:1015871115187

    CAS  Article  Google Scholar 

  85. Thrimonis ES (1987) Composition of Holocene and Late Pleistocene sediments. In: Emelyanov EM, Vypyha K (eds) Sedimentation processes in the Gdansk basin (Baltic Sea). Nauka, Moscow, pp 149–174

    Google Scholar 

  86. Timoshkin OA (1995) Biodiversity of Lake Baikal: review of current state of knowledge and perspectives of studies. In: Timoshkin OA (ed). Nauka, Novosibirsk, pp 25–51

    Google Scholar 

  87. Tran P, Ramachandran A, Khawasik O, Beisner BE, Rautio M, Huot Y, Walsh DA (2018) Microbial life under ice: Metagenome diversity and in situ activity of Verrucomicrobia in seasonally ice-covered lakes. Environ Microbiol 20(7):2568–2584. https://doi.org/10.1111/1462-2920.14283

    CAS  PubMed  Article  Google Scholar 

  88. Vologina E, Sturm M (2015) Holocene sediment distribution in different basins of Lake Baikal. In: In: 9th symposium of European freshwater sciences. Unimail, Geneva, p 272

    Google Scholar 

  89. Votintsev KK, Glazunov IV, Tolmacheva AP (1965) Hydrochemistry of the rivers of the Baikal basin. Nauka, Moscow, p 495

    Google Scholar 

  90. Votintsev KK, Meshcheryakova AI, Popovskaya GI (1975) Cycle of organic matter in Lake Baikal. Nauka, Novosibirsk, p 189

    Google Scholar 

  91. Wahsner M, Müller C, Stein R, Ivanov G, Levitan M, Shelekhova E, Tarasov G (1999) Clay-mineral distribution in surface sediments of the Eurasian Arctic Ocean and continental margin as indicator for source areas and transport pathways - a synthesis. Boreas 28(1):215–233. https://doi.org/10.1111/j.1502-3885.1999.tb00216.x

    Article  Google Scholar 

  92. Weiss RF, Carmack EC, Koropalov VM (1991) Deep-water renewal and biological production in Lake Baikal. Nature 349(6311):665–669. https://doi.org/10.1038/349665a0

    CAS  Article  Google Scholar 

  93. Wuest A, Ravens TM, Granin NG, Kosis O, Schurter M, Sturm M (2005) Cold intrusions in Lake Baikal: direct observational evidence for deep-water renewal. Limnol Oceanogr 50(1):184–196. https://doi.org/10.4319/lo.2005.50.1.0184

    Article  Google Scholar 

  94. Yoshioka T, Ueda S, Khodzher T, Bashenkhaeva N, Korovyakova I, Sorokovikova L, Gorbunova L (2002) Distribution of dissolved organic carbon in Lake Baikal and its watershed. Limnology 3(3):159–168. https://doi.org/10.1007/s102010200019

    CAS  Article  Google Scholar 

  95. Zakharenko AS, Pimenov NV, Ivanov VG, Zemskaya TI (2015) Detection of methane in the water column at gas and oil seep sites in central and southern Lake Baikal. Microbiology 84(1):90–97. https://doi.org/10.1134/s0026261715010178

    CAS  Article  Google Scholar 

  96. Zakharenko AS, Galachyants YP, Morozov IV, Shubenkova OV, Morozov AA, Ivanov VG, Pimenov NV, Krasnopeev AY, Zemskaya TI (2019) Bacterial communities in areas of oil and methane seeps in pelagic of Lake Baikal. Microb Ecol 78(2):269–285. https://doi.org/10.1007/s00248-018-1299-5

    CAS  PubMed  Article  Google Scholar 

  97. Zemskaya TI, Bukin SV, Zakharenko AS, Chernitsyna CM, Shubenkova OV (2019) Microbial communities in the estuarine water areas of the rivers in the southeastern part of Lake Baikal. Limnol Freshwater Biol 4:259–265. https://doi.org/10.31951/2658-3518-2019-A-4-259

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank A. Khabuev for the help in the preparation of the map of Lake Baikal and V. Ivanov for his help in the preparation of the figures of temperature and mineralization distribution in Lake Baikal.

Funding

This work was supported by grants “VIREVO” CGL2016-76273-P [MCI/AEI/FEDER, EU] (cofounded with FEDER funds) from the Spanish Ministerio de Ciencia e Innovación and “HIDRAS3” PROMETEO/2019/009 from Generalitat Valenciana. FRV was also a beneficiary of the 5top100-program of the Ministry for Science and Education of Russia. PJC-Y was supported by APOSTD/2019/009 Post-Doctoral Fellowship from Generalitat Valenciana. The State Assignment 0345-2019-0007 supported the work (no. AAAA-A16-116122110064-7) of the Limnological Institute and grant ofi-m no. 17-29-05040.

Author information

Affiliations

Authors

Contributions

FR-V and TIZ were the authors of the manuscript idea; TIZ, FRV, PJC-J, and ONP wrote the manuscript and contributed to the search for literature. All authors read and approved the manuscript.

Corresponding author

Correspondence to Tamara I. Zemskaya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zemskaya, T.I., Cabello-Yeves, P.J., Pavlova, O.N. et al. Microorganisms of Lake Baikal—the deepest and most ancient lake on Earth. Appl Microbiol Biotechnol 104, 6079–6090 (2020). https://doi.org/10.1007/s00253-020-10660-6

Download citation

Keywords

  • Metagenomics
  • Freshwater microbiome
  • Lake microbiome
  • Lake preservation