Skip to main content
Log in

Regio- and enantioselective O-demethylation of tetrahydroprotoberberines by cytochrome P450 enzyme system from Streptomyces griseus ATCC 13273

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Tetrahydroprotoberberines (THPBs), a class of naturally occurring isoquinoline alkaloids, contain substituent methoxyl or hydroxyl groups which play a significant role in the pharmacological properties of these molecules. In this study, we report a biocatalytic strategy for selective O-demethylation of THPBs. CYP105D1, a cytochrome P450 from Streptomyces griseus ATCC 13273, exhibited markedly regioselective demethylation of nonhydroxyl-THPBs and monohydroxyl-THPBs on the D-ring. A possible binding mode of THPBs with CYP105D1 was investigated by docking analysis, and the results revealed that the D-rings of THPBs were with the minimum distance to the heme iron. Tetrahydropalmatine was used as a model substrate and enantioselective demethylation was demonstrated. (S)-Tetrahydropalmatine was only demethylated at C-10, while (R)-tetrahydropalmatine was first demethylated at C-10 and then subsequently demethylated at C-9. The kcat/Km value for demethylation of (R)-tetrahydropalmatine by CYP105D1 was 3.7 times greater than that for demethylation of (S)-tetrahydropalmatine. Furthermore, selective demethylation of (S)-tetrahydropalmatine by the CYP105D1-based whole-cell system was demonstrated for the highly efficient production of (S)-corydalmine which has distinct pharmacological applications, such as providing relief from bone cancer pain and reducing morphine tolerance. Moreover, a homologous redox partner was identified to enhance the catalytic efficiency of the CYP105D1-based whole-cell system. This is the first enzymatic characterization of a cytochrome P450 that has regio- and enantioselective demethylation activity of THPBs for application purpose. The cytochrome P450 system could be a promising strategy for selective demethylation in the pharmaceutical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Scheme 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Download references

Funding

This work was supported by the Major Scientific and Technological Specialized Project for “New Drugs Development” (No. 2012ZX09J12110-06B) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiufeng Liu or Jihua Liu.

Ethics declarations

The article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 1211 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, C., Shan, T., Zhao, W. et al. Regio- and enantioselective O-demethylation of tetrahydroprotoberberines by cytochrome P450 enzyme system from Streptomyces griseus ATCC 13273. Appl Microbiol Biotechnol 103, 761–776 (2019). https://doi.org/10.1007/s00253-018-9416-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-9416-4

Keywords

Navigation