Skip to main content
Log in

Conversion of wastewater-originated waste grease to polyunsaturated fatty acid-rich algae with phagotrophic capability

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Grease balls collected from a municipal wastewater treatment plant were melt-screened and used for cultivation of microalga Ochromonas danica, which could phagocytize droplets and particles as food. After autoclaving, the waste grease (WG) separated into two (upper and lower) phases. O. danica grew well on both, accumulating 48–79% (w/w) intracellular lipids. Initial WG contained approximately 50:50 triglycerides and free fatty acids (FFAs); over time, almost only FFAs remained in the extracellular WG presumably due to hydrolysis by algal lipase. PUFAs, mainly C18:2n6, C18:3n3, C18:3n6, C20:4n6, and C22:5n6, were synthesized and enriched to up to 67% of intracellular FAs, from the original 15% PUFA content in WG. The study showed feasibility of converting wastewater-originated WG to PUFA-rich O. danica algae culture, possibly as aquaculture/animal feed. WG dispersion was identified as a major processing factor to further improve for optimal WG conversion rate and cell and FA yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abomohra AE-F, El-Sheekh M, Hanelt D (2014) Extracellular secretion of free fatty acids by the chrysophyte Ochromonas danica under photoautotrophic and mixotrophic growth. World J Microbiol Biotechnol 30(12):3111–3119

    Article  CAS  Google Scholar 

  • Biermann U, Bornscheuer U, Meier MAR, Metzger JO, Schäfer HJ (2011) Oils and fats as renewable raw materials in chemistry. Angew Chem Int Ed 50(17):3854–3871. https://doi.org/10.1002/anie.201002767

    Article  CAS  Google Scholar 

  • Borowitzka MA (1997) Microalgae for aquaculture: opportunities and constraints. J Appl Phycol 9(5):393–401

    Article  Google Scholar 

  • Canakci M, Sanli H (2008) Biodiesel production from various feedstocks and their effects on the fuel properties. J Ind Microbiol Biotechnol 35(5):431–441

    Article  CAS  PubMed  Google Scholar 

  • Chi Z, Pyle D, Wen Z, Frear C, Chen S (2007) A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochem 42(11):1537–1545. https://doi.org/10.1016/j.procbio.2007.08.008

    Article  CAS  Google Scholar 

  • Dunstan GA, Volkman JK, Barrett SM, Garland CD (1993) Changes in the lipid composition and maximisation of the polyunsaturated fatty acid content of three microalgae grown in mass culture. J Appl Phycol 5(1):71–83. https://doi.org/10.1007/bf02182424

    Article  CAS  Google Scholar 

  • Fidalgo J, Cid A, Torres E, Sukenik A, Herrero C (1998) Effects of nitrogen source and growth phase on proximate biochemical composition, lipid classes and fatty acid profile of the marine microalga Isochrysis galbana. Aquaculture 166(1–2):105–116

    Article  CAS  Google Scholar 

  • Forsyth S (2015) Arachidonic acid and infant formulas. Pediatr Res 77(5):719–720

    Article  CAS  PubMed  Google Scholar 

  • Gunstone FD (2004) The chemistry of oils and fats. Sources, Composition, Properties and Uses. Blackwell Publishing Ltd, Great Britain 345p

    Google Scholar 

  • Haines T, Aaronson S, Gellerman J, Schlenk H (1962) Occurrence of arachidonic and related acids in the protozoon Ochromonas danica. Nature 194(4835):1282–1283

    Article  CAS  Google Scholar 

  • Harel M, Koven W, Lein I, Bar Y, Behrens P, Stubblefield J, Zohar Y, Place AR (2002) Advanced DHA, EPA and ArA enrichment materials for marine aquaculture using single cell heterotrophs. Aquaculture 213(1–4):347–362

    Article  CAS  Google Scholar 

  • Harwood JL, Guschina IA (2009) The versatility of algae and their lipid metabolism. Biochimie 91(6):679–684

    Article  CAS  PubMed  Google Scholar 

  • Hosseini M, Ju L-K (2015) Use of phagotrophic microalga Ochromonas danica to pretreat waste cooking oil for biodiesel production. J Am Oil Chem Soc 92(1):29–35

    Article  CAS  Google Scholar 

  • Jiang Y, Chen F (2000) Effects of medium glucose concentration and pH on docosahexaenoic acid content of heterotrophic Crypthecodinium cohnii. Process Biochem 35(10):1205–1209. https://doi.org/10.1016/S0032-9592(00)00163-1

    Article  CAS  Google Scholar 

  • Jiang Y, Chen F, Liang S-Z (1999) Production potential of docosahexaenoic acid by the heterotrophic marine dinoflagellate Crypthecodinium cohnii. Process Biochem 34(6):633–637. https://doi.org/10.1016/S0032-9592(98)00134-4

    Article  CAS  Google Scholar 

  • Krienitz L, Wirth M (2006) The high content of polyunsaturated fatty acids in Nannochloropsis limnetica (Eustigmatophyceae) and its implication for food web interactions, freshwater aquaculture and biotechnology. Limnologica 36(3):204–210. https://doi.org/10.1016/j.limno.2006.05.002

    Article  CAS  Google Scholar 

  • Li C, Ju L-K (2014) Conversion of wastewater organics into biodiesel feedstock through the predator-prey interactions between phagotrophic microalgae and bacteria. RSC Adv 4(83):44026–44029

    Article  CAS  Google Scholar 

  • Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31(7):1043–1049. https://doi.org/10.1007/s10529-009-9975-7

    Article  CAS  PubMed  Google Scholar 

  • Lin Z, Raya A, Ju L-K (2014) Microalga Ochromonas danica fermentation and lipid production from waste organics such as ketchup. Process Biochem 49(9):1383–1392

    Article  CAS  Google Scholar 

  • Liu J, Huang J, Sun Z, Zhong Y, Jiang Y, Chen F (2011) Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: assessment of algal oils for biodiesel production. Bioresour Technol 102(1):106–110. https://doi.org/10.1016/j.biortech.2010.06.017

    Article  CAS  PubMed  Google Scholar 

  • Long JH, Aziz TN, Francis L, Ducoste JJ (2012) Anaerobic co-digestion of fat, oil, and grease (FOG): a review of gas production and process limitations. Process Saf Environ Prot 90(3):231–245

    Article  CAS  Google Scholar 

  • Metzger JO, Bornscheuer U (2006) Lipids as renewable resources: current state of chemical and biotechnological conversion and diversification. Appl Microbiol Biotechnol 71(1):13–22. https://doi.org/10.1007/s00253-006-0335-4

    Article  CAS  PubMed  Google Scholar 

  • Montefrio MJ, Xinwen T, Obbard JP (2010) Recovery and pre-treatment of fats, oil and grease from grease interceptors for biodiesel production. Appl Energy 87(10):3155–3161

    Article  CAS  Google Scholar 

  • Moon M, Kim CW, Park W-K, Yoo G, Choi Y-E, Yang J-W (2013) Mixotrophic growth with acetate or volatile fatty acids maximizes growth and lipid production in Chlamydomonas reinhardtii. Algal Res 2(4):352–357. https://doi.org/10.1016/j.algal.2013.09.003

    Article  Google Scholar 

  • Ngo HL, Zafiropoulos NA, Foglia TA, Samulski ET, Lin W (2007) Efficient two-step synthesis of biodiesel from greases. Energy Fuel 22(1):626–634

    Article  CAS  Google Scholar 

  • Pastore C, Pagano M, Lopez A, Mininni G, Mascolo G (2015) Fat, oil and grease waste from municipal wastewater: characterization, activation and sustainable conversion into biofuel. Water Sci Technol 71(8):1151–1157

    Article  CAS  PubMed  Google Scholar 

  • Pollero R, Brenner R, Dumm CG (1975) Comparative biosynthesis of polyethylenic fatty acids in Acanthamoeba castellanii and Ochromonas danica. Acta Physiol Lat Am 25(5):412–424

    CAS  PubMed  Google Scholar 

  • Pringsheim E (1952) On the nutrition of Ochromonas. J Cell Sci 3(21):71–96

    Google Scholar 

  • Qiao H, Cong C, Sun C, Li B, Wang J, Zhang L (2016) Effect of culture conditions on growth, fatty acid composition and DHA/EPA ratio of Phaeodactylum tricornutum. Aquaculture 452:311–317

    Article  CAS  Google Scholar 

  • Shen Y, Linville JL, Urgun-Demirtas M, Mintz MM, Snyder SW (2015) An overview of biogas production and utilization at full-scale wastewater treatment plants (WWTPs) in the United States: challenges and opportunities towards energy-neutral WWTPs. Renew Sust Energ Rev 50:346–362

    Article  CAS  Google Scholar 

  • Springer M, Franke H, Pulz O (1994) Increase of the content of polyunsaturated fatty acids in Porphyridium cruentum by low-temperature stress and acetate supply. J Plant Physiol 143(4):534–537. https://doi.org/10.1016/S0176-1617(11)81819-5

    Article  CAS  Google Scholar 

  • Tan CK, Johns MR (1991) Fatty acid production by heterotrophic Chlorella saccharophila. Hydrobiologia 215(1):13–19. https://doi.org/10.1007/bf00005896

    Article  CAS  Google Scholar 

  • Tanaka T, Yabuuchi T, Maeda Y, Nojima D, Matsumoto M, Yoshino T (2017) Production of eicosapentaenoic acid by high cell density cultivation of the marine oleaginous diatom Fistulifera solaris. Bioresour Technol 245:567–572. https://doi.org/10.1016/j.biortech.2017.09.005

    Article  CAS  PubMed  Google Scholar 

  • Van Wychen S, Laurens L (2013) Determination of total lipids as fatty acid methyl esters (FAME) by in situ transesterification: laboratory analytical procedure (LAP). National Renewable Energy Laboratory (NREL), Golden

    Google Scholar 

  • Vogel G, Eichenberger W (1992) Betaine lipids in lower plants. Biosynthesis of DGTS and DGTA in Ochromonas danica (Chrysophyceae) and the possible role of DGTS in lipid metabolism. Plant Cell Physiol 33(4):427–436

    CAS  Google Scholar 

  • Wallace T, Gibbons D, O'Dwyer M, Curran TP (2017) International evolution of fat, oil and grease (FOG) waste management–a review. J Environ Manag 187:424–435

    Article  Google Scholar 

  • Wang L, Li Y, Chen P, Min M, Chen Y, Zhu J, Ruan RR (2010) Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour Technol 101(8):2623–2628. https://doi.org/10.1016/j.biortech.2009.10.062

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Aziz TN, Francis L (2013) Determining the limits of anaerobic co-digestion of thickened waste activated sludge with grease interceptor waste. Water Res 47(11):3835–3844

    Article  CAS  PubMed  Google Scholar 

  • Wen Z-Y, Chen F (2001) Optimization of nitrogen sources for heterotrophic production of eicosapentaenoic acid by the diatom Nitzschia laevis. Enzym Microb Technol 29(6):341–347. https://doi.org/10.1016/S0141-0229(01)00385-4

    Article  CAS  Google Scholar 

  • Wilken S, Schuurmans JM, Matthijs HC (2014) Do mixotrophs grow as photoheterotrophs? Photophysiological acclimation of the chrysophyte Ochromonas danica after feeding. New Phytol 204(4):882–889

    Article  CAS  PubMed  Google Scholar 

  • Xiao S, Ju L-K (2018) Energy-efficient ultrasonic release of bacteria and particulates to facilitate ingestion by phagotrophic algae for waste sludge treatment and algal biomass and lipid production. Chemosphere 209:588–598. https://doi.org/10.1016/j.chemosphere.2018.06.120

    Article  CAS  PubMed  Google Scholar 

  • Yongmanitchai W, Ward OP (1991) Growth of and omega-3 fatty acid production by Phaeodactylum tricornutum under different culture conditions. Appl Environ Microbiol 57(2):419–425

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu L, Wang Z, Shu Q, Takala J, Hiltunen E, Feng P, Yuan Z (2013) Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment. Water Res 47(13):4294–4302

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. Gilbert Stadler of the Akron Water Reclamation Facility (Akron, OH) for assistance in grease ball sample collection. The authors also acknowledge the assistance of Dr. Nicholas Callow and Mr. Jacob Kohl in fatty acid analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu-Kwang Ju.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, S., Ju, LK. Conversion of wastewater-originated waste grease to polyunsaturated fatty acid-rich algae with phagotrophic capability. Appl Microbiol Biotechnol 103, 695–705 (2019). https://doi.org/10.1007/s00253-018-9477-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-9477-4

Keywords

Navigation