Skip to main content
Log in

Pulsed electric field inactivation of microorganisms: from fundamental biophysics to synergistic treatments

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The growth of antibiotic resistant microorganisms and the increasing demand for nonthermal antimicrobial treatment in the food and beverage industry motivates research into alternative inactivation methods. Pulsed electric fields (PEFs) provide an athermal method for inactivating microorganisms by creating nanometer-sized membrane pores in microorganisms, inducing cell death when the PEF duration and intensity are sufficient such that the pores cannot reseal after the PEFs through a process referred to as irreversible electroporation. While PEF inactivation has been studied for several decades, recent studies have focused on extending the technique to various liquids in the food industry and optimizing microorganism inactivation while minimizing adverse effects to the treated sample. This minireview will assess the biophysical mechanisms and theory of PEF-induced cellular interactions and summarize recent advances in applying this technology for microorganism inactivation alone and synergistically in combination with other technologies, including temperature, pressure, natural ingredients, and pharmaceuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asami K, Hanai T, Koizumi N (1980) Dielectric approach to suspensions of ellipsoidal particles covered with a shell in particular reference to biological cells. Jpn J Appl Phys 19:359–365

    Article  Google Scholar 

  • Berdejo D, Pagán E, García-Gonzalo D, Pagán R (2018) Exploiting the synergism among physical and chemical processes for improving food safety. Curr Opin Food Sci 30:14–20

    Article  Google Scholar 

  • Bresme F, Lervik A, Bedeaux D, Kjelstrup S (2008) Water polarization under thermal gradients. Phys Rev Lett 101:020602

    Article  CAS  PubMed  Google Scholar 

  • Caminiti IM, Noci F, Muñoz A, Whyte P, Morgan DJ, Cronin DA, Lyng JG (2011) Impact of selected combinations of non-thermal processing technologies on the quality of an apple and cranberry juice blend. Food Chem 124(4):1387–1392

    Article  CAS  Google Scholar 

  • Cemazar M, Sersa G, Frey W, Miklavcic D, Teissié J (2018) Recommendations and requirements for reporting on applications of electric pulse delivery for electroporation of biological samples. Bioelectrochemistry 122:69–76

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Smye SW, Robinson MP, Evans JA (2006) Membrane electroporation theories: a review. Med Biol Eng Comput 44:5–14

    Article  CAS  PubMed  Google Scholar 

  • Coustets M, Ganeva V, Galutzov B, Teissie J (2015) Millisecond duration pulses for flow-through electro-induced protein extraction from E. coli and associated eradication. Bioelectrochemistry 103:82–91

    Article  CAS  PubMed  Google Scholar 

  • Cregenzán-Alberti O, Arroyo C, Dorozko A, Whyte P, Lyng JG (2017) Thermal characterization of Bacillus subtilis endospores and a comparative study of their resistance to high temperature pulsed electric fields (HTPEF) and thermal-only treatments. Food Control 73:1490–1498

    Article  CAS  Google Scholar 

  • Croce RP, De Vita A, Pierro V, Pinto IM (2010) A thermal model for pulsed EM field exposure effects in cells at nonthermal levels. IEEE Trans Plasma Sci 38:149–155

    Article  CAS  Google Scholar 

  • Delemotte L, Tarek M (2012) Molecular dynamics simulations of lipid membrane electroporation. J Membr Biol 245(9):531–543

    Article  CAS  PubMed  Google Scholar 

  • Edd JF, Horowitz L, Davalos RV, Mir LM, Rubinsky B (2006) In vivo results of a new focal tissue ablation technique: irreversible electroporation. IEEE Trans Biomed Eng 53:1409–1415

    Article  PubMed  Google Scholar 

  • Edelblute CM, Hornef J, Burcus NI, Norman T, Beebe SJ, Schoenbach K, Heller R, Jiang C, Guo S (2017) Controllable moderate heating enhances the therapeutic efficacy of irreversible electroporation for pancreatic cancer. Sci Rep 7:11767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emanuel E, Roman P, Cahan R (2019) Influence of the current density in moderate pulsed electric fields on P. putida F1 eradication. Bioelectrochemistry 126:172–179

    Article  CAS  PubMed  Google Scholar 

  • Evrendilek GA, Zhang QH, Richter ER (1999) Inactivation of Escherichia coli O157: H7 and Escherichia coli 8739 in apple juice by pulsed electric fields. J Food Prot 62:793–796

    Article  CAS  PubMed  Google Scholar 

  • Fernández ML, Marshall G, Sagués F, Reigada R (2010) Structural and kinetic molecular dynamics study of electroporation in cholesterol-containing bilayers. J Phys Chem B 114:6855–6865

    Article  CAS  PubMed  Google Scholar 

  • Friend AW, Gartner SL, Foster KR, Howe H (1981) The effects of high power microwave pulses on red blood cells and the relationship to transmembrane thermal gradients. IEEE Trans Microw Theory Tech 9:1271–1277

    Article  Google Scholar 

  • Frieri M, Kumar K, Boutin A (2017) Antibiotic resistance. J Infect Public Health 10:369–378

    Article  Google Scholar 

  • Gabrić D, Barba F, Roohinejad S, Gharibzahedi SMT, Radojčin M, Putnik P, Bursać Kovačević D (2018) Pulsed electric fields as an alternative to thermal processing for preservation of nutritive and physicochemical properties of beverages: a review. J Food Process Eng 41:e12638

    Article  CAS  Google Scholar 

  • Garner AL, Chen N, Yang J, Kolb J, Swanson RJ, Loftin KC, Beebe SJ, Joshi RP, Schoenbach KH (2004) Time domain dielectric spectroscopy measurements of HL-60 cell suspensions after microsecond and nanosecond electrical pulses. IEEE Trans Plasma Sci 32:2073–2084

    Article  CAS  Google Scholar 

  • Garner AL, Chen G, Chen N, Sridhara V, Kolb JF, Swanson RJ, Beebe SJ, Joshi RP, Schoenbach KH (2007) Ultrashort electric pulse induced changes in cellular dielectric properties. Biochem Biophys Res Commun 362:139–144

    Article  CAS  PubMed  Google Scholar 

  • Garner AL, Deminksy M, Neculaes VB, Chashihin V, Knizhnik A, Potapkin B (2013) Cell membrane thermal gradients induced by electromagnetic fields. J Appl Phys 113:214709

    Article  CAS  Google Scholar 

  • Garner AL, Neculaes VB, Deminsky M, Dylov DV, Joo C, Loghin ER, Yazdanfar S, Conway KR (2016) Plasma membrane temperature gradients and multiple cell permeabilization induced by low peak power density femtosecond lasers. Biochem Biophys Rep 5:168–174

    PubMed  Google Scholar 

  • Garner AL, Frelinger AL III, Gerrits AJ, Gremmel T, Forde EE, Carmichael SL, Michelson AD, Neculaes VB (2019) Using extracellular calcium concentration and electric pulse conditions to tune platelet-rich plasma growth factor release and clotting. Med Hypotheses 125:100–105

    Article  CAS  PubMed  Google Scholar 

  • Gehl J (2003) Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol Scand 177:437–447

    Article  CAS  PubMed  Google Scholar 

  • Giacometti J, Kovačević DB, Putnik P, Gabrić D, Bilušić T, Krešić G, Stulić V, Barba FJ, Chemat F, Barbosa-Cánovas G, Jambrak AR (2018) Extraction of bioactive compounds and essential oils from Mediterranean herbs by conventional and green innovative techniques: A review. Food Res Int 113:245–262

    Article  CAS  PubMed  Google Scholar 

  • Golberg A, Rubinsky B (2012) Towards electroporation based treatment planning considering electric field induced muscle contractions. Technol Cancer Res Treat 11:189–201

    Article  PubMed  Google Scholar 

  • Gupta C, Garg AP, Uniyal RC, Kumari A (2008) Comparative analysis of the antimicrobial activity of cinnamon oil and cinnamon extract on some food-borne microbes. Afr J Microbiol Res 2:247–251

    Google Scholar 

  • Gusbeth C, Frey W, Volkmann H, Schwartz T, Bluhm H (2009) Pulsed electric field treatment for bacteria reduction and its impact on hospital wastewater. Chemosphere 75:228–233

    Article  CAS  PubMed  Google Scholar 

  • Hamilton WA, Sale AJH (1967) Effects of high electric fields on microorganisms: II. Mechanism of action of the lethal effect. Biochim Biophys Acta Gen Subj 148:789–800

    Article  CAS  Google Scholar 

  • Hu Q, Joshi RP (2009) Transmembrane voltage analyses in spheroidal cells in response to an intense ultrashort electrical pulse. Phys Rev E 79:011901

    Article  CAS  Google Scholar 

  • Huang K, Jiang T, Wang W, Gai L, Wang J (2014) A comparison of pulsed electric field resistance for three microorganisms with different biological factors in grape juice via numerical simulation. Food Bioprocess Technol 7:1981–1995

    Article  Google Scholar 

  • Ibey BL, Ullery JC, Pakhomova ON, Roth CC, Semenov I, Beier HT, Tarango M, Xiao S, Schoenbach KH, Pakhomov AG (2014) Bipolar nanosecond electric pulses are less efficient at electropermeabilization and killing cells than monopolar pulses. Biochem Biophys Res Commun 443:568–573

    Article  CAS  PubMed  Google Scholar 

  • Jiang C, Davalos RV, Bischof JC (2015) A review of basic to clinical studies of irreversible electroporation therapy. IEEE Trans Biomed Eng 62:4–20

    Article  PubMed  Google Scholar 

  • Joshi RP, Schoenbach KH (2002) Mechanism for membrane electroporation irreversibility under high-intensity, ultrashort electrical pulse conditions. Phys Rev E 66:052901

    Article  CAS  Google Scholar 

  • Korem M, Goldberg NS, Cahan A, Cohen MJ, Nissenbaum I, Moses AE (2018) Clinically applicable irreversible electroporation for eradication of micro-organisms. Lett Appl Microbiol 67:15–21

    Article  CAS  PubMed  Google Scholar 

  • Krausz AE, Adler BL, Cabral V, Navati M, Doerner J, Charafeddine RA, Chandra D, Liang H, Gunther L, Clendaniel A, Harper S (2015) Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent. Nanomedicine 11:195–206

    Article  CAS  Google Scholar 

  • Lambricht L, Lopes A, Kos S, Sersa G, Préat V, Vandermeulen G (2016) Clinical potential of electroporation for gene therapy and DNA vaccine delivery. Expert Opin Drug Deliv 13:295–310

    Article  CAS  PubMed  Google Scholar 

  • Leistner L, Gorris LG (1995) Food preservation by hurdle technology. Trends Food Sci Technol 6:41–46

    Article  CAS  Google Scholar 

  • Li J, Tan W, Yu M, Lin H (2013) The effect of extracellular conductivity on electroporation-mediated molecular delivery. Biochim Biophys Acta 828:461–470

    Article  CAS  Google Scholar 

  • Mahendran R, Ramanan KR, Barba FJ, Lorenzo JM, López-Fernández O, Munekata PE, Roohinejad S, Sant’Ana AS, Tiwari BK (2019) Recent advances in the application of pulsed light processing for improving food safety and increasing shelf life. Trends Food Sci Technol 88:67–79

    Article  CAS  Google Scholar 

  • Marrink SJ, De Vries AH, Mark AE (2004) Coarse grained model for semiquantitative lipid simulations. J Phys Chem B 108:750–760

    Article  CAS  Google Scholar 

  • Martín-Belloso O, Sobrino-López A (2011) Combination of pulsed electric fields with other preservation techniques. Food Bioprocess Technol 4:954–968

    Article  Google Scholar 

  • Marx G, Moody A, Bermúdez-Aguirre D (2011) A comparative study on the structure of Saccharomyces cerevisiae under nonthermal technologies: high hydrostatic pressure, pulsed electric fields and thermo-sonication. Int J Food Microbiol 151:327–337

    Article  PubMed  Google Scholar 

  • Merla C, Pakhomov AG, Semenov I, Vernier PT (2017) Frequency spectrum of induced transmembrane potential and permeabilization efficacy of bipolar electric pulses. Biochim Biophys Acta 1859:1282–1290

    Article  CAS  Google Scholar 

  • Monfort S, Gayán E, Saldaña G, Puértolas E, Condón S, Raso J, Álvarez I (2010) Inactivation of Salmonella Typhimurium and Staphylococcus aureus by pulsed electric fields in liquid whole egg. Innov Food Sci Emerg Technol 11:306–313

    Article  CAS  Google Scholar 

  • Monfort S, Gayán E, Condón S, Raso J, Álvarez I (2011) Design of a combined process for the inactivation of Salmonella Enteritidis in liquid whole egg at 55 C. Int J Food Microbiol 145:476–482

    Article  CAS  PubMed  Google Scholar 

  • Monfort S, Saldaña G, Condón S, Raso J, Álvarez I (2012) Inactivation of Salmonella spp. in liquid whole egg using pulsed electric fields, heat, and additives. Food Microbiol S30:393–399

    Article  CAS  Google Scholar 

  • Moody A, Marx G, Swanson BG, Bermúdez-Aguirre D (2014) A comprehensive study on the inactivation of Escherichia coli under nonthermal technologies: High hydrostatic pressure, pulsed electric fields and ultrasound. Food Control 37:305–314

    Article  CAS  Google Scholar 

  • Morales-de La Peña M, Salvia-Trujillo L, Rojas-Graü MA, Martín-Belloso O (2010) Impact of high intensity pulsed electric field on antioxidant properties and quality parameters of a fruit juice–soymilk beverage in chilled storage. LWT Food Sci Technol 43:872–881

    Article  CAS  Google Scholar 

  • Moran JL, Dingari NN, Garcia PA, Buie CR (2018) Numerical study of the effect of soft layer properties on bacterial electroporation. Bioelectrochemistry 123:261–272

    Article  CAS  PubMed  Google Scholar 

  • Mosqueda-Melgar J, Raybaudi-Massilia RM, Martín-Belloso O (2007) Influence of treatment time and pulse frequency on Salmonella Enteritidis, Escherichia coli and Listeria monocytogenes populations inoculated in melon and watermelon juices treated by pulsed electric fields. Int J Food Microbiol 117:192–200

    Article  CAS  PubMed  Google Scholar 

  • Mosqueda-Melgar J, Elez-Martinez P, Raybaudi-Massilia RM, Martin-Belloso O (2008a) Effects of pulsed electric fields on pathogenic microorganisms of major concern in fluid foods: a review. Crit Rev Food Sci Nutr 48:747–759

    Article  PubMed  Google Scholar 

  • Mosqueda-Melgar J, Raybaudi-Massilia RM, Martín-Belloso O (2008b) Non-thermal pasteurization of fruit juices by combining high-intensity pulsed electric fields with natural antimicrobials. Innov Food Sci Emerg Technol 9:328–340

    Article  CAS  Google Scholar 

  • Napotnik TB, Reberšek M, Vernier PT, Mali B, Miklavčič D (2016) Effects of high voltage nanosecond electric pulses on eukaryotic cells (in vitro): a systematic review. Bioelectrochemistry 110:1–12

    Article  CAS  Google Scholar 

  • Narsetti R, Curry RD, McDonald KF, Clevenger TE, Nichols LM (2006) Microbial inactivation in water using pulsed electric fields and magnetic pulse compressor technology. IEEE Trans Plasma Sci 34:1386–1393

    Article  Google Scholar 

  • Neu JC, Krassowska W (1999) Asymptotic model of electroporation. Phys Rev E 59:3471–3482

    Article  CAS  Google Scholar 

  • Novac BM, Banakhr FA, Smith IR, Pécastaing L, Ruscassié R, De Ferron AS, Pignolet P (2014) Demonstration of a novel pulsed electric field technique generating neither conduction currents nor Joule effects. IEEE Trans Plasma Sci 42:216–228

    Article  Google Scholar 

  • Novickij V, Švedienė J, Paškevičius A, Novickij J (2017) In vitro evaluation of nanosecond electroporation against Trichophyton rubrum with or without antifungal drugs and terpenes. Mycoscience 58:261–266

    Article  Google Scholar 

  • Novickij V, Zinkevičienė A, Perminaitė E, Čėsna R, Lastauskienė E, Paškevičius A, Švedienė J, Markovskaja S, Novickij J, Girkontaitė I (2018a) Non-invasive nanosecond electroporation for biocontrol of surface infections: an in vivo study. Sci Rep 8:14516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novickij V, Zinkevičienė A, Stanevičienė R, Gruškienė R, Servienė E, Vepštaitė-Monstavičė I, Krivorotova T, Lastauskienė E, Sereikaitė J, Girkontaitė I, Novickij J (2018b) Inactivation of Escherichia coli using nanosecond electric fields and nisin nanoparticles: a kinetics study. Front Microbiol 9:3006

    Article  PubMed  PubMed Central  Google Scholar 

  • Novickij V, Švedienė J, Paškevičius A, Markovskaja S, Girkontaitė I, Zinkevičienė A, Lastauskienė E, Novickij J (2018c) Pulsed electric field-assisted sensitization of multidrug-resistant Candida albicans to antifungal drugs. Future Microbiol 13:535–546

    Article  CAS  PubMed  Google Scholar 

  • Nuccitelli R (2018) Application of pulsed electric fields to cancer therapy. Bioelectricity 1:24–28

    Google Scholar 

  • Pakhomov AG, Kolb JF, White JA, Joshi RP, Xiao S, Schoenbach KH (2007) Long-lasting plasma membrane permeabilization in mammalian cells by nanosecond pulsed electric field (nsPEF). Bioelectromagnetics 28:655–663

    Article  CAS  PubMed  Google Scholar 

  • Pal M (2017) Pulsed electric field processing: an emerging technology for food preservation. J Exp Food Chem 3:2

    Google Scholar 

  • Palgan I, Caminiti IM, Muñoz A, Noci F, Whyte P, Morgan DJ, Cronin DA, Lyng JG (2011) Combined effect of selected non-thermal technologies on Escherichia coli and Pichia fermentans inactivation in an apple and cranberry juice blend and on product shelf life. Int J Food Microbiol 151:1–6

    Article  CAS  PubMed  Google Scholar 

  • Pankaj SK, Keener KM (2017) Cold plasma: Background, applications and current trends. Curr Opin Food Sci 16:49–52

    Article  Google Scholar 

  • Petrella RA, Schoenbach KH, Xiao S (2016) A dielectric rod antenna for picosecond pulse stimulation of neurological tissue. IEEE Trans Plasma Sci 44:708–714

    Article  CAS  Google Scholar 

  • Piggot TJ, Holdbrook DA, Khalid S (2011) Electroporation of the E. coli and S. aureus membranes: molecular dynamics simulations of complex bacterial membranes. J Phys Chem B 115:13381–13388

    Article  CAS  PubMed  Google Scholar 

  • Piggot TJ, Piñeiro A, Khalid S (2012) Molecular dynamics simulations of phosphatidylcholine membranes: a comparative force field study. J Chem Theory Comp 8:4593–4609

    Article  CAS  Google Scholar 

  • Pina-Pérez MC, Martínez-López A, Rodrigo D (2012) Cinnamon antimicrobial effect against Salmonella typhimurium cells treated by pulsed electric fields (PEF) in pasteurized skim milk beverage. Food Res Int 48:777–783

    Article  CAS  Google Scholar 

  • Polak A, Bonhenry D, Dehez F, Kramar P, Miklavčič D, Tarek M (2013) On the electroporation thresholds of lipid bilayers: molecular dynamics simulation investigations. J Membr Biol 246:843–850

    Article  CAS  PubMed  Google Scholar 

  • Probst U, Fuhrmann I, Beyer L (2018) Electrochemotherapy as a new modality in interventional oncology: a review. Technol Cancer Res Treat 17:1–12

    Article  Google Scholar 

  • Pyatkovskyy TI, Shynkaryk MV, Mohamed HM, Yousef AE, Sastry SK (2018) Effects of combined high pressure (HPP), pulsed electric field (PEF) and sonication treatments on inactivation of Listeria innocua. J Food Eng 233:49–56

    Article  CAS  Google Scholar 

  • Qin S, Timoshkin IV, Maclean M, Wilson MP, Given MJ, Wang T, Anderson JG, MacGregor SJ (2015) Pulsed electric field treatment of Saccharomyces cerevisiae using different waveforms. IEEE Trans Dielectr Electr Insul 22:1841–1848

    Article  CAS  Google Scholar 

  • Qin S, Timoshkin IV, Maclean M, MacGregor SJ, Wilson MP, Given MJ, Wang T, Anderson JG (2016) TiO2-coated electrodes for pulsed electric field treatment of microorganisms. IEEE Trans Plasma Sci 44:2121–2128

    Article  CAS  Google Scholar 

  • Qiu X, Sharma S, Tuhela L, Jia M, Zhang QH (1998) An integrated PEF pilot plant for continuous nonthermal pasteurization of fresh orange juice. Trans ASAE 41:1069–1074

    Article  Google Scholar 

  • Raso J, Calderón ML, Góngora M, Barbosa-Cánovas G, Swanson BG (1998) Inactivation of mold ascospores and conidiospores suspended in fruit juices by pulsed electric fields. LWT Food Sci Technol 31:668–672

    Article  CAS  Google Scholar 

  • Raso J, Frey W, Ferrari G, Pataro G, Knorr D, Teissie J, Miklavčič D (2016) Recommendations guidelines on the key information to be reported in studies of application of PEF technology in food and biotechnological processes. Innov Food Sci Emerg Technol 37:312–321

    Article  Google Scholar 

  • Rieder A, Schwartz T, Schön-Hölz K, Marten SM, Süß J, Gusbeth C, Kohnen W, Swoboda W, Obst U, Frey W (2008) Molecular monitoring of inactivation efficiencies of bacteria during pulsed electric field treatment of clinical wastewater. J Appl Microbiol 105:2035–2045

    Article  CAS  PubMed  Google Scholar 

  • Robinson VS, Garner AL, Loveless AM, Neculaes VB (2017) Calculated plasma membrane voltage induced by applying electric pulses using capacitive coupling. Biomed Phys Eng Express 3:025016

    Article  Google Scholar 

  • Saldaña G, Monfort S, Condón S, Raso J, Álvarez I (2012) Effect of temperature, pH and presence of nisin on inactivation of Salmonella Typhimurium and Escherichia coli O157: H7 by pulsed electric fields. Food Res Int 45:1080–1086

    Article  CAS  Google Scholar 

  • Sale AJH, Hamilton WA (1967) Effects of high electric fields on microorganisms: I. Killing of bacteria and yeasts. Biochim Biophys Acta Gen Subj 148:781–788

    Article  Google Scholar 

  • Sale AJH, Hamilton WA (1968) Effects of high electric fields on micro-organisms: III. Lysis of erythrocytes and protoplasts. Biochim Biophys Acta Biomembr 163:37–43

    Article  CAS  Google Scholar 

  • Schoenbach KH, Joshi RP, Kolb JF, Chen N, Stacey M, Blackmore PF, Buescher ES, Beebe SJ (2004) Ultrashort electrical pulses open a new gateway into biological cells. Proc IEEE 92:1122–1137

    Article  CAS  Google Scholar 

  • Schoenbach KH, Xiao S, Joshi RP, Camp JT, Heeren T, Kolb JF, Beebe SJ (2008) The effect of intense subnanosecond electrical pulses on biological cells. IEEE Trans Plasma Sci 36:414–422

    Article  CAS  Google Scholar 

  • Siemer C, Toepfl S, Heinz V (2014) Inactivation of Bacillus subtilis spores by pulsed electric fields (PEF) in combination with thermal energy–I. Influence of process-and product parameters. Food Control 39:163–171

    Article  CAS  Google Scholar 

  • Sitzmann W, Vorobiev E, Lebovka N (2016) Applications of electricity and specifically pulsed electric fields in food processing: historical backgrounds. Innov Food Sci Emerg Technol 37:302–311

    Article  Google Scholar 

  • Song J, Joshi RP, Schoenbach KH (2011) Synergistic effects of local temperature enhancements on cellular responses in the context of high-intensity, ultrashort electric pulses. Med Biol Eng Comput 49:713–718

    Article  CAS  PubMed  Google Scholar 

  • Song J, Garner AL, Joshi RP (2017) Molecular dynamics assessment of the role of thermal gradients created by electromagnetic fields on cell membrane electroporation. Phys Rev Appl 7:024003

    Article  Google Scholar 

  • Teissie J, Rols MP (1993) An experimental evaluation of the critical potential difference inducing cell membrane electropermeabilization. Biophys J 65:409–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tieleman DP (2004) The molecular basis of electroporation. BMC Biochem 5:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Timmermans RA, Groot MN, Nederhoff AL, Van Boekel MA, Matser AM, Mastwijk HC (2014) Pulsed electric field processing of different fruit juices: impact of pH and temperature on inactivation of spoilage and pathogenic micro-organisms. Int J Food Microbiol 173:105–111

    Article  CAS  PubMed  Google Scholar 

  • Vadlamani A, Detwiler DA, Dhanabal A, Garner AL (2018) Synergistic bacterial inactivation by combining antibiotics with nanosecond electric pulses. Appl Microbiol Biotechnol 102:7589–7596

    Article  CAS  PubMed  Google Scholar 

  • Van Heesch EJM, Pemen AJM, Huijbrechts PA, van der Laan PC, Prasinski KJ, Zanstra GJ, de Jong P (2000) A fast pulsed power source applied to treatment of conducting liquids and air. IEEE Trans Plasma Sci 28:137–143

    Article  Google Scholar 

  • Van Impe J, Smet C, Tiwari B, Greiner R, Ojha S, Stulić V, Vukušić T, Režek Jambrak A (2018) State of the art of nonthermal and thermal processing for inactivation of micro-organisms. J Appl Microbiol 125:16–35

    Article  CAS  PubMed  Google Scholar 

  • Vasilkoski Z, Esser AT, Gowrishankar TR, Weaver JC (2006) Membrane electroporation: the absolute rate equation and nanosecond time scale pore creation. Phys Rev E 74:021904

    Article  CAS  Google Scholar 

  • Vega-Mercado H, Powers JR, Barbosa-Cánovas GV, Swanson BG (1995) Plasmin inactivation with pulsed electric fields. J Food Sci 60:1143–1146

    Article  CAS  Google Scholar 

  • Vega-Mercado H, Martin-Belloso O, Qin BL, Chang FJ, Góngora-Nieto MM, Barbosa-Canovas GV, Swanson BG (1997) Non-thermal food preservation: pulsed electric fields. Trends Food Sci Technol 8:151–157

    Article  CAS  Google Scholar 

  • Vernier PT, Sun Y, Gundersen MA (2006) Nanoelectropulse-driven membrane perturbation and small molecule permeabilization. BMC Cell Biol 7:37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vernier PT, Levine ZA, Gundersen MA (2013) Water bridges in electropermeabilized phospholipid bilayers. Proc IEEE 101:494–504

    Article  CAS  Google Scholar 

  • Walkling-Ribeiro M, Noci F, Riener J, Cronin DA, Lyng JG, Morgan DJ (2009) The impact of thermosonication and pulsed electric fields on Staphylococcus aureus inactivation and selected quality parameters in orange juice. Food Bioprocess Technol 2:422–430

    Article  Google Scholar 

  • Walkling-Ribeiro M, Rodríguez-González O, Jayaram SH, Griffiths MW (2011) Processing temperature, alcohol and carbonation levels and their impact on pulsed electric fields (PEF) mitigation of selected characteristic microorganisms in beer. Food Res Int 44:2524–2533

    Article  CAS  Google Scholar 

  • Wang MS, Wang LH, Bekhit AE, Yang J, Hou ZP, Wang YZ, Dai QZ, Zeng XA (2018) A review of sublethal effects of pulsed electric field on cells in food processing. J Food Eng 223:32–41

    Article  CAS  Google Scholar 

  • Wouters PC, Alvarez I, Raso J (2001) Critical factors determining inactivation kinetics by pulsed electric field food processing. Trends Food Sci Technol 12:112–121

    Article  CAS  Google Scholar 

  • Yang N, Huang K, Lyu C, Wang J (2016) Pulsed electric field technology in the manufacturing processes of wine, beer, and rice wine: a review. Food Control 61:28–38

    Article  CAS  Google Scholar 

  • Zhang Q, Zhuang J, von Woedtke T, Kolb JF, Zhang J, Fang J, Weltmann KD (2014) Synergistic antibacterial effects of treatments with low temperature plasma jet and pulsed electric fields. Appl Phys Lett 105:104103

    Article  CAS  Google Scholar 

  • Zhao W, Yang R, Lu R, Wang M, Qian P, Yang W (2008) Effect of PEF on microbial inactivation and physical–chemical properties of green tea extracts. LWT Food Sci Technol 41:425–431

    Article  CAS  Google Scholar 

  • Zhao W, Yang R, Zhang HQ (2012) Recent advances in the action of pulsed electric fields on enzymes and food component proteins. Trends Food Sci Technol 27:83–96

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allen L. Garner.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garner, A.L. Pulsed electric field inactivation of microorganisms: from fundamental biophysics to synergistic treatments. Appl Microbiol Biotechnol 103, 7917–7929 (2019). https://doi.org/10.1007/s00253-019-10067-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-10067-y

Keywords

Navigation