Skip to main content

Advertisement

Log in

Biosynthetic strategies to produce xylitol: an economical venture

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Xylitol is a natural five-carbon sugar alcohol with potential for use in food and pharmaceutical industries owing to its insulin-independent metabolic regulation, tooth rehardening, anti-carcinogenic, and anti-inflammatory, as well as osteoporosis and ear infections preventing activities. Chemical and biosynthetic routes using D-xylose, glucose, or biomass hydrolysate as raw materials can produce xylitol. Among these methods, microbial production of xylitol has received significant attention due to its wide substrate availability, easy to operate, and eco-friendly nature, in contrast with high-energy consuming and environmental-polluting chemical method. Though great advances have been made in recent years for the biosynthesis of xylitol from xylose, glucose, and biomass hydrolysate, and the yield and productivity of xylitol are substantially improved by metabolic engineering and optimizing key metabolic pathway parameters, it is still far away from industrial-scale biosynthesis of xylitol. In contrary, the chemical synthesis of xylitol from xylose remains the dominant route. Economic and highly efficient xylitol biosynthetic strategies from an abundantly available raw material (i.e., glucose) by engineered microorganisms are on the hard way to forwarding. However, synthetic biology appears as a novel and promising approach to develop a super yeast strain for industrial production of xylitol from glucose. After a brief overview of chemical-based xylitol production, we critically analyzed and comprehensively summarized the major metabolic strategies used for the enhanced biosynthesis of xylitol in this review. Towards the end, the study is wrapped up with current challenges, concluding remarks, and future prospects for designing an industrial yeast strain for xylitol biosynthesis from glucose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad I, Shim WY, Kim JH (2013) Enhancement of xylitol production in glycerol kinase disrupted Candida tropicalis by co-expression of three genes involved in glycerol metabolic pathway. Bioprocess Biosyst Eng 36:1279–1284

    Article  CAS  PubMed  Google Scholar 

  • Ahmed Z (2001) The properties of Candida famata R28 for D-arabitol production from D-glucose. Online J Biol Sci 1(11):1005–1008

    Article  Google Scholar 

  • Akinterinwa O, Cirino P (2009) Heterologous expression of D-xylulokinase from Pichia stipitis enables high levels of xylitol production by engineered Escherichia coli growing on xylose. Metab Eng 11(1):48–55

    Article  CAS  PubMed  Google Scholar 

  • Akinterinwa O, Khankal R, Cirino PC (2008) Metabolic engineering for bioproduction of sugar alcohols. Curr Opin Biotechnol 19(5):461–467

    Article  CAS  PubMed  Google Scholar 

  • Albuquerque TLD, Jr IJDS, Macedo GRD, Rocha MVP (2014) Biotechnological production of xylitol from lignocellulosic wastes: a review. Process Biochem 49(11):1779–1789

    Article  CAS  Google Scholar 

  • Aranda-Barradas JS, Delia ML, Riba JP (2000) Kinetic study and modelling of the xylitol production using Candida parapsilosis in oxygen-limited culture conditions. Bioprocess Eng 22(3):219–225

    Article  CAS  Google Scholar 

  • Bae SM, Park YC, Lee TH, Kweon DH, Choi JH, Kim SK, Ryu YW, Seo JH (2004) Production of xylitol by recombinant Saccharomyces cerevisiae containing xylose reductase gene in repeated fed-batch and cell-recycle fermentations. Enzym Microb Technol 35(6):545–549

    Article  CAS  Google Scholar 

  • Banta S, Swanson BA, Wu S, Jarnagin A, Anderson S (2002) Alteration of the specificity of the cofactor-binding pocket of Corynebacterium 2,5-diketo-D-gluconic acid reductase A. Protein Des Eng Sel 15:131–140

    Article  CAS  Google Scholar 

  • Bilal M, Asgher M, Parra-Saldivar R, Hu H, Wang W, Zhang X, Iqbal HMN (2017) Immobilized ligninolytic enzymes: an innovative and environmental responsive technology to tackle dye-based industrial pollutants—a review. Sci Total Environ 576:646–659

    Article  CAS  PubMed  Google Scholar 

  • Bilal M, Iqbal HM, Hu H, Wang W, Zhang X (2018a) Metabolic engineering pathways for rare sugars biosynthesis, physiological functionalities, and applications—a review. Crit Rev Food Sci Nutr 58(16):2768–2778

    Article  CAS  PubMed  Google Scholar 

  • Bilal M, Iqbal HM, Hu H, Wang W, Zhang X (2018b) Metabolic engineering and enzyme-mediated processing: a biotechnological venture towards biofuel production—a review. Renew Sust Energ Rev 82:436–447

    Article  CAS  Google Scholar 

  • Bilal M, Nawaz MZ, Iqbal H, Hou J, Mahboob S, Al-Ghanim KA, Cheng H (2018c) Engineering ligninolytic consortium for bioconversion of lignocelluloses to ethanol and chemicals. Protein Pept Lett 25(2):108–119

    Article  CAS  PubMed  Google Scholar 

  • Blakley ER, Spencer JF (1962) Studies on the formation of D-arabitol by osmophilic yeasts. Can J Biochem Physiol 40(12):1737–1748

    Article  CAS  PubMed  Google Scholar 

  • Bolen PL, Mccracken DA (1990) Properties of aldose reductase from the methanol yeast Candida boidinii. J Ferment Bioeng 69(4):211–214

    Article  CAS  Google Scholar 

  • Bon EPS, Ferrara MA, Corvo ML (2008) Enzimas em Biotecnologia - Produção, Aplicação e Mercado (Enzymes in biotechnology: production, application and market). Interciência, Rio de Janeiro

    Google Scholar 

  • Brígida AIS, Amaral PFF, Coelho MAZ, Gonçalves LRB (2014) Lipase from Yarrowia lipolytica: production, characterization and application as an industrial biocatalyst. J Mol Catal B Enzym 101(2):148–158

    Article  CAS  Google Scholar 

  • Bruinenberg PM, Bot PHMD, Dijken JPV, Scheffers WA (1983) The role of redox balances in the anaerobic fermentation of xylose by yeasts. Eur J Appl Microbiol Biotechnol 18(5):287–292

    Article  CAS  Google Scholar 

  • Carvalho GB, Mussatto SI, Cândido EJ, Silva JBAE (2010) Comparison of different procedures for the detoxification of eucalyptus hemicellulosic hydrolysate for use in fermentative processes. J Chem Technol Biotechnol 81(2):152–157

    Article  CAS  Google Scholar 

  • Cassland P, Jönsson LJ (1999) Characterization of a gene encoding Trametes versicolor laccase A and improved heterologous expression in Saccharomyces cerevisiae by decreased cultivation temperature. Appl Microbiol Biotechnol 52(3):393–400

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Zhang Y, Wang Y, Ji X, Zhang L, Mi X, Huang H (2013) Removal of inhibitors from lignocellulosic hydrolyzates by vacuum membrane distillation. Bioresour Technol 144:680–683

    Article  CAS  PubMed  Google Scholar 

  • Cheng H, Li Z, Jiang N, Deng Z (2009) Cloning, purification and characterization of an NAD-dependent D-Arabitol dehydrogenase from acetic acid bacterium, Acetobacter suboxydans. Protein J 28(6):263–272

    Article  CAS  PubMed  Google Scholar 

  • Cheng H, Wang B, Lv J, Jiang M, Lin S, Deng Z (2011) Xylitol production from xylose mother liquor: a novel strategy that combines the use of recombinant Bacillus subtilis and Candida maltosa. Microb Cell Factories 10:5

    Article  CAS  Google Scholar 

  • Cheng H, Lv J, Wang H, Wang B, Li Z, Deng Z (2014) Genetically engineered Pichia pastoris yeast for conversion of glucose to xylitol by a single-fermentation process. Appl Microbiol Biotechnol 98(8):3539–3552

    Article  CAS  PubMed  Google Scholar 

  • Cheng H, Wang S, Bilal M, Ge X, Zhang C, Fickers P, Cheng H (2018) Identification, characterization of two NADPH-dependent erythrose reductases in the yeast Yarrowia lipolytica and improvement of erythritol productivity using metabolic engineering. Microb Cell Factories 17:133

    Article  CAS  Google Scholar 

  • Chin JW, Cirino PC (2011) Improved NADPH supply for xylitol production by engineered Escherichia coli with glycolytic mutations. Biotechnol Prog 27(2):333–341

    Article  CAS  PubMed  Google Scholar 

  • Chun BW, Dair B, Macuch PJ, Wiebe D, Porteneuve C, Jeknavorian A (2006) The development of cement and concrete additive: based on xylonic acid derived via bioconversion of xylose. Appl Microbiol Biotechnol 129-132(1–3):645

    CAS  Google Scholar 

  • Cirino PC, Chin JW, Ingram LO (2010) Engineering Escherichia coli for xylitol production from glucose-xylose mixtures. Biotechnol Bioeng 95(6):1167–1176

    Article  CAS  Google Scholar 

  • Converti A, Parego P, Domínguez JM (1999) Xylitol production from hardwood hemicellulose hydrosylates. Appl Biochem Biotechnol 82:141–151

    Article  CAS  Google Scholar 

  • Cruz JM, Domínguez JM, Domínguez H, Parajó JC (2000) Xylitol production from barley bran hydrolysates by continuous fermentation with Debaryomyces hansenii. Biotechnol Lett 22(23):1895–1898

    Article  CAS  Google Scholar 

  • Darvishi Farshad AM, Marella ER, Borodina I (2018) Advances in synthetic biology of oleaginous yeast Yarrowia lipolytica for producing non-native chemicals. Appl Microbiol Biotechnol 102(14):5925–5938

    Article  CAS  PubMed  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. PNAS 97(12):6640–6645

    Article  CAS  PubMed  Google Scholar 

  • De Albuquerque TL, Gomes SDL, Marques JE Jr, da Silva IJ Jr, Rocha MVP (2015) Xylitol production from cashew apple bagasse by Kluyveromyces marxianus CCA510. Catal Today 255:33–40

    Article  CAS  Google Scholar 

  • Díaz-Fernández D, Lozano-Martínez P, Buey RM, Revuelta JL, Jiménez A (2017) Utilization of xylose by engineered strains of Ashbya gossypii for the production of microbial oils. Biotechnol Biofuels 10(1):3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dien BS, Hespell RB, Ingram LO, Bothast RJ (1997) Conversion of corn milling fibrous co-products into ethanol by recombinant Escherichia coli strains K011 and SL40. World J Microbiol Biotechnol 13(6):619–625

    Article  CAS  Google Scholar 

  • Dien BS, Nichols NN, O'Bryan PJ, Bothast RJ (2000) Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass. Appl Biochem Biotechnol 84-86:181–196

    Article  CAS  PubMed  Google Scholar 

  • Einav T, Duque J, Phillips R (2018) Theoretical analysis of inducer and operator binding for cyclic-AMP receptor protein mutants. PLoS One 13(9):e0204275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escalante J, Caminal G, Figueredo M, Mas CD (1990) Production of arabitol from glucose by Hansenula polymorpha. J Ferment Bioeng 70(4):228–231

    Article  CAS  Google Scholar 

  • Fickers P, Benetti PH, Waché Y, Marty A, Mauersberger S, Smit MS, Nicaud JM (2005) Hydrophobic substrate utilisation by the yeast, and its potential applications. FEMS Yeast Res 5(6–7):527–543

    Article  CAS  PubMed  Google Scholar 

  • Fonseca BG, Moutta RO, Ferraz FO, Vieira ER, Nogueira AS, Baratella BF, Rodrigues LC, Hourui Z, Da SS (2011) Biological detoxification of different hemicellulosic hydrolysates using Issatchenkia occidentalis CCTCC M 206097 yeast. J Ind Microbiol Biotechnol 38(1):199–207

    Article  CAS  PubMed  Google Scholar 

  • Ford G, Ellis EM (2001) Aldo-keto reductases of the yeast Saccharomyces cerevisiae. Chem-Biol Interac 130-132(1–3):685–698

    Article  CAS  Google Scholar 

  • Franceschin G, Sudiro M, Ingram T, Smirnova I, Brunner G, Bertucco A (2011) Conversion of rye straw into fuel and xylitol: a technical and economical assessment based on experimental data. Chem Eng Res Des 89(6):631–640

    Article  CAS  Google Scholar 

  • de Freitas Branco R, Chandel AK, da Silva SS (2012) Enzymatic production of xylitol: current status and future perspectives. In: D-Xylitol. Springer, Berlin, pp 193–204

    Chapter  Google Scholar 

  • Furlan SA, Bouilloud P, Castro HFD (1994) Influence of oxygen on ethanol and xylitol production by xylose fermenting yeasts. Process Biochem 29(8):657–662

    Article  CAS  Google Scholar 

  • Galar ML, Boiardi JL (1995) Evidence for a membrane-bound pyrroloquinoline quinone-linked glucose dehydrogenase in Acetobacter diazotrophicus. Appl Microbiol Biotechnol 43(4):713–716

    Article  CAS  Google Scholar 

  • Gonçalves FAG, Colen G, Takahashi JA (2014) Yarrowia lipolytica and its multiple applications in the biotechnological industry. Sci World J 2014:476207

    Article  Google Scholar 

  • Govinden R, Pillai B, van Zyl WH, Pillay D (2001) Xylitol production by recombinant Saccharomyces cerevisae expressing the Pichia stipitis and Candida shehatae XYL1 genes. Appl Microbiol Biotechnol 55:76–80

    Article  CAS  PubMed  Google Scholar 

  • Granström TB, Izumori K, Leisola M (2007a) A rare sugar xylitol. Part I: the biochemistry and biosynthesis of xylitol. Appl Microbiol Biotechnol 74(2):277–281

    Article  CAS  PubMed  Google Scholar 

  • Granström TB, Izumori K, Leisola M (2007b) A rare sugar xylitol. Part II: biotechnological production and future applications of xylitol. Appl Microbiol Biotechnol 74(2):273–276

    Article  CAS  PubMed  Google Scholar 

  • Häcker B, Habenicht A, Kiess M, Mattes R (1999) Xylose utilisation: cloning and characterisation of the xylose reductase from Candida tenuis. Biol Chem 380(12):1395–1403

    Article  PubMed  Google Scholar 

  • Hallborn J, Walfridsson M, Airaksinen U, Ojamo H, Hahn-Hägerdal B, Penttilä M, Keräsnen S (1991) Xylitol production by recombinant Saccharomyces cerevisiae. Nat Biotechnol 9(11):1090–1095

    Article  CAS  Google Scholar 

  • Hardy GP, Mj TDM, Neijssel OM (1993) Energy conservation by pyrroloquinoline quinol-linked xylose oxidation in Pseudomonas putida NCTC 10936 during carbon-limited growth in chemostat culture. FEMS Microbiol Lett 107(1):107–110

    Article  CAS  PubMed  Google Scholar 

  • Harkki AM, Myasnikov AN, Apajalahti JHA, Pastinen OA (2004) Manufacture of xylitol using recombinant microbial hosts. United States Patent 6723540

  • Hong Y, Dashtban M, Kepka G, Chen S, Qin W (2014a) Overexpression of D-xylose reductase (xyl1) gene and antisense inhibition of D-xylulokinase (xyiH) gene increase xylitol production in Trichoderma reesei. Biomed Res Int 2014:169705–169705

    PubMed  PubMed Central  Google Scholar 

  • Hong Y, Dashtban M, Kepka G, Chen S, Qin W (2014b) Overexpression of d-xylose reductase (xyl1) gene and antisense inhibition of dxylulokinase (xyiH) gene increase xylitol production in Trichoderma reesei. Biomed Res Int 2014:8–8

    Google Scholar 

  • Ingram JM, Wood WA (1965) Enzymatic basis for D-arabitol production by Saccharomyces rouxii. J Bacteriol 89(5):1186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Izumori K, Tuzaki K (1988) Production of xylitol from D-xylulose by Mycobacterium smegmatis. J Ferment Technol 66(1):33–36

    Article  CAS  Google Scholar 

  • Jeon WY, Yoon BH, Ko BS, Shim WY, Kim JH (2012) Xylitol production is increased by expression of codon-optimized Neurospora crassa xylose reductase gene in Candida tropicalis. Bioprocess Biosyst Eng 35(1–2):191–198

    Article  CAS  PubMed  Google Scholar 

  • Jeon WY, Shim WY, Lee SH, Choi JH, Kim JH (2013) Effect of heterologous xylose transporter expression in Candida tropicalis on xylitol production rate. Bioprocess Biosyst Eng 36(6):809–817

    Article  CAS  PubMed  Google Scholar 

  • Jeong EY, Sopher C, Kim IS, Lee H (2010) Mutational study of the role of tyrosine-49 in the Saccharomyces cerevisiae xylose reductase. Yeast 18(11):1081–1089

    Article  Google Scholar 

  • Jin LQ, Xu W, Yang B, Liu ZQ, Zheng YG (2018) Efficient biosynthesis of xylitol from xylose by coexpression of xylose reductase and glucose dehydrogenase in Escherichia coli. Appl Biochem Biotechnol 187(4), 1143–1157

  • Johnsen U, Schönheit P (2004) Novel xylose dehydrogenase in the halophilic archaeon Haloarcula marismortui. J Bacteriol 186(18):6198–6207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnsen U, Dambeck M, Zaiss H, Fuhrer T, Soppa J, Sauer U, Schönheit P (2009) D-xylose degradation pathway in the halophilic archaeon Haloferax volcanii. J Biol Chem 284(40):27290–27303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jovall PA, Tunblad-Johansson I, Adler L (1990) 13C NMR analysis of production and accumulation of osmoregulatory metabolites in the salt-tolerant yeast Debaryomyces hansenii. Arch Microbiol 154(3):209–214

    Article  CAS  Google Scholar 

  • Kanauchi M, Bamforth CW (2012) Use of xylose dehydrogenase from Trichoderma viride in an enzymic method for the measurement of pentosan in barley. J Brewing 109(3):203–207

    Article  Google Scholar 

  • Kang MH, Ni H, Jeffries TW (2003) Molecular characterization of a gene for aldose reductase (CbXYL1) from Candida boidinii and its expression in Saccharomyces cerevisiae. Appl Biochem Biotechnol 105(108):265–276

    Article  PubMed  Google Scholar 

  • Khankal R, Chin JW, Cirino PC (2008) Role of xylose transporters in xylitol production from engineered Escherichia coli. J Biotechnol 134(3):246–252

    Article  CAS  PubMed  Google Scholar 

  • Kiessling H, Lindberg B, Mckay J, Block-Bolten A, Toguri JM (1962) Some products of the metabolism of D-xylose by Pullularia pullulans. Acta Chem Scand 16:1858–1862

    Article  CAS  Google Scholar 

  • Kim YS, Kim SY, Kim JH, Kim SC (1999) Xylitol production using recombinant Saccharomyces cerevisiae containing multiple xylose reductase genes at chromosomal delta-sequences. J Biotechnol 67(2–3):159–171

    Article  CAS  PubMed  Google Scholar 

  • Kim S-H, Yun J-Y, Kim S-G, Seo J-H, Park J-B (2010) Production of xylitol from D-xylose and glucose with recombinant Corynebacterium glutamicum. Enzym Microb Technol 46(5):366–371

    Article  CAS  Google Scholar 

  • Kitpreechavanich V, Hayashi M, Nishio N, Nagai S (1984) Conversion of D-xylose into xylitol by xylose reductase from Candida pelliculosa coupled with the oxidoreductase system of methanogen strain HU. Biotechnol Lett 6(10):651–656

    Article  CAS  Google Scholar 

  • Ko BS, Kim J, Kim JH (2006) Production of xylitol from D-xylose by a xylitol dehydrogenase gene-disrupted mutant of Candida tropicalis. Appl Environ Microbiol 72(6):4207–4213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kogje A, Ghoshalkar A (2016) Xylitol production by Saccharomyces cerevisiae overexpressing different xylose reductases using non-detoxified hemicellulosic hydrolysate of corncob. 3 Biotech 6:127–136

    Article  PubMed  PubMed Central  Google Scholar 

  • Kötter P, Amore R, Hollenberg CP, Ciriacy M (1990) Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant. Curr Genet 18(6):493–500

    Article  PubMed  Google Scholar 

  • Kroutil W, Mang H, Edegger K, Faber K (2004) Recent advances in the biocatalytic reduction of ketones and oxidation of sec-alcohols. Curr Opin Chem Biol 8:120–126

    Article  CAS  PubMed  Google Scholar 

  • Kumar J, Reddy MS, Rao LV (2010) Strain improvement of Candida tropicalis ovc5 for xylitol production by random mutagenesis. IIOAB J 1:24–28

    Google Scholar 

  • Kwon DH, Kim MD, Lee TH, Oh YJ, Ryu YW, Seo JH (2006) Elevation of glucose 6 phosphate dehydrogenase activity increases xylitol production in recombinant Saccharomyces cerevisae. J Mol Catal B-Enzyme 43:86–89

    Article  CAS  Google Scholar 

  • Ledesma-Amaro R, Lazar Z, Rakicka M, Guo Z, Fouchard F, Coq CL, Nicaud JM (2016) Metabolic engineering of Yarrowia lipolytica to produce chemicals and fuels from xylose. Metab Eng 38:115–124

    Article  CAS  PubMed  Google Scholar 

  • Li L, Wang H, Cheng H, Deng Z (2017) Isomaltulose production by yeast surface display of sucrose isomerase from Pantoea dispersa on Yarrowia lipolytica. J Funct Foods 32:208–217

    Article  CAS  Google Scholar 

  • Li Q, Qin Y, Liu Y, Liu J, Liu Q, Li P, Liu L (2019) Detoxification and concentration of corn stover hydrolysate and its fermentation for ethanol production. Front Chem Sci Eng 13(1):140–151

    Article  CAS  Google Scholar 

  • Liu J, Qin Y, Li P, Zhang K, Liu Q, Liu L (2016) Separation of the acid sugar mixtures by using acid retardation and further concentration of the eluents by using continuous-effect membrane distillation. J Chem Technol Biotechnol (Oxford, Oxfordshire) 91(4):1105–1112

    Article  CAS  Google Scholar 

  • Lohmeier-Vogel EM, Sopher CR, Lee H (1998) Intracellular acidification as a mechanism for the inhibition by acid hydrolysis-derived inhibitors of xylose fermentation by yeasts. J Ind Microbiol Biotechnol 20(2):75–81

    Article  CAS  Google Scholar 

  • Lowe DA, Jennings DH (1985) Carbohydrate metabolism in the fungus Dendryphiella salina. V. The pattern of label in arabitol and polysaccharide after growth in the presence of specifically labelled carbon sources. New Phytol 101(4):399–403

    Google Scholar 

  • Ludwika T, Anita R, Witold G (2012) Production of erythritol and mannitol by Yarrowia lipolyticayeast in media containing glycerol. J Ind Microbiol Biotechnol 39(9):1333–1343

    Article  CAS  Google Scholar 

  • Mancilha IMD, Karim MN (2010) Evaluation of ion exchange resins for removal of inhibitory compounds from corn stover hydrolyzate for xylitol fermentation. Biotechnol Prog 19(6):1837–1841

    Article  CAS  Google Scholar 

  • Markham KA, Alper HS (2018) Synthetic biology expands the industrial potential of Yarrowia lipolytica. Trends Biotechnol 36(10):1085–1095

    Article  CAS  PubMed  Google Scholar 

  • Mayer G, Kulbe KD, Nidetzky B (2002) Utilization of xylitol dehydrogenase in a combined microbial/enzymatic process for production of xylitol from D-glucose. Appl Biochem Biotechnol 98-100(1–9):577–590

    Article  CAS  PubMed  Google Scholar 

  • Meinander NQ, Hahnhägerdal B (1997) Influence of cosubstrate concentration on xylose conversion by recombinant, XYL1-expressing Saccharomyces cerevisiae: a comparison of different sugars and ethanol as cosubstrates. Appl Environ Microbiol 63(5):1959–1964

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meng J, Sun W, Wang F, Deng W, Luo Y, Zhu J, Lin J, Wang X, Qi X (2014) Microbial and enzymatic process for xylitol production from D-glucose. Curr Org Chem 18(24):3131–3135

    Google Scholar 

  • Mirończuk AM, Biegalska A, Dobrowolski A (2017) Functional overexpression of genes involved in erythritol synthesis in the yeast Yarrowia lipolytica. Biotechnol Biofuels 10(1):77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohamad NL, Kamal SMM, Mokhtar MN (2015) Xylitol biological production: a review of recent studies. Food Rev Int 31(1):74–89

    Article  CAS  Google Scholar 

  • Morita TA, Silva SS (2000) Inhibition of microbial xylitol production by acetic acid and its relation with fermentative parameters. Appl Biochem Biotechnol 84-86(1–9):801–808

    Article  CAS  PubMed  Google Scholar 

  • Mussatto SI, Roberto IC (2003) Xylitol production from high xylose concentration: evaluation of the fermentation in bioreactor under different stirring rates. J Appl Microbiol 95(2):331–337

    Article  CAS  PubMed  Google Scholar 

  • Nichols NN, Saha BC (2016) Production of xylitol by a Coniochaeta ligniaria strain tolerant of inhibitors and defective in growth on xylose. Biotechnol Prog 32(3):606–612

    Article  CAS  PubMed  Google Scholar 

  • Nidetzky B, Neuhauser W, Haltrich D, Kulbe KD (1996) Continuous enzymatic production of xylitol with simultaneous coenzyme regeneration in a charged membrane reactor. Biotechnol Bioeng 52:387–396

    Article  CAS  PubMed  Google Scholar 

  • Nidetzky B, Helmer H, Klimacek M, Lunzer R, Mayer G (2003) Characterization of recombinant xylitol dehydrogenase from Galactocandida mastotermitis expressed in Escherichia coli. Chem Biol Interact 143(8):533–542

    Article  CAS  PubMed  Google Scholar 

  • Nidetzky B, Neuhauser W, Haltrich D, Kulbe KD (2015) Continuous enzymatic production of xylitol with simultaneous coenzyme regeneration in a charged membrane reactor. Biotechnol Bioeng 52(3):387–396

    Article  Google Scholar 

  • Nigam P, Singh D (1995) Processes of fermentative production of xylitol—a sugar substitute. Process Biochem 30(2):117–124

    CAS  Google Scholar 

  • Niu W, Molefe MN, Frost JW (2003) Microbial synthesis of the energetic material precursor 1,2,4-butanetriol. J Am Chem Soc 125(43):12998–12999

    Article  CAS  PubMed  Google Scholar 

  • Nozaki H, Suzuki S, Tsuyoshi N, Yokozeki K (2003) Production of D-arabitol by Metschnikowia reukaufii AJ14787. Biosci Biotechnol Biochem 67(9):1923–1929

    Article  CAS  PubMed  Google Scholar 

  • Nyyssölä A, Pihlajaniemi A, Palva A, Von Weymarn N, Leisola M (2005) Production of xylitol from D-xylose by recombinant Lactococcus lactis. J Biotechnol 118(1):55–66

    Article  CAS  PubMed  Google Scholar 

  • Oh YJ, Lee TH, Lee SH, Oh EJ, Ryu YW, Kim MD, Seo JH (2007) Dual modulation of glucose-6-phosphate metabolism to increase NADPH-dependent xylitol production in Saccharomyces cerevisae. J Mol Catal B-Enzyme 47:37–42

    Article  CAS  Google Scholar 

  • Onishi H, Suzuki T (1969) Microbial production of xylitol from glucose. Appl Microbiol 18(6):1031–1035

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pal S, Choudhary V, Kumar A, Biswas D, Mondal AK, Sahoo DK (2013) Studies on xylitol production by metabolic pathway engineered Debaryomyces hansenii. Bioresour Technol 147(8):449–455

    Article  CAS  PubMed  Google Scholar 

  • Pal S, Mondal AK, Sahoo DK (2016) Molecular strategies for enhancing microbial production of xylitol. Process Biochem 51(7):809–819

    Article  CAS  Google Scholar 

  • Palmqvist E, Hahnhägerdal B (2000) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol 74(1):17–24

    Article  CAS  Google Scholar 

  • Pandey A, Vt NPS, Soccol CR (2000) Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresour Technol 74(1):69–80

    Article  CAS  Google Scholar 

  • Papanikolaou S, Aggelis G (2010) Biotechnological valorization of biodiesel derived glycerol waste through production of single cell oil and citric acid by Yarrowia lipolytica. Lipid Technol 21(4):83–87

    Article  CAS  Google Scholar 

  • Parajó JC, Domínguez H, Domínguez J (1998a) Biotechnological production of xylitol. Part 1: interest of xylitol and fundamentals of its biosynthesis. Bioresour Technol 65(3):191–201

    Article  Google Scholar 

  • Parajó JC, Domínguez H, Domínguez J (1998b) Biotechnological production of xylitol. Part 2: operation in culture media made with commercial sugars. Bioresour Technol 65(3):203–212

    Article  Google Scholar 

  • Peng F, Peng P, Xu F, Sun RC (2012) Fractional purification and bioconversion of hemicelluloses. Biotechnol Adv 30(4):879–903

    Article  CAS  PubMed  Google Scholar 

  • Pepper T, Olinger PM (1988) Xylitol in sugar-free confections. Food Technol 42:98–106

    Google Scholar 

  • Pezzotti F, Therisod M (2006) Enzymatic synthesis of aldonic acids. Carbohydr Res 341(13):2290–2292

    Article  CAS  PubMed  Google Scholar 

  • Povelainen M, Miasnikov AN (2007) Production of xylitol by metabolically engineered strains of Bacillus subtilis. J Biotechnol 128(1):24–31

    Article  CAS  PubMed  Google Scholar 

  • Rao RS, Chp J, Prakasham RS, Sarma PN, Rao LV (2006) Xylitol production from corn fiber and sugarcane bagasse hydrolysates by Candida tropicalis. Bioresour Technol 97(15):1974–1978

    Article  CAS  PubMed  Google Scholar 

  • Rivas B, Torre P, Domínguez JM, Perego P, Converti A, Parajó JC (2010) Carbon material and bioenergetic balances of xylitol production from corncobs by Debaryomyces hansenii. Biotechnol Prog 19(3):706–713

    Article  CAS  Google Scholar 

  • Rizzi M, Harwart K, Bui-Thanh NA, Dellweg H (1989) A kinetic study of the NAD+ -xylitol-dehydrogenase from the yeast Pichia stipitis. J Ferment Bioeng 67(1):25–30

    Article  CAS  Google Scholar 

  • Roberto IC, Mancilha IM, Souza CAD, Felipe MGA, Sato S, Castro HFD (1994) Evaluation of rice straw hemicellulose hydrolysate in the production of xylitol by Candida guilliermondii. Biotechnol Lett 16(11):1211–1216

    Article  CAS  Google Scholar 

  • Rodrigues RCLB, Kenealy WR, Jeffries TW (2011) Xylitol production from DEO hydrolysate of corn stover by Pichia stipitis YS-30. J Ind Microbiol Biotechnol 38(10):1649–1655

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez GM, Hussain MS, Gambill L, Gao D, Yaguchi A, Blenner M (2016) Engineering xylose utilization in Yarrowia lipolytica by understanding its cryptic xylose pathway. Biotechnol Biofuels 9:149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saha BC, Sakakibara Y, Cotta MA (2007) Production of D-arabitol by a newly isolated Zygosaccharomyces rouxii. J Ind Microbiol Biotechnol 34(7):519–523

    Article  CAS  PubMed  Google Scholar 

  • Sasaki M, Jojima T, Inui M, Yukawa H (2010) Xylitol production by recombinant Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 86(4):1057–1066

    Article  CAS  PubMed  Google Scholar 

  • Silva SS, Felipe MGA, Silva J, Prata AMR (1998) Acid hydrolysis of Eucalyptus grandis chips for microbial production of xylitol. Process Biochem 33(1):63–67

    Article  CAS  Google Scholar 

  • Silveira MM, Jonas R (2002) The biotechnological production of sorbitol. Appl Microbiol Biotechnol 59(4–5):400–408

    CAS  PubMed  Google Scholar 

  • Simpson FJ (1966) D-Xylulokinase. Methods Enzymol 9:454–458

    Article  CAS  Google Scholar 

  • Sohyun K, Yun JY, Sunggun K, Jinho S, Jinbyung P (2010) Production of xylitol from D-xylose and glucose with recombinant Corynebacterium glutamicum. Enzym Microb Technol 46(5):366–371

    Article  CAS  Google Scholar 

  • Stephens C, Christen B, Fuchs T, Sundaram V, Watanabe K, Jenal U (2007) Genetic analysis of a novel pathway for D-xylose metabolism in Caulobacter crescentus. J Bacteriol 189(5):2181–2185

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama M, Suzuki S, Tonouchi N, Yokozeki K (2003) Cloning of the xylitol dehydrogenase gene from Gluconobacter oxydans and improved production of xylitol from D-arabitol. Biosci Biotechnol Biochem 67(3):584–591

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Onishi H (1973) Oxidation and reduction of D-xylose by cell-free extract of Pichia quercuum. Appl Microbiol 25(5):850–852

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki T, Yokoyama S, Kinoshita Y, Yamada H, Hatsu M, Takamizawa K, Kawai K (1999) Expression of xyrA gene encoding for D-xylose reductase of Candida tropicalis and production of xylitol in Escherichia coli. J Ferment Bioeng 87(3):280–284

    CAS  Google Scholar 

  • Suzuki S, Sugiyama M, Mihara Y, Hashiguchi K, Yokozeki K (2002) Novel enzymatic method for the production of xylitol from D-arabitol by Gluconobacter oxydans. Biosci Biotechnol Biochem 66(12):2614–2620

    Article  CAS  PubMed  Google Scholar 

  • Tai M, Stephanopoulos G (2013) Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab Eng 15(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Tochampa W, Sirisansaneeyakul S, Vanichsriratana W, Srinophakun P, Bakker HH, Chisti Y (2005) A model of xylitol production by the yeast Candida mogii. Bioprocess Biosyst Eng 28(3):175–183

    Article  CAS  PubMed  Google Scholar 

  • Toivari MH, Nygard Y, Penttila M, Ruohonen L, Wiebe MG (2012) Microbial D-xylonate production. Appl Microbiol Biotechnol 96(1):1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uppada V, Bhaduri S, Noronha SB (2014) Cofactor generation—an important aspect of biocatalysis. Curr Sci 106:946–957

    CAS  Google Scholar 

  • US Food and Drug Administration (2008) Guidance for industry: a food labeling guide. Food and Drug Administration, Washington, DC

    Google Scholar 

  • Wang H, Li L, Zhang L, An J, Cheng H, Deng Z (2016) Xylitol production from waste xylose mother liquor containing miscellaneous sugars and inhibitors: one-pot biotransformation by Candida tropicalis and recombinant Bacillus subtilis. Microb Cell Factories 15(1):82

    Article  CAS  Google Scholar 

  • Wang S, Bilal M, Hu H, Wang W, Zhang X (2018) 4-Hydroxybenzoic acid—a versatile platform intermediate for value-added compounds. Appl Microbiol Biotechnol 102(8):3561–3571

    Article  CAS  PubMed  Google Scholar 

  • Wannawilai S, Lee WC, Chisti Y, Sirisansaneeyakul S (2017) Furfural and glucose can enhance conversion of xylose to xylitol by Candida magnoliae TISTR 5663. J Biotechnol 241:147–157

    Article  CAS  PubMed  Google Scholar 

  • Washüttl J, Riederer P, Bancher E (1973) A qualitative and quantitative study of sugar-alcohols in several foods. J Food Sci 38:1262–1263

    Article  Google Scholar 

  • Wei J, Yuan Q, Wang T, Wang L (2010) Purification and crystallization of xylitol from fermentation broth of corncob hydrolysates. Front Chem Eng China 4(1):57–64

    Article  CAS  Google Scholar 

  • Weimberg R (1962) Mode of formation of D-arabitol by Saccharomyces mellis. Biochem Biophys Res Commun 8(6):442–445

    Article  CAS  PubMed  Google Scholar 

  • Werpy T, Petersen G, Aden A, Bozell J, Holladay J, White J, Manheim A, Eliot D, Lasure L, Jones S (2004) Top value added chemicals from biomass. Volume 1—results of screening for potential candidates from sugars and synthesis gas. Department of Energy, Washington DC

    Google Scholar 

  • Winkelhausen E, Kuzmanova S (1998) Microbial conversion of D-xylose to xylitol. J Ferment Bioeng 86:1–14

    Article  CAS  Google Scholar 

  • Wong B, Leeson S, Grindle S, Magee B, Brooks E, Magee PT (1995) D-arabitol metabolism in Candida albicans: construction and analysis of mutants lacking D-arabitol dehydrogenase. J Bacteriol 177(11):2971–2976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Hu J, Zhao S, He M, Hu G, Ge X, Peng N (2018) Single-cell protein and xylitol production by a novel yeast strain Candida intermedia FL023 from lignocellulosic hydrolysates and xylose. Appl Biochem Biotechnol 185:1–16

    Article  CAS  PubMed  Google Scholar 

  • Yong SK, Sang YK, Kim JH, Sun CK (1999) Xylitol production using recombinant Saccharomyces cerevisiae containing multiple xylose reductase genes at chromosomal δ-sequences. J Biotechnol 67(2–3):159–171

    Google Scholar 

  • Yoshitake J, Ishizaki H, Shimamura M, Imai T (2014) Xylitol production by an Enterobacter species. Biosci Biotechnol Biochem 37(10):2261–2267

    Google Scholar 

  • Zha J, Li B-Z, Shen M-H, Hu M-L, Song H, Yuan Y-J (2013a) Optimization of CDT-1 and XYL1 expression for balanced coproduction of ethanol and xylitol from cellobiose and xylose by engineered Saccharomyes cerevisiae. PLoS One 8(7):e68317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zha J, Li BZ, Shen MH, Hu ML, Song H, Yuan YJ (2013b) Optimization of cdt-1and xyl1 expression for balanced co-production of ethanol and xylitol from cellobiose and xylose by engineered Saccharomyces cerevisiae. PLoS One 8:e68317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang FW, Qiao DR, Xu H, Liao C, Li SL, Cao Y (2009a) Cloning, expression, and characterization of xylose reductase with higher activity from Candida tropicalis. J Microbiol 47(3):351–357

    Article  CAS  PubMed  Google Scholar 

  • Zhang HR, Qin XX, Silva SS, Sarrouh BF, Cai AH, Zhou YH, Ke J, Qiu X (2009b) Novel isolates for biological detoxification of lignocellulosic hydrolysate. Appl Biochem Biotechnol 152(2):199–212

    Article  CAS  Google Scholar 

  • Zhang JM, Geng AL, Yao CY, Lu YH, Li QB (2012) Xylitol production from d-xylose and horticultural waste hemicellulosic hydrolysate by a new isolate of Candida athensensis SB18. Bioresour Technol 105:134–141

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Li L, Zhang J, Gao X, Wang D, Hong J (2013) Improving ethanol and xylitol fermentation at elevated temperature through substitution of xylose reductase in Kluyveromyces marxianus. J Ind Microbiol Biotechnol 40(3–4):305–316

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhang B, Wang D, Gao X, Hong J (2014) Xylitol production at high temperature by engineered Kluyveromyces marxianus. Bioresour Technol 152:192–201

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhang B, Wang D, Gao X, Hong J (2015) Improving xylitol production at elevated temperature with engineered Kluyveromyces marxianus through over-expressing transporters. Bioresour Technol 175:642–645

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q, Jackson EN (2015) Metabolic engineering of Yarrowia lipolytica for industrial applications. Curr Opin Biotechnol 36:65–72

    Article  CAS  PubMed  Google Scholar 

  • Zhu HY, Xu H, Dai XY, Zhang Y, Ying HJ, Ouyang PK (2010) Production of D-arabitol by a newly isolated Kodamaea ohmeri. Bioprocess Biosyst Eng 33(5):565–571

    Article  CAS  PubMed  Google Scholar 

  • Zinjarde SS (2014) Food-related applications of Yarrowia lipolytica. Food Chem 152:1–10

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (No. 21877078).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Bilal or Hairong Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 679 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Chi, P., Bilal, M. et al. Biosynthetic strategies to produce xylitol: an economical venture. Appl Microbiol Biotechnol 103, 5143–5160 (2019). https://doi.org/10.1007/s00253-019-09881-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-09881-1

Keywords

Navigation