Skip to main content
Log in

Enhanced calcite precipitation for crack healing by bacteria isolated under low-nitrogen conditions

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A nitrogen-starving isolation strategy was developed for the first time to screen bacteria with high calcium-precipitating activity (CPA) for bioremediation of damage in porous media. Meanwhile, a novel mini-tube method based on the detection of insoluble Ca2+ was established to evaluate the CPA of the isolates. A low-nitrogen-demanding strain B6, identified as Bacillus sp., was screened to exhibit the highest CPA (55 mM insoluble Ca2+). Furthermore, the effects of environmental factors and nutrient availability on B6-induced calcium precipitation were evaluated. The results show that nitrate and starch are the best nitrogen source and carbon source with optimal concentration being 4 and 2 g L−1, respectively. The suitable pH range for B6 to precipitate calcium is from 8.5 to 10.5. B6 can maintain the highest CPA at an initial spore concentration of 1.0 × 108 spores·mL−1. The optimal CaO2 dosage is 10 g L−1. Finally, the calcite precipitation is confirmed by ESEM, EDS, and XRD analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 51508338, No. 51578339, No. 51120185002) and the Project of Department of Education of Guangdong Province (No. 2017GKTSCX064).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Xing or Xu Deng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Xie, L., Huang, X. et al. Enhanced calcite precipitation for crack healing by bacteria isolated under low-nitrogen conditions. Appl Microbiol Biotechnol 103, 7971–7982 (2019). https://doi.org/10.1007/s00253-019-10066-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-10066-z

Keywords

Navigation