Skip to main content

Advertisement

Log in

Naturally occurring of α,β-diepoxy-containing compounds: origin, structures, and biological activities

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Diepoxy-containing compounds are widely distributed in nature. These metabolites are found in plants and marine organisms and are also produced by many microorganisms, fungi, or fungal endophytes. Many of these metabolites are antibiotics and exhibit a wide variety of biological activities. More than 80 α,β-diepoxy-containing compounds are presented in this article, which belong to different classes of chemical compounds including lipids, terpenoids, alkaloids, quinones, hydroquinones, and pyrones. The main activities that characterize α,β-diepoxy-containing compounds are antineoplastic with confidence up to 99%, antifungal with confidence up to 94%, antiinflammatory with confidence up to 92%, or antibacterial with confidence up to 78%. In addition, these metabolites can be used as a lipid metabolism regulator with a certainty of up to 81%, antiviral (Arbovirus) activity with a certainty of up to 71%, or antiallergic activity with confidence up to 69%. These data on the biological activity of diepoxy-containing compounds are of considerable interest to pharmacologists, chemists, and medical professionals who are involved in phytomedicine and related areas of science and industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  • Alabugin IV (2016) Stereoelectronic effects: the bridge between structure and reactivity. Wiley, Hoboken

    Book  Google Scholar 

  • Alabugin IV, Bresch S, Gomes GP (2015) Orbital hybridization: a key electronic factor in control of structure and reactivity. J Phys Org Chem 28:147–162

    Article  CAS  Google Scholar 

  • Almourabit A, Ahond A, Chiaroni A, Poupat C, Riche C, Potier P, Laboute P, Menou JL (1988) Invertébrés marins du lagon Néo-Calédonien, IX. Havannachlorhydrines, nouveaux métabolites de Xenia membranacea: Étude structurale et configuration absolue. J Nat Prod 51(2):282–292

    Article  CAS  Google Scholar 

  • Asakawa Y, Lin X, Tori M, Kondo K (1990) Fusicoccane-, dolabellane- and rearranged labdane-type diterpenoids from the liverwort Pleurozia gigantean. Phytochemistry 29(8):2597–2603

    Article  CAS  Google Scholar 

  • Auvergne R, Caillol S, David G, Boutevin B, Pascault JP (2014) Biobased thermosetting epoxy: Present and future. Chem Rev 114(2):1082–1115

    Article  CAS  PubMed  Google Scholar 

  • Berrueab F, Kerr RG (2009) Diterpenes from gorgonian corals. Nat Prod Rep 26:681–710

    Article  CAS  Google Scholar 

  • Bishara A, Rudi A, Goldberg I, Benayahu Y, Kashman Y (2006) Novaxenicins A–D and xeniolides I–K, seven new diterpenes from the soft coral Xenia novaebrittanniae. Tetrahedron 62(51):12092–12097

    Article  CAS  Google Scholar 

  • Borders DB, Barbatschi F, Shay AJ, Shu P (1969) Fermentation, isolation, and characterization of LL-Z1220, a new antibiotic. Antimicrob Agents Chemother (Bethesda) 9:233–235

    CAS  Google Scholar 

  • Borders DB, Shu P, Lancaster JE (1972) Structure of LL-Z1220. New antibiotic containing a cyclohexene diepoxide ring system. J Am Chem Soc 94(7):2540–2541

    Article  CAS  PubMed  Google Scholar 

  • Brochini CB, Roque NF, Lago JHG (2009) Minor sesquiterpenes from the volatile oil from leaves of Guarea guidonia Sleumer (Meliaceae). Nat Prod Res 23(17):1615–1620

    Article  CAS  PubMed  Google Scholar 

  • Che Y, Gloer JB, Koster B, Malloch D (2002) Decipienin A and decipienolides A-B: new bioactive metabolites from the coprophilous fungus Podopsora decipiens. J Nat Prod 65:916–919

    Article  CAS  PubMed  Google Scholar 

  • Chew W, Harpp DN (1993) Recent aspects of thiirane chemistry. Sulfur Rep 15(1):1–39

    Article  CAS  Google Scholar 

  • Chianese G, Yu HB, Yang F, Sirignano C, Luciano P, Han BN, Khan S, Lin HW, Taglialatela-Scafati O (2016) PPAR modulating polyketides from a Chinese Plakortis simplex and clues on the origin of their chemodiversity. J Organomet Chem 81(12):5135–5143

    Article  CAS  Google Scholar 

  • Cueto M, D’Croz L, Mate JL, San-Martın A, Darias J (2005) Elysiapyrones from Elysia diomedea. Do such metabolites evidence an enzymatically assisted electrocyclization cascade for the biosynthesis of their bicyclo[4.2.0]octane core? Org Lett 7(3):415–418

    Article  CAS  PubMed  Google Scholar 

  • Daferner M, Mensch S, Anke T, Sterner O (1999) Hypoxysordarin, a new sordarin derivative from Hypoxylon croceum. Z Naturforsch 54C:474–480

    Article  Google Scholar 

  • De Marino S, Ummarino R, D’Auria MV, Chini MG, Bifulco G, Renga B, D’Amore C, Fiorucci S, Debitus C, Zampella A (2011) Theonellasterols and conicasterols from Theonella swinhoei. Novel marine natural ligands for human nuclear receptors. J Med Chem 54(8):3065–3075

    Article  CAS  PubMed  Google Scholar 

  • Del Cuenca MR, Bardon A, Catalan CAN, Kokke WCMC (1988) Sesquiterpene lactones from Mikania micrantha. J Nat Prod 51(3):625–626

    Article  CAS  Google Scholar 

  • Dembitsky VM (2004) Chemistry and biodiversity of the biologically active natural glycosides. Chem Biodivers 1(5):673–778

    Article  CAS  PubMed  Google Scholar 

  • Dembitsky VM (2006) Anticancer activity of natural and synthetic acetylenic lipids. Lipids 41(10):883–924

    Article  CAS  PubMed  Google Scholar 

  • Dembitsky VM, Kuklev DV (2017) Acetylenic epoxy fatty acids: chemistry, synthesis, and their pharmaceutical applications. In: Ahmad MU (ed) Fatty acids chemistry, synthesis, and applications. Academic Press and AOCS Press, San Diego, CA, USA, pp 121–147

    Chapter  Google Scholar 

  • Dembitsky VM, Gloriozova TA, Poroikov VV (2007) Natural peroxy anticancer agents. Mini-Rev Med Chem 7(6):571–589

    Article  CAS  PubMed  Google Scholar 

  • Dembitsky V, Shkrob I, Hanus LO (2008) Ascaridole and related peroxides from the genus Chenopodium. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 152(2):209–215

    Article  CAS  PubMed  Google Scholar 

  • Dembitsky VM, Gloriozova TA, Poroikov VV (2017) Pharmacological activities of epithio steroids. J Pharm Res Int 18(4):1–19. https://doi.org/10.9734/JPRI/2017/36199

    Article  Google Scholar 

  • Dembitsky VM, Gloriozova TA, Poroikov VV (2018) Naturally occurring marine α,β-epoxy steroids: origin and biological activities. Vietnam J Chem 56(4):409–433

    CAS  Google Scholar 

  • Dhar TK, Siddiqui KAI, Ali E (1982) Structure of phaseolinone, a novel phytotoxin from Macrophomina phaseolina. Tetrahedron Lett 23(51):5459–5462

    Article  CAS  Google Scholar 

  • Erickson KL, Beutler JA, Gray GN, Cardellina JH II, Boyd MR (1995) Majapolene A, a cytotoxic peroxide, and related sesquiterpenes from the red alga Laurencia majuscula. J Nat Prod 58(12):1848–1860

    Article  CAS  PubMed  Google Scholar 

  • Ernouf G, Wilt IK, Zahim S, Wuest WM (2018) Epoxy isonitriles, a unique class of antibiotics: synthesis of their metabolites and biological investigations. Chembiochem 19:2448–2452. https://doi.org/10.1002/cbic.201800550

    Article  CAS  PubMed  Google Scholar 

  • Facey PC, Peart PC, Porter RB (2010) The antibacterial activities of mikanolide and its derivatives. West Indian Med J 59(3):249–252

    CAS  PubMed  Google Scholar 

  • Fernandes L, Kamat SY, Paknikar SK (1980) New diterpenoids of the brown seaweed Stoechospermum marginatum: structure of stoechospermol. Tetrahedron Lett 21(23):2249–2252

    Article  Google Scholar 

  • Fields BA, Reeve J, Bartholomaeus A, Mueller U (2014) Human pharmacokinetic study of tutin in honey; a plant-derived neurotoxin. Food Chem Toxicol 72:234–241

    Article  CAS  PubMed  Google Scholar 

  • Filimonov DA, Lagunin AA, Gloriozova TA, Rudik AV, Druzhilovskiy DS, Pogodin PV, Poroikov VV (2014) Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chem Heterocycl Compd 50(3):444–457

    Article  CAS  Google Scholar 

  • Filimonov DA, Druzhilovskiy DS, Lagunin AA, Gloriozova TA, Rudik AV, Dmitriev AV, Pogodin PV, Poroikov VV (2018) Computer-aided prediction of biological activity spectra for chemical compounds: opportunities and limitations. Biom Chem Res Method 1(1):e00004

    Article  Google Scholar 

  • Fujii N, Katsuyama T, Kobayashi E, Hara M, Nakano H (1995) The clecarmycins, new antitumor antibiotics produced by Streptomyces: fermentation, isolation and biological properties. J Antibiot (Tokyo) 48(8):768–772

    Article  CAS  Google Scholar 

  • Fujiwara A, Okuda T, Masuda S, Shiomi Y, Miyamoto C, Sekine Y, Tazoe M, Fujiwara M (1982) Fermentation, isolation and characterization of isonitrile antibiotics. Agric Biol Chem 46(7):1803–1809

    CAS  Google Scholar 

  • Fullas F, Brown DM, Wani MC, Wall ME, Chagwedera TE, Farnsworth NR, Pezzuto JM, Kinghorn AD (1995) Gummiferol, a cytotoxic polyacetylene from the leaves of Adenia gummifera. J Nat Prod 58(10):1625–1628

    Article  CAS  PubMed  Google Scholar 

  • Fyaz I.F M, Levitsky DO, Dembitsky VM (2009) Aziridine alkaloids as potential therapeutic agents. European Journal of Medicinal Chemistry, 44, 3373–3387

  • Garson MJ (1993) The biosynthesis of marine natural products. Chem Rev 93(5):1699–1733

    Article  CAS  Google Scholar 

  • Gerwick WH, Fenical W, Ven Engen D, Clardy J (1980) Isolation and structure of spatol, a potent inhibitor of cell reolication from the brown seaweed Spatoglossum schmittii. J Am Chem Soc 102(27):7991–7993

    Article  CAS  Google Scholar 

  • Gloriozova TA, Dembitsky VM (2018) The impact factor of the thiirane group in organic compounds on their predicted pharmacological activities. Int J Chem Studies 6(1):832–839

    CAS  Google Scholar 

  • Gössinger E (2010) Picrotoxanes. Prog Chem Org Nat Prod 93:5–255

    Google Scholar 

  • Herz W, Sharma RP (1975) New germacranolides from Liatris species. Phytochemistry 14(7):1561–1567

    Article  CAS  Google Scholar 

  • Herz W, Santhanam PS, Subramaniam PS, Schmid JJ (1967) The structure of mikanolide, a new sesquiterpene dilactone from Mikania scandens (L.) Willd. Tetrahedron Lett 8(32):3111–3115

    Article  Google Scholar 

  • Holub M, Buděšínský M, Smítalová Z, Šaman D, Rychłewska U (1985) Structure of isosilerolide, relative and absolute configuration of silerolide and lasolide - Sesquiterpenic lactones of new stereoisomeric type of eudesmanolides. Collect Czechoslov Chem Commun 51:903–929

    Article  Google Scholar 

  • Hori Y, Hino M, Kawai Y, Kiyoto S, Terano H, Kohsaka M, Aoki H, Hashimoto M, Imanaka H (1986) A new antitumor antibiotic, chromoxymycin. II. Production, isolation, characterization and antitumor activity. J Antibiot (Tokyo) 39(1):12–16

    Article  CAS  Google Scholar 

  • Igarashi Y, Kuwamori Y, Takagi K, Ando T, Fudou R, Furumai T, Oki T (2000) Xanthoepocin, a new antibiotic from Penicillium simplicissimum IFO5762. J Antibiot (Tokyo) 53(9):928–933

    Article  CAS  Google Scholar 

  • Itoh J, Shomura T, Tsuyuki T, Yoshida J, Ito M, Sezaki M, Kojima M (1986a) Studies on a new antibiotic SF-2330. I. Taxonomy, isolation and characterization. J Antibiot (Tokyo) 39(6):773–779

    Article  CAS  Google Scholar 

  • Itoh J, Tsuyuki T, Fujita K, Sezaki M (1986b) Studies on a new antibiotic SF-2330. II. The structural elucidation. J Antibiot (Tokyo) 39(6):780–783

    Article  CAS  Google Scholar 

  • Iwagawa T, Amano Y, Nakatani M, Hase T (1996) New xenia diterpenoids from a soft coral, Xenia species containing fatty acyl side chains. Bull Chem Soc Japan 69(5):1309–1312

    Article  CAS  Google Scholar 

  • Iwami M, Kawai Y, Kiyoto S, Terano H, Kohsaka M, Aoki H, Imanaka H (1986) A new antitumor antibiotic, chromoxymycin. I. Taxonomic studies on the producing strain: a new subspecies of the genus Streptomyces. J Antibiot (Tokyo) 39(1):6–11

    Article  CAS  Google Scholar 

  • Jakupovic J, Schuster A, Bohlmann F, Dillon MO (1988) Lumiyomogin, ferreyrantholide, fruticolide and other sesquiterpene lactones from Ferreyranthus fruticosus. Phytochemistry 27:1113–1120

    Article  CAS  Google Scholar 

  • Jogia MK, Andersen RJ, Clardy J, Dublin HT, Sinclair ARE (1989) Crotofolane diterpenoids from the African shrub Croton dichogamus Pax. J Organomet Chem 54:1654–1657

    Article  CAS  Google Scholar 

  • Kawakami S, Matsunami K, Otsuka H, Shinzato T, Takeda Y, Kawahata M, Yamaguchi K (2010) A crotofolane-type diterpenoid and a rearranged nor-crotofolane-type diterpenoid with a new skeleton from the stems of Croton cascarilloides. Tetrahedron Lett 51(33):4320–4322

    Article  CAS  Google Scholar 

  • Kimura J, Kamada N, Tsujimoto Y (1999) Fourteen chamigrane derivatives from a red alga, Laurencia nidifica. Bull Chem Soc Jpn 72(2):289–292

    Article  CAS  Google Scholar 

  • Kinoshita T, Itaki N, Hikita M, Aoyagi Y, Hitotsuyanagi Y, Takeya K (2005) The isolation and structure elucidation of a new sesquiterpene lactone from the poisonous plant Coriaria japonica (Coriariaceae). Chem Pharm Bull (Tokyo) 53(8):1040–1042

    Article  CAS  Google Scholar 

  • Koike K, Fukuda H, Mitsunaga K, Ohmoto T (1991) Picrodendrins B, G and J, new picrotoxane terpenoids from Picrodendron baccatun. Chem Pharm Bull 39(4):934–936

    Article  CAS  Google Scholar 

  • König GM, Coll JC, Bowden BF, Gulbis JM, MacKay MF, Labarre SC, Laurent D (1989) The structure determination of a xenicane diterpene from Xenia garciae. J Nat Prod 52(2):294–299

    Article  Google Scholar 

  • Kuklev DV, Dembitsky VM (2014) Epoxy acetylenic lipids: their analogues and derivatives. Prog Lipid Res 56:67–91

    Article  CAS  PubMed  Google Scholar 

  • Kuklev DV, Domb AJ, Dembitsky VM (2013) Bioactive acetylenic metabolites. Phytomedicine 20(13):1145–1159

    Article  CAS  PubMed  Google Scholar 

  • Kuklev DV, Gloriozova TA, Poroikov VV, Dembitsky VM (2017) Pharmacological activities of thiirane-containing fatty (carboxylic) acids and their derivatives. Chem Res J 2(6):19–27

    Google Scholar 

  • Kupchan SM, Hemingway RJ, Coggon P, McPhail AT, Sim GA (1968) Tumor inhibitors. XXIX. Crotepoxide, a novel cyclohexane diepoxide tumor inhibitor from Croton macrostachys. J Am Chem Soc 90(11):2982–2983

    Article  CAS  PubMed  Google Scholar 

  • Lago JHG, Brochinia CB, Roque NF (2002) Terpenoids from Guarea guidonia. Phytochemistry 60(4):333–338

    Article  CAS  PubMed  Google Scholar 

  • Larsen L, Joyce NI, Sansom CE, Cooney JM, Jensen DJ, Perry NB (2015) Sweet poisons: honeys contaminated with glycosides of the neurotoxin tutin. J Nat Prod 78(6):1363–1369

    Article  CAS  PubMed  Google Scholar 

  • Laurella LC, Cerny N, Bivona AE, Sánchez Alberti A, Giberti G, Malchiodi EL (2017) Assessment of sesquiterpene lactones isolated from Mikania plants species for their potential efficacy against Trypanosoma cruzi and Leishmania sp. PLoS Negl Trop Dis 11(9):e0005929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lelong H, Ahond A, Chiaroni A, Poupat C, Riche C, Potier P, Pusset J, Pusset M, Laboute P, Menou JL (1987) Invertébrés marins du lagon Néo-Calédonien, VIII métabolites terpéniques de Xenia membranacea. J Nat Prod 50(2):203–210

    Article  CAS  Google Scholar 

  • Liaw CC, Chang FR, Wu YC, Wang HK, Nakanishi Y, Bastow KF, Lee KH (2004) Montacin and cis-montacin, two new cytotoxic monotetrahydrofuran annonaceous acetogenins from Annona montana. J Nat Prod 67(11):1804–1818

    Article  CAS  PubMed  Google Scholar 

  • Liaw CC, Kuo YH, Hwang TL, Shen YC (2008) Eupatozansins A – C, sesquiterpene lactones from Eupatorium chinense var. tozanense. Helv Chim Acta 91(11):2115–2121

    Article  CAS  Google Scholar 

  • Lowden P (2006) Aziridine natural products – discovery, biological activity and biosynthesis. In: Aziridines and Epoxides in Organic Synthesis, pp 399–442. https://doi.org/10.1002/3527607862.ch11

    Chapter  Google Scholar 

  • Loyola LA, Morales G, Rodriguez B, Jiménez-Barbero J (1990) Mulinic and isomulinic acids. Rearranged diterpenes with a new carbon skeleton from Mulinum crassifolium. Tetrahedron 46(15):5413–5420

    Article  CAS  Google Scholar 

  • Lu X (1990) The isolation and structure of tripchlorolide (T4) from Tripterygium wilfordii. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 12(3):157–161

    CAS  PubMed  Google Scholar 

  • Ma P, Lu X, Yang J, Yang J, Zheng Q (1992) 16-Hydroxytriptolide: an active compound from Tripterygium wilfordii. J Chin Pharm Sci 1(2):12–18

    CAS  Google Scholar 

  • Manns D, Hartman R (1992) Annuadiepoxide, a new polyacetylene from the aerial parts of Artemisia annua. J Nat Prod 55(1):29–32

    Article  CAS  Google Scholar 

  • Massanet GM, Guerra FM, Jorge ZD, Astorga C (1997) Sesquiterpenolides from Melanoselinum decipiens. Phytochemistry 45(8):1645–1651

    Article  CAS  Google Scholar 

  • Morisseau C, Hammock BD (2005) Epoxide hydrolases: mechanisms, inhibitor designs, and biological roles. Annu Rev Pharmacol Toxicol 45:311–333

    Article  CAS  PubMed  Google Scholar 

  • Morris LJ, Holman RT, Fonte K (1961) Naturally occurring epoxy acids: I. detection and evaluation of epoxy fatty acids by paper, thin-layer, and gas-liquid chromatography. J Lipid Res 2(1):68–75

    CAS  Google Scholar 

  • Nagashima F, Izumo H, Takaoka S, Tori M, Asakawa Y (1994) Sesqui- and diterpenoids from the panamanian liverwort Bryopteris filicina. Phytochemistry 37(2):433–439

    Article  CAS  Google Scholar 

  • Nakamura H, Asari T, Murai A, Kan Y, Kondo T, Yoshida K, Ohizumi Y (1995) Zooxanthellatoxin-A, a potent vasoconstrictive 62-membered lactone from a symbiotic Dinoflagellate. J Am Chem Soc 117(1):550–551

    Article  CAS  Google Scholar 

  • Ning L, Qu G, Ye M, Guo H, Bi K, Guo D (2003) Cytotoxic biotransformed products from triptonide by Aspergillus niger. Planta Med 69(9):804–808

    Article  CAS  PubMed  Google Scholar 

  • Nitz S, Kollmannsberger H, Spraul MH, Drawert F (1989) Oxygenated derivatives of menthatriene in parsley leaves. Phytochemistry 28(11):3051–3054

    Article  CAS  Google Scholar 

  • Ohno N, Gershenzon J, Roane C, Mabry TJ (1980) 11,13-Dehydrodesacetylmatricarin and other sesquiterpene lactones from Artemisia ludoviciana var. ludoviciana and the identity of artecanin and chyrsartemin B. Phytochemistry 19(1):103–106

    Article  CAS  Google Scholar 

  • Okada K, Mori M, Shimazaki K, Chuman T (1990) Behavioral responses of male Periplaneta americana L. to female sex pheromone components, periplanone-A and periplanone-B. J Chem Ecol 16:2605–2614

    Article  CAS  PubMed  Google Scholar 

  • Okuda T, Yoshida T (1967) The correlation of coriamyrtin and tutin, and their absolute configurations. Chem Pharm Bull 15(12):1955–1965

    Article  CAS  PubMed  Google Scholar 

  • Okuda T, Yoshida T, Chen XM, Xie JX, Fukushima M (1987) Corianin from Coriaria japonica and sesquiterpene lactones from Loranthus parasiticus Merr. Used for treatment of schizophrenia. Chem Pharm Bull 35(1):182–187

    Article  CAS  PubMed  Google Scholar 

  • Okudera Y, Ito M (2009) Production of agarwood fragrant constituents in Aquilaria calli and cell suspension cultures. Plant Biotechnol 26(3):307–315

    Article  CAS  Google Scholar 

  • Padwa A, Murphree SS (2006) Epoxides and aziridines - a mini review. ARKIVOC III:6–33

  • Pan JY, Chen SL, Li MY, Li J, Yang MH, Wu J (2010) Limonoids from the seeds of a Hainan mangrove, Xylocarpus granatum. J Nat Prod 73(10):1672–1679

    Article  CAS  PubMed  Google Scholar 

  • Parker WL, Rathnum ML, Seiner V, Trejo WH, Principe PA, Sykes RB (1984) Cepacin A and cepacin B, two new antibiotics produced by Pseudomonas cepacia. J Antibiot (Tokyo) 37(5):431–440

    Article  CAS  Google Scholar 

  • Poroikov VV, Gloriozova TA, Dembitsky VM (2017) Natural occurring thiirane containing compounds: origin, chemistry, and their pharmacological activities. Pharm Chem J 4(5):107–120

    CAS  Google Scholar 

  • Rodríguez AD, Boulanger A (1996) Americanolides A−C, new guaianolide sesquiterpenes from the Caribbean Sea plume Pseudopterogorgia americana. J Nat Prod 59(7):653–657

    Article  Google Scholar 

  • Rodríguez AD, Soto JJ (1998) Pseudopterane and norcembrane diterpenoids from the Caribbean Sea plume Pseudopterogorgia acerosa. J Nat Prod 61(3):401–404

    Article  PubMed  Google Scholar 

  • Rodríguez AD, Boulanger A, Martínez JR, Huang SD (1998) Sesquiterpene lactones from the Caribbean Sea plume Pseudopterogorgia americana. J Nat Prod 61(4):451–455

    Article  Google Scholar 

  • Rukachaisirikul V, Kannai S, Klaiklay S, Phongpaichit S, Sakayaroj J (2013) Rare 2-phenylpyran-4-ones from the seagrass-derived fungi Polyporales PSU-ES44 and PSU-ES83. Tetrahedron 69(34):6981–6986

    Article  CAS  Google Scholar 

  • Salomatina OV, Yarovaya O, Barkhash VA (2005) Intramolecular involvement of an oxygen-containing nucleophilic group in epoxy ring opening. Russ J Org Chem 41(2):155–185

    Article  CAS  Google Scholar 

  • Sassa T, Kinoshita H, Nukina M (1998) Acremolactone A, a novel herbicidal epoxy-hydropyranyl γ-lactone from Acremonium roseum I4267. J Antibiot 51(10):967–969

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Watabe H, Nakazawa T, Shomura T, Yamamoto H, Sezaki M, Kondo S (1989) Ankinomycin, a potent antitumor antibiotic. J Antibiot (Tokyo) 42(1):149–152

    Article  CAS  Google Scholar 

  • Savidov N, Gloriozova TA, Poroikov VV, Dembitsky VM (2018) Highly oxygenated isoprenoid lipids derived from fungi and fungal endophytes: origin and biological activities. Steroids 140:114–124

    Article  CAS  PubMed  Google Scholar 

  • Scotti MT, Fernandes MB, Ferreira MJP, Emerenciano VP (2007) Quantitative structure–activity relationship of sesquiterpene lactones with cytotoxic activity. Bioorg Med Chem 15(8):2927–2934

    Article  CAS  PubMed  Google Scholar 

  • Shen YH, Li SH, Li RT, Han QB, Zhao QS, Liang L, Sun HD, Lu Y, Cao P, Zheng QT (2004) Coriatone and corianlactone, two novel sesquiterpenes from Coriaria nepalensis. Org Lett 6(10):1593–1595

    Article  CAS  PubMed  Google Scholar 

  • Siddiq A, Dembitsky V (2008) Acetylenic anticancer agents. Anti Cancer Agents Med Chem 8(2):132–170

    Article  CAS  Google Scholar 

  • Sivakumari V, Dhinakaran J, Rajendran A (2009) Screening and productivity of penicillin antibiotic from Penicillium sp. J Environ Sci Eng 51(4):247–248

    CAS  PubMed  Google Scholar 

  • Smetanina OF, Yurchenko AN, Afiyatullov SS, Kalinovsky AI, Pushilin MA, Khudyakova YA, Slinkina NN, Ermakova SP, Yurchenko EA (2012) Oxirapentyns B–D produced by a marine sediment-derived fungus Isaria felina (DC.) Fr. Phytochem Lett 5(1):165–169

    Article  CAS  Google Scholar 

  • Song JT, Han Y, Wang XL, Shen T, Lou HX, Wang XN (2015) Diterpenoids from the twigs and leaves of Croton caudatus var. tomentosus. Fitoterapia 107:54–59

    Article  CAS  PubMed  Google Scholar 

  • Sundin A, Anke H, Bergquist KE, Mayer A, Sheldrick WS, Stadler M, Sterner O (1993) The structure determination of panellon and panellol, two 14-noreudesmanes isolated from Resupinatus leightonii. Tetrahedron 49(34):7519–7524

    Article  CAS  Google Scholar 

  • Sweeney JB (2002) Aziridines: epoxides’ ugly cousins? Chem Soc Rev 31:247–258

    Article  CAS  PubMed  Google Scholar 

  • Tamura A, Kotani H, Naruto S (1975) Trichoviridin and dermadin from Trichoderma sp. TK-1. J Antibiot (Tokyo) 28(2):161–162

    Article  CAS  Google Scholar 

  • Tana RX, Jakupovic J, Bohlmann F, Jia ZJ, Huneck S (1991) Sesquiterpene lactones and other constituents from Artemisia xerophytica. Phytochemistry 30(2):583–587

    Article  Google Scholar 

  • Terent’ev AO, Platonov MM, Levitsky DO, Dembitsky VM (2011) Organosilicon and organogermanium peroxides: synthesis and reactions. Russ Chem Rev 80:807–828

    Article  CAS  Google Scholar 

  • Terent’ev AO, Borisov DA, Vil’ VA, Dembitsky VM (2014) Synthesis of five- and six-membered cyclic organic peroxides: key transformations into peroxide ring-retaining products. Beilstein J Org Chem 10:34–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomoda H, Tabata N, Yang DJ, Takayanagi H, Omura S (1995) Terpendoles, novel ACAT inhibitors produced by Albophoma yamanashiensis. III. Production, isolation and structure elucidation of new components. J Antibiot (Tokyo) 48(8):793–804

    Article  CAS  Google Scholar 

  • Tschersich R, Bisterfeld C, Pietruszka J (2018) Cyclopropyl lactone-containing marine oxylipins. Stud Nat Prod Chem 55:145–180

    Article  Google Scholar 

  • Vicente J, Stewart AK, van Wagoner RM, Elliott E, Bourdelais AJ, Wright JLC (2015) Monacyclinones, new angucyclinone metabolites isolated from Streptomyces sp. M7_15 associated with the Puerto Rican sponge Scopalina ruetzleri. Mar Drugs 13:4682–4700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vil VA, Yaremenko IA, Ilovaisky AI, Terent’ev AO (2017) Peroxides with anthelmintic, antiprotozoal, fungicidal and antiviral bioactivity: properties, synthesis and reactions. Molecules 22(11):1881. https://doi.org/10.3390/molecules22111881

    Article  CAS  PubMed Central  Google Scholar 

  • Vil VA, Gloriozova TA, Poroikov VV, Terent’ev AO, Savidov N, Dembitsky VM (2018) Peroxy steroids derived from plant and fungi and their biological activities. Appl Microbiol Biotechnol 102(18):7657–7667

    Article  CAS  PubMed  Google Scholar 

  • Vil VA, Terent’ev AO, Al Quntar AAA, Gloriozova TA, Savidov N, Dembitsky VM (2019) Oxetane-containing metabolites: origin, structures, and biological activities. Appl Microbiol Biotechnol 103. https://doi.org/10.1007/s00253-018-09576-z

  • Wang M, Tietjen I, Chen M, Williams DE, Daoust J, Brockman MA, Andersen RJ (2016) Sesterterpenoids isolated from the sponge Phorbas sp. activate latent HIV-1 provirus expression. J Organomet Chem 81(22):11324–11334

    Article  CAS  Google Scholar 

  • Wessjohann LA, Brandt W (2003) Biosynthesis and metabolism of cyclopropane rings in natural compounds. Chem Rev 103(4):1625–1648

    Article  CAS  PubMed  Google Scholar 

  • Williams PH, Sullivan WJ (1961) 2,3,4,5-Diepoxy compounds. US Patent 2:980,707

    Google Scholar 

  • Wu HC, Ge HM, Zang LY, Bei YC, Niu ZY, Wei W, Feng XJ, Ding S, Ng SW, Shen PP, Tan RX (2014) Diaporine, a novel endophyte-derived regulator of macrophage differentiation. Org Biomol Chem 12:6545–6548

    Article  CAS  PubMed  Google Scholar 

  • Zhang GW, Ma XQ, Su JY, Zhang K, Kurihara H, Yao XS (2006) Two new bioactive sesquiterpenes from the soft coral Sinularia sp. Nat Prod Res 20(7):659–664

    Article  CAS  PubMed  Google Scholar 

  • Zhao F, Liu YB, Ma SG, Qu J, Yu SS, Li F, Si YK, Zhang JJ (2012) New sesquiterpenes from the roots of Coriaria nepalensis. Tetrahedron 68(31):6204–6210

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was performed in the framework of the Program for Basic Research of Russian State Academies of Sciences for 2013-2020 (Grant RFBR No. 12-04-91,445).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery M. Dembitsky.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vil, V., Gloriozova, T.A., Poroikov, V.V. et al. Naturally occurring of α,β-diepoxy-containing compounds: origin, structures, and biological activities. Appl Microbiol Biotechnol 103, 3249–3264 (2019). https://doi.org/10.1007/s00253-019-09711-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-09711-4

Keywords

Navigation