Skip to main content
Log in

Advances in research on Cordyceps militaris degeneration

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

As a highly valued fungus, Cordyceps militaris has been widely used all over the world. Although the wild resources of C. militaris are limited, the fruiting bodies of C. militaris have been successfully cultivated on a large-scale. However, the high-frequency degeneration of C. militaris during subculture and preservation seriously limits the development of the C. militaris industry. How to solve the degeneration of C. militaris has become an unsolved bottleneck problem throughout the whole Cordyceps industry. The aim of this review is to illustrate the phenotypic changes after the degeneration of C. militaris, focusing on the causes (including environmental factors and genetic variation) of C. militaris degeneration. Moreover, genetic variation is the root cause of the degeneration of C. militaris strains. Measures to prevent the degeneration of C. militaris are also discussed in this review. This paper will increase understanding of the degeneration mechanism of C. militaris, provide a reference for solving the degeneration problem of C. militaris, and lay a foundation for promoting the sustainable development of C. militaris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Chen YS, Liu BL, Chang YN (2011) Effects of light and heavy metals on Cordyceps militaris fruit body growth in rice grain-based cultivation. Korean J Chem Eng 28(3):875–879

    Article  CAS  Google Scholar 

  • Chen A, Wang Y, Shao Y, Huang B (2017) A novel technique for rejuvenation of degenerated caterpillar medicinal mushroom, Cordyceps militaris (Ascomycetes), a valued traditional Chinese medicine. Int J Med Mushrooms 19(1):87–91

    Article  PubMed  Google Scholar 

  • Chen BX, Wei T, Ye ZW, Yun F, Kang LZ, Tang HB, Guo LQ, Lin JF (2018) Efficient CRISPR-Cas9 gene disruption system in edible-medicinal mushroom Cordyceps militaris. Front Microbiol 9:1157

    Article  PubMed  PubMed Central  Google Scholar 

  • Cui JD (2015) Biotechnological production and applications of Cordyceps militaris, a valued traditional Chinese medicine. Crit Rev Biotechnol 35(4):475–484

    Article  CAS  PubMed  Google Scholar 

  • Dang HN, Wang CL, Lay HL (2018) Effect of nutrition, vitamin, grains, and temperature on the mycelium growth and antioxidant capacity of Cordyceps militaris (strains AG-1 and PSJ-1). J Radiat Res Appl Sci 11(2):130–138

    Article  CAS  Google Scholar 

  • Das SK, Masuda M, Sakurai A, Sakakibara M (2010) Medicinal uses of the mushroom Cordyceps militaris: current state and prospects. Fitoterapia 81(8):961–968

    Article  PubMed  Google Scholar 

  • Dong JZ, Wang SH, Ai XR, Yao L, Sun ZW, Lei C, Wang Y, Wang Q (2013) Composition and characterization of cordyxanthins from Cordyceps militaris fruit bodies. J Funct Foods 5(3):1450–1455

    Article  CAS  Google Scholar 

  • Gao X (2008) Study on the mating type of Cordyceps militaris. Acta Edulis Fungi 15(1):1–5 (in Chinese)

    CAS  Google Scholar 

  • Guo M, Bian Y, Wang J, Wang G, Ma X, Xu Z (2017) Biological and molecular characteristics of a novel partitivirus infecting the edible fungus Lentinula edodes. Plant Dis 101(5):726–733

    Article  CAS  PubMed  Google Scholar 

  • He L, Han C, Li P, Chen Y, Liu D, Geng L (2009) Effect of mineral elements on colony types of Cordyceps militaris in subculturing. J Shenyang Agric Univ 40(6):672–677 (in Chinese)

    CAS  Google Scholar 

  • Jiang K, Han R (2015) Rhf1 gene is involved in the fruiting body production of Cordyceps militaris fungus. J Ind Microbiol Biotechnol 42(8):1183–1196

    Article  CAS  PubMed  Google Scholar 

  • Kim SY, Kim KH, Im CH, Ali A, Lee CY, Kong WS, Ryu JS (2014) Identification of degenerate nuclei and development of a SCAR marker for Flammulina velutipes. PLoS One 9(9):e107207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunhorm P, Chaicharoenaudomrung N, Noisa P (2019) Enrichment of cordycepin for cosmeceutical applications: culture systems and strategies. Appl Microbiol Biotechnol 103(4):1681–1691

    Article  CAS  PubMed  Google Scholar 

  • Lee HJ, Kim SW, Ryu JS, Lee CY, Ro HS (2014) Isolation of a variant strain of Pleurotus eryngii and the development of specific DNA markers to identify the variant strain. Mycobiology 42(1):46–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HH, Kang N, Park I, Park J, Kim I, Kim J, Kim N, Lee JY, Seo YS (2017) Characterization of newly bred Cordyceps militaris strains for higher production of cordycepin through HPLC and URP-PCR analysis. J Microbiol Biotechnol 27(7):1223–1232

    Article  CAS  PubMed  Google Scholar 

  • Li MN, Wu XJ, Li CY, Feng BS, Li QW (2003) Molecular analysis of degeneration of artificial planted Cordyceps militaris. Mycosystema 22(2):277–282 (in Chinese)

    CAS  Google Scholar 

  • Li X, Liu Q, Li W, Li Q, Qian Z, Liu X, Dong C (2018) A breakthrough in the artificial cultivation of Chinese cordyceps on a large-scale and its impact on science, the economy, and industry. Crit Rev Biotechnol 39(2):381–391

    Google Scholar 

  • Lin QQ, Qiu XH, Zheng ZL, Xie CH, Xu ZF, Han RC (2010) Characteristics of the degenerate strains of Cordyceps militaris. Mycosystema 29(5):670–677 (in Chinese)

    CAS  Google Scholar 

  • Lin S, Liu ZQ, Xue YP, Baker PJ, Wu H, Xu F, Teng Y, Brathwaite ME, Zheng YG (2016) Biosynthetic pathway analysis for improving the cordycepin and cordycepic acid production in Hirsutella sinensis. Appl Biochem Biotechnol 179(4):633–649

    Article  CAS  PubMed  Google Scholar 

  • Lou HW, Ye ZW, Yun F, Lin JF, Guo LQ, Chen BX, Mu ZX (2018) Targeted gene deletion in Cordyceps militaris using the split-marker approach. Mol Biotechnol 60(5):380–385

    Article  CAS  PubMed  Google Scholar 

  • Lou HW, Ye ZW, Yu YH, Lin JF, Guo LQ, Chen BX, Tang HB, Wei T, Chen LT, Yun F (2019) The efficient genetic transformation of Cordyceps militaris by using mononuclear protoplasts. Sci Hortic 243:307–313

    Article  CAS  Google Scholar 

  • Magae Y, Akahane K, Nakamura K, Tsunoda S (2005) Simple colorimetric method for detecting degenerate strains of the cultivated basidiomycete Flammulina velutipes (Enokitake). Appl Environ Microbiol 71(10):6388–6389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masuda M, Das SK, Fujihara S, Hatashita M, Sakurai A (2011) Production of cordycepin by a repeated batch culture of a Cordyceps militaris mutant obtained by proton beam irradiation. J Biosci Bioeng 111(1):55–60

    Article  CAS  PubMed  Google Scholar 

  • Nurmamat E, Xiao H, Zhang Y, Jiao Z (2018) Effects of different temperatures on the chemical structure and antitumor activities of polysaccharides from Cordyceps militaris. Polymers 10(4):430

    Article  CAS  PubMed Central  Google Scholar 

  • Shrestha B, Kim HK, Sung GH, Spatafora JW, Sung JM (2004) Bipolar heterothallism, a principal mating system of Cordyceps militaris in vitro. Biotechnol Bioprocess Eng 9(6):440–446

    Article  CAS  Google Scholar 

  • Shrestha B, Han SK, Sung JM, Sung GH (2012) Fruiting body formation of Cordyceps militaris from multi-ascospore isolates and their single ascospore progeny strains. Mycobiology 40(2):100–106

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun SJ, Deng CH, Zhang LY, Hu KH (2017) Molecular analysis and biochemical characteristics of degenerated strains of Cordyceps militaris. Arch Microbiol 199(6):939–944

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Hu T, Guo Y, Liang Y (2018) Preservation affects the vegetative growth and fruiting body production of Cordyceps militaris. World J Microbiol Biotechnol 34(11):166

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Zhang WM, Hu B, Chen YQ, Qu LH (2008) Genetic variation of Cordyceps militaris and its allies based on phylogenetic analysis of rDNA ITS sequence data. Fungal Divers 31:147–155

    Google Scholar 

  • Wang H, Wei J, Lin N, Feng A, Chen M, Bao D (2010) Distribution of mating-type genes in fruiting and non-fruiting forms of Cordyceps militaris. Acta Edulis Fungi 17(4):1–4 (in Chinese)

    Google Scholar 

  • Wang YL, Wang ZX, Liu C, Wang SB, Huang B (2015) Genome-wide analysis of DNA methylation in the sexual stage of the insect pathogenic fungus Cordyceps militaris. Fungal Biol 119(12):1246–1254

    Article  CAS  PubMed  Google Scholar 

  • Wang D, He X, Zhao R, Ren G, Liu Y (2016) Comparison of Cordyceps militaris spawn rejuvenation method. North Hortic 40(17):137–139 (in Chinese)

    Google Scholar 

  • Wang F, Song X, Dong X, Zhang J, Dong C (2017) DASH-type cryptochromes regulate fruiting body development and secondary metabolism differently than CmWC-1 in the fungus Cordyceps militaris. Appl Microbiol Biotechnol 101(11):4645–4657

    Article  CAS  PubMed  Google Scholar 

  • Wang CC, Wu JY, Chang CY, Yu ST, Liu YC (2019) Enhanced exopolysaccharide production by Cordyceps militaris using repeated batch cultivation. J Biosci Bioeng 127(4):499–505

    Article  CAS  PubMed  Google Scholar 

  • Wen TC, Li MF, Kang JC, He J (2012) A molecular genetic study on fruiting-body formation of Cordyceps militaris. Afr J Microbiol Res 6(24):5215–5221

    Google Scholar 

  • Wen ZX, Meng N, Li XJ, Du XF, Ma SH, Mi R, Sun YX, Li SY, Li YJ (2017) Research on Cordyceps militaris spawn rejuvenation with silkworm. Edible Fungi China 37(1):19–21 (in Chinese)

    Google Scholar 

  • Xia Y, Luo F, Shang Y, Chen P, Lu Y, Wang C (2017) Fungal cordycepin biosynthesis is coupled with the production of the safeguard molecule pentostatin. Cell Chem Biol 24(12):1479–1489

    Article  CAS  PubMed  Google Scholar 

  • Xiang X, Wang X, Bian Y, Xu Z (2016) Development of crossbreeding high-yield-potential strains for commercial cultivation in the medicinal mushroom Wolfiporia cocos (Higher Basidiomycetes). J Nat Med 70(3):645–652

    Article  CAS  PubMed  Google Scholar 

  • Xin X, Yin J, Zhang B, Li Z, Zhao S, Gui Z (2019) Genome-wide analysis of DNA methylation in subcultured Cordyceps militaris. Arch Microbiol 201(3):369–375

    Article  CAS  PubMed  Google Scholar 

  • Xiong C, Xia Y, Zheng P, Wang C (2013) Increasing oxidative stress tolerance and subculturing stability of Cordyceps militaris by overexpression of a glutathione peroxidase gene. Appl Microbiol Biotechnol 97(5):2009–2015

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Dong C (2014) Photo morphogenesis and photo response of the blue-light receptor gene Cmwc-1 in different strains of Cordyceps militaris. FEMS Microbiol Lett 352(2):190–197

    Article  CAS  PubMed  Google Scholar 

  • Yin J, Xin X, Weng Y, Gui Z (2017) Transcriptome-wide analysis reveals the progress of Cordyceps militaris subculture degeneration. PLoS One 12(10):e0186279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin J, Xin XD, Weng YJ, Li SH, Jia JQ, Gui ZZ (2018) Genotypic analysis of degenerative Cordyceps militaris cultured in the pupa of Bombyx mori. Entomol Res 48(3):137–144

    Article  CAS  Google Scholar 

  • Zhang G, Liang Y (2013) Improvement of fruiting body production in Cordyceps militaris by molecular assessment. Arch Microbiol 195(8):579–585

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Dong X, Song X, Wang F, Dong C (2017) Photoperiodic responses and characterization of the Cmvvd gene encoding a blue light photoreceptor from the medicinal caterpillar fungus Cordyceps militaris (Ascomycetes). Int J Med Mushrooms 19(2):163–172

    Article  PubMed  Google Scholar 

  • Zhang J, Wang F, Liu K, Liu Q, Yang Y, Dong C (2018) Heat and light stresses affect metabolite production in the fruit body of Cordyceps militaris. Appl Microbiol Biotechnol 102(10):4523–4533

    Article  CAS  Google Scholar 

  • Zheng P, Xia Y, Xiao G, Xiong C, Hu X, Zhang S, Zheng H, Huang Y, Zhou Y, Wang S, Zhao GP, Liu X, St Leger RJ, Wang C (2011a) Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biol 12(11):R116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Z, Huang C, Cao L, Xie C, Han R (2011b) Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in medicinal fungus Cordyceps militaris. Fungal Biol 115(3):265–274

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China-Henan Joint Fund (grant number U1604234) and the National Natural Science Foundation of China (grant number 31572178).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haiwei Lou or Renyong Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, H., Lin, J., Guo, L. et al. Advances in research on Cordyceps militaris degeneration. Appl Microbiol Biotechnol 103, 7835–7841 (2019). https://doi.org/10.1007/s00253-019-10074-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-10074-z

Keywords

Navigation