Skip to main content
Log in

Analysis of enhanced nitrogen removal mechanisms in a validation wastewater treatment plant containing anammox bacteria

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Anammox bacteria have attracted attention due to their apparent importance in saving energy and reducing organic chemical demands. Here, we report the detection and quantification of anammox bacteria with an improved primer set in a validation wastewater treatment plant. The improved primer set was shown to detect a broad range of anammox bacteria (47.3%) facilitating more accurate analyses of nitrogen removal mechanisms. Nitrogen removal efficiency and dominant nitrogen removal mechanisms were compared in the modification-Johannesburg (Mod-JHB), modified Ludzack-Ettinger (MLE) single-feed, and anoxic-oxic-anoxic-oxic (AOAO) step-feed modes. In the Mod-JHB configuration, simultaneous nitrification and denitrification (SND) and anammox were found to be responsible for more than 80% of total inorganic nitrogen (TIN) removal (98.5 ± 0.8% of TIN removal). Decrease of anoxic SRT from 5 to 2.5 days did not have any obvious effect on nitrogen removal or the abundance of functional microorganisms. Microbial batch tests demonstrated that both partial nitrification and dissimilatory nitrate reduction to ammonium (DNRA) were responsible for maintaining the anammox process. Short SRT (2 days) in the aerobic zone may explain the presence of partial nitrification. This study provides insights to the analysis of nitrogen removal mechanisms in validation wastewater treatment plants (WWTPs) aiming for high nitrogen removal efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Brindle K, Stephenson T (1996) The application of membrane biological reactors for the treatment of wastewaters. Biotechnol Bioeng 49(6):601–610

    Article  CAS  PubMed  Google Scholar 

  • Bueno RF, Piveli RP, Campos F, Sobrinho PA (2017) Simultaneous nitrification and denitrification in the activated sludge systems of continuous flow. Environ Technol 39:1–12

    Google Scholar 

  • Cao Y, Hong KB, van Loosdrecht MC, Daigger GT, Yi PH, Wah YL, Chye CS, Ghani YA (2016) Mainstream partial nitritation and anammox in a 200,000 m3/day activated sludge process in Singapore: scale-down by using laboratory fed-batch reactor. Water Sci Technol 74(1):48–56. https://doi.org/10.2166/wst.2016.116

    Article  CAS  Google Scholar 

  • Cao Y, Kwok BH, van Loosdrecht MC, Daigger GT, Png HY, Long WY, Chye CS, Ghani YA (2017) The occurrence of enhanced biological phosphorus removal in a 200,000 m3/day partial nitration and Anammox activated sludge process at the Changi water reclamation plant, Singapore. Water Sci Technol 75(3–4):741–751. https://doi.org/10.2166/wst.2016.565

    Article  CAS  PubMed  Google Scholar 

  • Castro-Barros CM, Jia M, van Loosdrecht MC, Volcke EI, Winkler MK (2017) Evaluating the potential for dissimilatory nitrate reduction by anammox bacteria for municipal wastewater treatment. Bioresour Technol 233:363–372

    Article  CAS  PubMed  Google Scholar 

  • Chen P, Li J, Li QX, Wang Y, Li S, Ren T, Wang L (2012) Simultaneous heterotrophic nitrification and aerobic denitrification by bacterium Rhodococcus sp. CPZ24. Bioresour Technol 116:266–270

    Article  CAS  PubMed  Google Scholar 

  • Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM (2014) Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42(D1):D633–D642

    Article  CAS  PubMed  Google Scholar 

  • Du R, Cao S, Li B, Wang S, Peng Y (2017) Simultaneous domestic wastewater and nitrate sewage treatment by DEnitrifying AMmonium OXidation (DEAMOX) in sequencing batch reactor. Chemosphere 174:399–407. https://doi.org/10.1016/j.chemosphere.2017.02.013

    Article  CAS  PubMed  Google Scholar 

  • Fux C, Boehler M, Huber P, Brunner I, Siegrist H (2002) Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant. J Biotechnol 99(3):295–306

    Article  CAS  PubMed  Google Scholar 

  • Ge S, Peng Y, Wang S, Guo J, Ma B, Zhang L, Cao X (2010) Enhanced nutrient removal in a modified step feed process treating municipal wastewater with different inflow distribution ratios and nutrient ratios. Bioresour Technol 101(23):9012–9019. https://doi.org/10.1016/j.biortech.2010.06.151

    Article  CAS  PubMed  Google Scholar 

  • Geer LY, Marchler-Bauer A, Geer RC, Han L, He J, He S, Liu C, Shi W, Bryant SH (2010) The NCBI biosystems database. Nucleic Acids Res 38(suppl_1):D492–D496

    Article  CAS  PubMed  Google Scholar 

  • Ghabaei K, Bahri PA, Vu LT (2016) Biological waste water treatment: Modelling and optimization of operational costs. Chemeca 2016: Chemical Engineering - Regeneration, Recovery and Reinvention 936–944

  • Gilbert EM, Agrawal S, Schwartz T, Horn H, Lackner S (2015) Comparing different reactor configurations for partial nitritation/anammox at low temperatures. Water Res 81:92–100

    Article  CAS  PubMed  Google Scholar 

  • González R, Bornhardt C, Antileo C (2007) Modes of operation and pH control as enhancement factors for partial nitrification with oxygen transport limitation. Water Res 41(20):4621–4629

    Article  CAS  PubMed  Google Scholar 

  • Goodfellow M, Stackebrandt E (1991) Nucleic acid techniques in bacterial systematics, vol 5. J. Wiley

  • Grady Jr CL, Daigger GT, Love NG, Filipe CD (2011) Biological wastewater treatment. CRC Press

  • He T, Li Z, Sun Q, Xu Y, Ye Q (2016) Heterotrophic nitrification and aerobic denitrification by Pseudomonas tolaasii Y-11 without nitrite accumulation during nitrogen conversion. Bioresour Technol 200:493–499

    Article  CAS  PubMed  Google Scholar 

  • Hellinga C, Schellen AAJC, Mulder JW, van Loosdrecht MCM, Heijnen JJ (1998) The SHARON process: an innovative method for nitrogen removal from ammonium-rich waste water. Water Sci Technol 37(9):135–142. https://doi.org/10.1016/S0273-1223(98)00281-9

    Article  CAS  Google Scholar 

  • Hu Z, Lotti T, de Kreuk M, Kleerebezem R, van Loosdrecht M, Kruit J, Jetten MS, Kartal B (2013) Nitrogen removal by a nitritation-anammox bioreactor at low temperature. Appl Environ Microbiol 79(8):2807–2812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen MM, Lam P, Revsbech NP, Nagel B, Gaye B, Jetten MS, Kuypers MM (2011) Intensive nitrogen loss over the Omani Shelf due to anammox coupled with dissimilatory nitrite reduction to ammonium. ISME J 5(10):1660–1670. https://doi.org/10.1038/ismej.2011.44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kartal B, Kuypers MM, Lavik G, Schalk J, Op den Camp HJ, Jetten MS, Strous M (2007) Anammox bacteria disguised as denitrifiers: nitrate reduction to dinitrogen gas via nitrite and ammonium. Environ Microbiol 9(3):635–642. https://doi.org/10.1111/j.1462-2920.2006.01183.x

    Article  CAS  PubMed  Google Scholar 

  • Leyva-Díaz J, Muñío M, González-López J, Poyatos J (2016) Anaerobic/anoxic/oxic configuration in hybrid moving bed biofilm reactor-membrane bioreactor for nutrient removal from municipal wastewater. Ecol Eng 91:449–458

    Article  Google Scholar 

  • Meng H, Yang Y-C, Lin J-G, Denecke M, Gu J-D (2017) Occurrence of anammox bacteria in a traditional full-scale wastewater treatment plant and successful inoculation for new establishment. Int Biodeterior Biodegrad 120:224–231. https://doi.org/10.1016/j.ibiod.2017.01.022

    Article  CAS  Google Scholar 

  • Ni B-J, Hu B-L, Fang F, Xie W-M, Kartal B, Liu X-W, Sheng G-P, Jetten M, Zheng P, Yu H-Q (2010) Microbial and physicochemical characteristics of compact anaerobic ammonium-oxidizing granules in an upflow anaerobic sludge blanket reactor. Appl Environ Microbiol 76(8):2652–2656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nyberg U, Andersson B, Aspegren H (1996) Long-term experiences with external carbon sources for nitrogen removal. Water Sci Technol 33(12):109–116

    Article  CAS  Google Scholar 

  • Ozgun H, Dereli RK, Ersahin ME, Kinaci C, Spanjers H, van Lier JB (2013) A review of anaerobic membrane bioreactors for municipal wastewater treatment: integration options, limitations and expectations. Sep Purif Technol 118:89–104

    Article  CAS  Google Scholar 

  • Padhi SK, Tripathy S, Sen R, Mahapatra AS, Mohanty S, Maiti NK (2013) Characterisation of heterotrophic nitrifying and aerobic denitrifying Klebsiella pneumoniae CF-S9 strain for bioremediation of wastewater. Int Biodeterior Biodegrad 78:67–73

    Article  CAS  Google Scholar 

  • Phagoo D, Owerdieck C, Hribljan M, Penny J (2007) Enhanced BNR with MBR—two years of successful operation. Proc Water Environ Fed 2007(2):367–381

    Article  Google Scholar 

  • Pochana K, Keller J (1999) Study of factors affecting simultaneous nitrification and denitrification (SND). Water Sci Technol 39(6):61–68

    Article  CAS  Google Scholar 

  • Sheela B, Khasim BS, Yellaji RO (2015) Simultaneous nitrification and denitrification of ammonical wastewaters using Bacillus species SBI isolated from domestic sewage. Int J Life Sci Biotech Pharm Res 4:17–21

  • Shu D, He Y, Yue H, Wang Q (2015) Microbial structures and community functions of anaerobic sludge in six full-scale wastewater treatment plants as revealed by 454 high-throughput pyrosequencing. Bioresour Technol 186:163–172

    Article  CAS  PubMed  Google Scholar 

  • Sliekers AO, Haaijer SC, Stafsnes MH, Kuenen JG, Jetten MS (2005) Competition and coexistence of aerobic ammonium-and nitrite-oxidizing bacteria at low oxygen concentrations. Appl Microbiol Biotechnol 68(6):808–817

    Article  CAS  PubMed  Google Scholar 

  • Strous M, Kuenen JG, Jetten MS (1999) Key physiology of anaerobic ammonium oxidation. Appl Environ Microbiol 65(7):3248–3250

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strous M, Van Gerven E, Kuenen JG, Jetten M (1997) Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (anammox) sludge. Appl Environ Microbiol 63(6):2446–2448

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trojanowicz K, Plaza E, Trela J (2016) Pilot scale studies on nitritation-anammox process for mainstream wastewater at low temperature. Water Sci Technol 73(4):761–768. https://doi.org/10.2166/wst.2015.551

    Article  CAS  PubMed  Google Scholar 

  • Turk O, Mavinic DS (1989) Maintaining nitrite build-up in a system acclimated to free ammonia. Water Res 23(11):1383–1388

    Article  CAS  Google Scholar 

  • van Kessel MA, Speth DR, Albertsen M, Nielsen PH, Op den Camp HJ, Kartal B, Jetten MS, Lucker S (2015) Complete nitrification by a single microorganism. Nature 528:555–559. https://doi.org/10.1038/nature16459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker C, De La Torre J, Klotz M, Urakawa H, Pinel N, Arp D, Brochier-Armanet C, Chain P, Chan P, Gollabgir A (2010) Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proc Natl Acad Sci 107(19):8818–8823

  • Wen X, Gong B, Zhou J, He Q, Qing X (2017) Efficient simultaneous partial nitrification, anammox and denitrification (SNAD) system equipped with a real-time dissolved oxygen (DO) intelligent control system and microbial community shifts of different substrate concentrations. Water Res 119:201–211. https://doi.org/10.1016/j.watres.2017.04.052

  • Winder L, Phillips C, Richards N, Ochoa-Corona F, Hardwick S, Vink CJ, Goldson S (2011) Evaluation of DNA melting analysis as a tool for species identification. Methods Ecol Evol 2(3):312–320

    Article  Google Scholar 

  • Witzig R, Manz W, Rosenberger S, Krüger U, Kraume M, Szewzyk U (2002) Microbiological aspects of a bioreactor with submerged membranes for aerobic treatment of municipal wastewater. Water Res 36(2):394–402

    Article  CAS  PubMed  Google Scholar 

  • Wyffels S, Boeckx P, Pynaert K, Zhang D, Van Cleemput O, Chen G, Verstraete W (2004) Nitrogen removal from sludge reject water by a two-stage oxygen-limited autotrophic nitrification denitrification process. Sort 100:250

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Public Utility Board (PUB) Singapore, with a project no. PUB000/TD/33140325 and the Singapore Ministry of Education Academic Research Fund Tier 2 under project no. MOE2017-T2-1-117.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianzhong He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 271 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Ding, C., Tao, G. et al. Analysis of enhanced nitrogen removal mechanisms in a validation wastewater treatment plant containing anammox bacteria. Appl Microbiol Biotechnol 103, 1255–1265 (2019). https://doi.org/10.1007/s00253-018-9495-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-9495-2

Keywords

Navigation