Skip to main content

Advertisement

Log in

Cascade biocatalysis systems for bioactive naringenin glucosides and quercetin rhamnoside production from sucrose

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

A Correction to this article was published on 22 August 2019

This article has been updated

Abstract

Two sustainable and cost-effective cascade enzymatic systems were developed to regenerate uridine diphosphate (UDP)-α-d-glucose and UDP-β-l-rhamnose from sucrose. The systems were coupled with the UDP generating glycosylation reactions of UDP sugar–dependent glycosyltransferase (UGT) enzymes mediated reactions. As a result, the UDP generated as a by-product of the GT-mediated reactions was recycled. In the first system, YjiC, a UGT from Bacillus licheniformis DSM 13, was used for transferring glucose from UDP-α-d-glucose to naringenin, in which AtSUS1 from Arabidopsis thaliana was used to synthesize UDP-α-d-glucose and fructose as a by-product from sucrose. In the second system, flavonol 7-O-rhamnosyltransferase (AtUGT89C1) from A. thaliana was used to transfer rhamnose from UDP-β-l-rhamnose to quercetin, in which AtSUS1 along with UDP-β-l-rhamnose synthase (AtRHM1), also from A. thaliana, were used to produce UDP-β-l-rhamnose from the same starter sucrose. The established UDP recycling system for the production of naringenin glucosides was engineered and optimized for several reaction parameters that included temperature, metal ions, NDPs, pH, substrate ratio, and enzymes ratio, to develop a highly feasible system for large-scale production of different derivatives of naringenin and other natural products glucosides, using inexpensive starting materials. The developed system showed the conversion of about 37 mM of naringenin into three different glucosides, namely naringenin, 7-O-β-d-glucoside, naringenin, 4′-O-β-d-glucoside, and naringenin, 4′,7-O-β-d-diglucoside. The UDP recycling (RCmax) was 20.10 for naringenin glucosides. Similarly, the conversion of quercetin to quercetin 7-O-α-l-rhamnoside reached a RCmax value of 10.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 22 August 2019

    The name of the author “Yamaguchi Tokutaro” is incorrect for the first and last name has been interchanged. The correct presentation is “Tokutaro Yamaguchi”.

References

  • Antonopoulou I, Varriale S, Topakas E, Rova U, Christakopoulos P, Faraco V (2016) Enzymatic synthesis of bioactive compounds with high potential for cosmeceutical application. Appl Microbiol Biotechnol 100:6519–6543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cavia-Saiz M, Busto MD, Pilar-Izquierdo MC, Ortega N, Perez-Mateos M, Muñiz P (2010) Antioxidant properties, radical scavenging activity, and biomolecule protection capacity of flavonoid naringenin and its glycoside naringin: a comparative study. J Sci Food Agric 90:1238–1244

    Article  CAS  PubMed  Google Scholar 

  • Chouhan S, Sharma K, Zha J, Guleria S, Koffas MA (2017) Recent advances in the recombinant biosynthesis of polyphenols. Front Microbiol 8:2259

    Article  PubMed  PubMed Central  Google Scholar 

  • Danishefsky SJ, Bilodeau MT (1996) Glycals in organic synthesis: the evolution of comprehensive strategies for the assembly of oligosaccharides and glycoconjugates of biological consequence. Angew Chem Int Ed 35:1380–1419

    Article  CAS  Google Scholar 

  • Darsandhari S, Pandey RP, Shrestha B, Parajuli P, Liou K, Sohng JK (2018) One-pot multienzyme cofactors recycling (OPME-CR) system for lactose and non-natural saccharide conjugated polyphenol production. J Agric Food Chem 66:7965–7974

    Article  CAS  PubMed  Google Scholar 

  • Daudé D, André I, Monsan P, Remaud-Siméon M (2014) Successes in engineering glucansucrases to enhance glycodiversification. In: Rauter AP, Lindhorst T, Queneau Y (eds) Carbohydrate Chemistry, Volume 40. The Royal Society of Chemistry, Cambridge, pp 624–645

    Chapter  Google Scholar 

  • De Bruyn F, Maertens J, Beauprez J, Soetaert W, De Mey M (2015) Biotechnological advances in UDP-sugar based glycosylation of small molecules. Biotechnol Adv 33:288–302

    Article  CAS  PubMed  Google Scholar 

  • Deng X, Wang Z, Liu J, Xiong S, Xiong R, Cao X, Tang G (2017) Design, synthesis and biological evaluation of flavonoid salicylate derivatives as potential anti-tumor agents. RSC Adv 7:38171–38178

    Article  CAS  Google Scholar 

  • Diricks M, Gutmann A, Debacker S, Dewitte G, Nidetzky B, Desmet T (2017) Sequence determinants of nucleotide binding in sucrose synthase: improving the affinity of a bacterial sucrose synthase for UDP by introducing plant residues. Protein Eng Des Sel 30:143–150

    CAS  Google Scholar 

  • Du G, Jin L, Han X, Song Z, Zhang H, Liang W (2009) Naringenin: a potential immunomodulator for inhibiting lung fibrosis and metastasis. J Cancer Res Ther 69:3205–3212

    CAS  Google Scholar 

  • Felgines C, Texier O, Morand C, Manach C, Scalbert A, Régerat F, Rémésy C (2000) Bioavailability of the flavanone naringenin and its glycosides in rats. Am J Physiol Gastrointest Liver Physiol 279:G1148–G1154

    Article  CAS  PubMed  Google Scholar 

  • Figueroa CM, Asención Diez MD, Kuhn ML, McEwen S, Salerno GL, Iglesias AA, Ballicora MA (2013) The unique nucleotide specificity of the sucrose synthase from Thermosynechococcus elongatus. FEBS Lett 587:165–169

    Article  CAS  PubMed  Google Scholar 

  • Gantt RW, Peltier-Pain P, Thorson JS (2011) Enzymatic methods for glyco (diversification/randomization) of drugs and small molecules. Nat Prod Rep 28:1811–1853

    Article  CAS  PubMed  Google Scholar 

  • Gurung RB, Kim EH, Oh TJ, Sohng JK (2013) Enzymatic synthesis of apigenin glucosides by glucosyltransferase (YjiC) from Bacillus licheniformis. DSM Mol Cell 36:355–361

    Article  CAS  Google Scholar 

  • Gutmann A, Bungaruang L, Weber H, Leypold M, Breinbauer R, Nidetzky B (2014) Towards the synthesis of glycosylated dihydrochalcone natural products using glycosyltransferase-catalysed cascade reactions. Green Chem 16:4417–4425

    Article  CAS  Google Scholar 

  • Gutmann A, Lepak A, Diricks M, Desmet T, Nidetzky B (2017) Glycosyltransferase cascades for natural product glycosylation: use of plant instead of bacterial sucrose synthases improves the UDP-glucose recycling from sucrose and UDP. Biotechnol J 12:1600557

    Article  CAS  Google Scholar 

  • He X, Ou HY, Yu Q, Zhou X, Wu J, Liang J (2015) Analysis of a genomic island housing genes for DNA S-modification system in Streptomyces lividans 66 and its counterparts in other distantly related bacteria. Mol Microbiol 65:1034–1048

    Article  CAS  Google Scholar 

  • Jang SW, Cho CH, Jung YS, Rha C, Nam TG, Kim DO, Baek NI, Park CS, Lee BH, Shin HS, Seo DH, Lee SY (2018) Enzymatic synthesis of α-flavone glucoside via regioselective transglucosylation by amylosucrase from Deinococcus geothermalis. PLoS One 13:e0207466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan AW, Kotta S, Ansari SH, Sharma RK, Ali J (2015) Enhanced dissolution and bioavailability of grapefruit flavonoid naringenin by solid dispersion utilizing fourth generation carrier. Drug Dev Ind Pharm 41:772–779

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Kim BG, Ahn JH (2013) Regioselective synthesis of flavonoid bisglycosides using Escherichia coli harboring two glycosyltransferases. Appl Microbiol Biotechnol 97:5275–5282

    Article  CAS  PubMed  Google Scholar 

  • Kim B, Park H, Na D, Lee SY (2014) Metabolic engineering of Escherichia coli for the production of phenol from glucose. Biotechnol J 9:621–629

    Article  CAS  PubMed  Google Scholar 

  • Kim BG, Yang SM, Kim SY, Cha MN, Ahn JH (2015) Biosynthesis and production of glycosylated flavonoids in Escherichia coli: current state and perspectives. Appl Microbiol Biotechnol 99:2979–2988

    Article  CAS  PubMed  Google Scholar 

  • Koirala N, Pandey RP, Parajuli P, Jung HJ, Sohng JK (2014) Methylation and subsequent glycosylation of 7, 8-dihydroxyflavone. J Biotechnol 184:128–137

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J 2013:162750

    Google Scholar 

  • Le TT, Pandey RP, Gurung RB, Dhakal D, Sohng JK (2014) Efficient enzymatic systems for synthesis of novel α-mangostin glycosides exhibiting antibacterial activity against gram-positive bacteria. Appl Microbiol Biotechnol 98:8527–8538

    Article  CAS  PubMed  Google Scholar 

  • Lee BH, Pyo MK, Lee JH, Choi SH, Shin TJ, Lee SM, Yun-Choi HS (2008) Differential regulations of quercetin and its glycosides on ligand-gated ion channels. Biol Pharm Bull 31:611–617

    Article  CAS  PubMed  Google Scholar 

  • Lee HS, Kim TS, Parajuli P, Pandey RP, Sohng JK (2018) Sustainable production of dihydroxybenzene glucosides using immobilized amylosucrase from Deinococcus geothermalis. J Microbiol Biotechnol 28:1447–1456

    Article  CAS  PubMed  Google Scholar 

  • Leonardi T, Vanamala J, Taddeo SS, Davidson LA, Murphy ME, Patil BS, Turner ND (2010) Apigenin and naringenin suppress colon carcinogenesis through the aberrant crypt stage in azoxymethane-treated rats. Exp Biol Med 235:710–717

    Article  CAS  Google Scholar 

  • Lewandowska U, Szewczyk K, Hrabec E, Janecka A, Gorlach S (2013) Overview of metabolism and bioavailability enhancement of polyphenols. J Agric Food Chem 61:12183–12199

    Article  CAS  PubMed  Google Scholar 

  • Manach C, Donovan JL (2004) Pharmacokinetics and metabolism of dietary flavonoids in humans. Free Radic Res 38:771–785

    Article  CAS  PubMed  Google Scholar 

  • Masada S, Kawase Y, Nagatoshi M, Oguchi Y, Terasaka K, Mizukami H (2007) An efficient chemoenzymatic production of small molecule glucosides with in situ UDP-glucose recycling. FEBS Lett 581:2562–2566

    Article  CAS  PubMed  Google Scholar 

  • Mei YZ, Liu RX, WangDP WX, Dai CC (2015) Biocatalysis and biotransformation of resveratrol in microorganisms. Biotechnol Lett 37:9–18

    Article  CAS  PubMed  Google Scholar 

  • Muthana MM, Qu J, Li Y, Zhang L, Yu H, Ding L, Chen X (2012) Efficient one-pot multienzyme synthesis of UDP-sugars using a promiscuous UDP-sugar pyrophosphorylase from Bifidobacterium longum (BLUSP). Chem Commun 48:2728–2730

    Article  CAS  Google Scholar 

  • Myung SK, Kim Y, Ju W, Choi HJ, Bae WK (2009) Effects of antioxidant supplements on cancer prevention: meta-analysis of randomized controlled trials. Ann Oncol 21:166–179

    Article  PubMed  Google Scholar 

  • Nicolaou KC, Mitchell HJ (2001) Adventures in carbohydrate chemistry: new synthetic technologies, chemical synthesis, molecular design, and chemical biology. Angew Chem Int Ed 40:1576–1624

    Article  CAS  Google Scholar 

  • Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5:e47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey RP, Li TF, Kim EH, Yamaguchi T, Park YI, Kim JS, Sohng JK (2013) Enzymatic synthesis of novel phloretin glucosides. Appl Environ Microbiol 79:3516–3521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey RP, Parajuli P, Shin JY, Lee J, Lee S, Hong YS, Sohng JK (2014) Enzymatic biosynthesis of novel resveratrol glucoside and glycoside derivatives. Appl Environ Microbiol 80:7235–7243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey RP, Parajuli P, Chu LL, Darsandhari S, Sohng JK (2015) Biosynthesis of amino deoxy-sugar-conjugated flavonol glycosides by engineered Escherichia coli. Biochem Eng J 101:191–199

    Article  CAS  Google Scholar 

  • Pandey RP, Parajuli P, Koffas MAG, Sohng JK (2016) Microbial production of natural and non-natural flavonoids: pathway engineering, directed evolution and systems/synthetic biology. Biotechnol Adv 34:634–662

    Article  CAS  PubMed  Google Scholar 

  • Parajuli P, Pandey RP, Trang NTH, Oh TJ, Sohng JK (2015) Expanded acceptor substrates flexibility study of flavonol 7-O-rhamnosyltransferase, AtUGT89C1 from Arabidopsis thaliana. Carbohydr Res 418:13–19

    Article  CAS  PubMed  Google Scholar 

  • Park H, Kim J, Park JH, Baek NI, Park CS, Lee HS, Cha J (2012) Bioconversion of piceid to piceid glucoside using amylosucrase from Alteromonas macleodii deep ecotype. J Microbiol Biotechnol 22:1698–1704

    Article  CAS  PubMed  Google Scholar 

  • Pei J, Chen A, Zhao L, Cao F, Ding G, Xiao W (2017) One-pot synthesis of hyperoside by a three-enzyme cascade using a UDP-galactose regeneration system. J Agric Food Chem 65:6042–6048

    Article  CAS  PubMed  Google Scholar 

  • Qin L, Jin L, Lu L, Lu X, Zhang C, Zhang F, Liang W (2011) Naringenin reduces lung metastasis in a breast cancer resection model. Protein Cell 2:507–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roepke J, Bozzo GG (2013) Biocatalytic synthesis of quercetin 3-O-glucoside-7-O-rhamnoside by metabolic engineering of Escherichia coli. ChemBioChem 14:2418–2422

    Article  CAS  PubMed  Google Scholar 

  • Rosencrantz RR, Lange B, Elling L (2014) Chemo-enzymatic cascade reactions for the synthesis of glycoconjugates. In: Riva S, Fessner WD (eds) Cascade biocatalysis. Wiley, Weinheim, pp 133–160

    Google Scholar 

  • Rouseff RL, Martin SF, Youtsey CO (1987) Quantitative survey of narirutin, naringin, hesperidin, and neohesperidin in citrus. J Agric Food Chem 35:1027–1030

    Article  CAS  Google Scholar 

  • Schmölzer K, Gutmann A, Diricks M, Desmet T, Nidetzky B (2016) Sucrose synthase: a unique glycosyltransferase for biocatalytic glycosylation process development. Biotechnol Adv 34:88–111

    Article  CAS  PubMed  Google Scholar 

  • Schmölzer K, Lemmerer M, Gutmann A, Nidetzky B (2017) Integrated process design for biocatalytic synthesis by a leloir glycosyltransferase: UDP-glucose production with sucrose synthase. Biotechnol Bioeng 114:924–928

    Article  CAS  PubMed  Google Scholar 

  • Shiloach J, Fass R (2005) Growing E. coli to high cell density – a historical perspective on method development. Biotechnol Adv 23:345–357

    Article  CAS  PubMed  Google Scholar 

  • Shomar H, Gontier S, van den Broek NJ, Mora HT, Noga MJ, Hagedoorn PL, Bokinsky G (2018) Metabolic engineering of a carbapenem antibiotic synthesis pathway in Escherichia coli. Nat Chem Biol 1:794–800

    Article  CAS  Google Scholar 

  • Simkhada D, Kurumbang NP, Lee HC, Sohng JK (2010) Exploration of glycosylated flavonoids from metabolically engineered E. coli. Biotechnol Bioprocess Eng 15:754–760

    Article  CAS  Google Scholar 

  • Teles Y, Souza M (2018) Sulphated flavonoids: biosynthesis, structures, and biological activities. Molecules 23:480

    Article  CAS  PubMed Central  Google Scholar 

  • Terasaka K, Mizutani Y, Nagatsu A, Mizukami H (2012) In situ UDP-glucose regeneration unravels diverse functions of plant secondary product glycosyltransferases. FEBS Lett 586:4344–4350

    Article  CAS  PubMed  Google Scholar 

  • Tian Y, Xu W, Zhang W, Zhang T, Guang C, Mu W (2018) Amylosucrase as a transglucosylation tool: from molecular features to bioengineering applications. Biotechnol Adv 36:1540–1552

    Article  CAS  PubMed  Google Scholar 

  • Trantas EA, Koffas MA, Xu P, Ververidis F (2015) When plants produce not enough or at all: metabolic engineering of flavonoids in microbial hosts. Front Plant Sci 6:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiao J, Muzashvili TS, Georgiev MI (2014) Advances in the biotechnological glycosylation of valuable flavonoids. Biotechnol Adv 32:1145–1156

    Article  CAS  PubMed  Google Scholar 

  • Xie L, Zhang L, Wang C, Wang X, Xu YM, YuH WX (2018) Methylglucosylation of aromatic amino and phenolic moieties of drug-like biosynthons by combinatorial biosynthesis. Proc Natl Acad Sci 115:E4980–E4989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Qi T, Xu L, Lu L, Xiao M (2016) Recent progress in the enzymatic glycosylation of phenolic compounds. J Carbohydr Chem 35:1–23

    Article  CAS  Google Scholar 

  • Yıldız SZ, Küçükislamoğlu M, Tuna M (2009) Synthesis and characterization of novel flavonoid-substituted phthalocyanines using (±) naringenin. J Org Chem 694:4152–4161

    Article  CAS  Google Scholar 

  • Yin R, Han K, Heller W, Albert A, Dobrev PI, Zažímalová E, Schäffner AR (2014) Kaempferol 3-O-rhamnoside-7-O-rhamnoside is an endogenous flavonol inhibitor of polar auxin transport in Arabidopsis shoots. New Phytol 201:466–475

    Article  CAS  PubMed  Google Scholar 

  • Yuan S, Yin S, Liu M, Kong JQ (2018) Isolation and characterization of a multifunctional flavonoid glycosyltransferase from Ornithogalum caudatum with glycosidase activity. Sci Rep 8:5886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YX, Chen SL (2006) Molecular identification, polymorphism, and expression analysis of major histocompatibility complex class IIA and B genes of turbot (Scophthalmus maximus). Mar Biotechnol 8:611–623

    Article  CAS  Google Scholar 

  • Zhang J, Singh S, Hughes RR, Zhou M, Sunkara M, Morris AJ, Thorson JS (2014) A simple strategy for glycosyltransferase-catalyzed aminosugar nucleotide synthesis. ChemBioChem 15:647–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by a grant from the Next-Generation BioGreen 21 Program (SSAC, grant no. PJ013137), Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Kyung Sohng.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: The name of the author “Yamaguchi Tokutaro” is incorrect for the first and last name has been interchanged. The correct presentation is “Tokutaro Yamaguchi”.

Electronic supplementary material

ESM 1

(PDF 6374 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thapa, S.B., Pandey, R.P., Bashyal, P. et al. Cascade biocatalysis systems for bioactive naringenin glucosides and quercetin rhamnoside production from sucrose. Appl Microbiol Biotechnol 103, 7953–7969 (2019). https://doi.org/10.1007/s00253-019-10060-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-10060-5

Keywords

Navigation