Skip to main content

Azoreductase from alkaliphilic Bacillus sp. AO1 catalyzes indigo reduction

Abstract

Indigo is an insoluble blue dye historically used for dyeing textiles. A traditional approach for indigo dyeing involves microbial reduction of polygonum indigo to solubilize it under alkaline conditions; however, the mechanism by which microorganisms reduce indigo remains poorly understood. Here, we aimed to identify an enzyme that catalyzes indigo reduction; for this purpose, from alkaline liquor that performed microbial reduction of polygonum indigo, we isolated indigo carmine-reducing microorganisms. All isolates were facultative anaerobic and alkali-tolerant Bacillus spp. An isolate termed AO1 was found to be an alkaliphile that preferentially grows at pH 9.0–11.0 and at 30–35 °C. We focused on flavin-dependent azoreductase as a possible enzyme for indigo carmine reduction and identified its gene (azoA) in Bacillus sp. AO1 using homology-based strategies. azoA was monocistronic but clustered with ABC transporter genes. Primary sequence identities were < 50% between the azoA product (AzoA) and previously characterized flavin-dependent azoreductases. AzoA was heterologously produced as a flavoprotein tolerant to alkaline and organic solvents. The enzyme efficiently reduced indigo carmine in an NADH-dependent manner and showed strict specificity for electron acceptors. Notably, AzoA oxidized NADH in the presence, but not the absence, of indigo. The reaction rate was enhanced by adding organic solvents to solubilize indigo. Absorption spectrum analysis showed that indigo absorption decreased during the reaction. These observations suggest that AzoA can reduce indigo in vitro and potentially in Bacillus sp. AO1. This is the first study that identified an indigo reductase, providing a new insight into a traditional approach for indigo dyeing.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Aino K, Narihiro T, Minamida K, Kamagata Y, Yoshimune K, Yumoto I (2010) Bacterial community characterization and dynamics of indigo fermentation. FEMS Microbiol Ecol 74:174–183. https://doi.org/10.1111/j.1574-6941.2010.00946.x

    CAS  Article  PubMed  Google Scholar 

  2. Balfour–Paul J (2012) Indigo: Egyptian mummies to blue jeans. Firefly Books Ltd., New York

    Google Scholar 

  3. Bin Y, Jiti Z, Jing W, Cuihong D, Hongman H, Zhiyong S, Yongming B (2004) Expression and characteristics of the gene encoding azoreductase from Rhodobacter sphaeroides AS1.1737. FEMS Microbiol Lett 236:129–136. https://doi.org/10.1111/j.1574-6968.2004.tb09638.x

    Article  PubMed  Google Scholar 

  4. Binter A, Staunig N, Jelesarov I, Lohner K, Palfey BA, Deller S, Gruber K, Macheroux P (2009) A single intersubunit salt bridge affects oligomerization and catalytic activity in a bacterial quinone reductase. FEBS J 276:5263–5274. https://doi.org/10.1111/j.1742-4658.2009.07222.x

    CAS  Article  PubMed  Google Scholar 

  5. Blümel S, Knackmuss H-J, Stolz A (2002) Molecular cloning and characterization of the gene coding for the aerobic azoreductase from Xenophilus azovorans KF46F. Appl Environ Microbiol 68:3948–3955. https://doi.org/10.1128/AEM.68.8.3948-3955.2002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Boratyn GM, Camacho C, Cooper PS, Coulouris G, Fong A, Ma N, Madden TL, Matten WT, McGinnis SD, Merezhuk Y, Raytselis Y, Sayers EW, Tao T, Ye J, Zaretskaya I (2013) BLAST: a more efficient report with usability improvements. Nucleic Acids Res 41:W29–W33. https://doi.org/10.1093/nar/gkt282

    Article  PubMed  PubMed Central  Google Scholar 

  7. Božič M, Kokol V (2008) Ecological alternatives to the reduction and oxidation processes in dyeing with vat and sulphur dyes. Dyes Pigments 76:299–309. https://doi.org/10.1016/j.dyepig.2006.05.041

    CAS  Article  Google Scholar 

  8. Božič M, Kokol V, Guebitz GM (2009) Indigo dyeing of polyamide using enzymes for dye reduction. Text Res J 79:895–907. https://doi.org/10.1177/0040517508097514

    CAS  Article  Google Scholar 

  9. Božič M, Pricelius S, Guebitz GM, Kokol V (2010) Enzymatic reduction of complex redox dyes using NADH-dependent reductase from Bacillus subtilis coupled with cofactor regeneration. Appl Microbiol Biotechnol 85:563–571. https://doi.org/10.1007/s00253-009-2164-8

    CAS  Article  PubMed  Google Scholar 

  10. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Britton HTS, Robinson RA (1931) Universal buffer solutions and the association constant of veronal. J Chem Soc 198:1456–1462

    Article  Google Scholar 

  12. Chen H, Hopper SL, Cerniglia CE (2005) Biochemical and molecular characterization of an azoreductase from Staphylococcus aureus, a tetrameric NADPH-dependent flavoprotein. Microbiology 151:1433–1441. https://doi.org/10.1099/mic.0.27805-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Chen H, Wang R, Cerniglia CE (2004) Molecular cloning, overexpression, purification, and characterization of an aerobic FMN-dependent azoreductase from Enterococcus faecalis. Protein Expr Purif 34:302–310. https://doi.org/10.1016/j.pep.2003.12.016

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Deller S, Sollner S, Trenker–El–Toukhy R, Jelesarov I, Gübitz GM, Macheroux P (2006) Characterization of a thermostable NADPH:FMN oxidoreductase from the mesophilic bacterium Bacillus subtilis. Biochemistry 45:7083–7091. https://doi.org/10.1021/bi052478r

    CAS  Article  PubMed  Google Scholar 

  15. Feng JH, Kweon O, Xu H, Cerniglia CE, Chen H (2012) Probing the NADH- and methyl red-binding site of a FMN-dependent azoreductase (AzoA) from Enterococcus faecalis. Arch Biochem Biophys 520:99–107. https://doi.org/10.1016/j.abb.2012.02.010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Hirota K, Aino K, Nodasaka Y, Morita N, Yumoto I (2013a) Amphibacillus indicireducens sp. nov., an alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol 63:464–469. https://doi.org/10.1099/ijs.0.037622-0

    CAS  Article  PubMed  Google Scholar 

  17. Hirota K, Aino K, Nodasaka Y, Yumoto I (2013b) Oceanobacillus indicireducens sp. nov., a facultative alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol 63:1437–1442. https://doi.org/10.1099/ijs.0.034579-0

    Article  PubMed  Google Scholar 

  18. Hirota K, Aino K, Yumoto I (2013c) Amphibacillus iburiensis sp. nov., an alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol 63:4303–4308. https://doi.org/10.1099/ijs.0.048009-0

    CAS  Article  PubMed  Google Scholar 

  19. Hirota K, Aino K, Yumoto I (2016a) Fermentibacillus polygoni gen. nov., sp. nov., an alkaliphile that reduces indigo dye. Int J Syst Evol Microbiol 66:2247–2253. https://doi.org/10.1099/ijsem.0.001015

    CAS  Article  PubMed  Google Scholar 

  20. Hirota K, Hanaoka Y, Nodasaka Y, Yumoto I (2013d) Oceanobacillus polygoni sp. nov., a facultatively alkaliphile isolated from indigo fermentation fluid. Int J Syst Evol Microbiol 63:3307–3312. https://doi.org/10.1099/ijs.0.048595-0

    CAS  Article  PubMed  Google Scholar 

  21. Hirota K, Hanaoka Y, Nodasaka Y, Yumoto I (2014) Gracilibacillus alcaliphilus sp. nov., a facultative alkaliphile isolated from indigo fermentation liquor for dyeing. Int J Syst Evol Microbiol 64:3174–3180. https://doi.org/10.1099/ijs.0.060871-0

    CAS  Article  PubMed  Google Scholar 

  22. Hirota K, Nishita M, Matsuyama H, Yumoto I (2017) Paralkalibacillus indicireducens gen., nov., sp. nov., an indigo-reducing obligate alkaliphile isolated from indigo fermentation liquor used for dyeing. Int J Syst Evol Microbiol 67:4050–4056. https://doi.org/10.1099/ijsem.0.002248

    Article  PubMed  Google Scholar 

  23. Hirota K, Nishita M, Tu Z, Matsuyama H, Yumoto I (2018) Bacillus fermenti sp. nov., an indigo-reducing obligate alkaliphile isolated from indigo fermentation liquor for dyeing. Int J Syst Evol Microbiol 68:1123–1129. https://doi.org/10.1099/ijsem.0.002636

    Article  PubMed  Google Scholar 

  24. Hirota K, Okamoto T, Matsuyama H, Yumoto I (2016b) Polygonibacillus indicireducens gen. nov., sp. nov., an indigo-reducing and obligate alkaliphile isolated from indigo fermentation liquor for dyeing. Int J Syst Evol Microbiol 66:4650–4656. https://doi.org/10.1099/ijsem.0.001405

    Article  PubMed  Google Scholar 

  25. Johansson HE, Johansson MK, Wong AC, Armstrong ES, Peterson EJ, Grant RE, Roy MA, Reddington MV, Cook RM (2011) BTI1, an azoreductase with pH-dependent substrate specificity. Appl Environ Microbiol 77:4223–4225. https://doi.org/10.1128/AEM.02289-10

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Krishna PS, Sreenivas A, Singh DK, Shivaji S, Prakash JSS (2015) Draft genome sequence of Bacillus okhensis Kh10-101T, a halo-alkali tolerant bacterium from Indian saltpan. Genom Data 6:283–284. https://doi.org/10.1016/j.gdata.2015.10.019

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lang W, Sirisansaneeyakul S, Ngiwsara L, Mendes S, Martins LO, Okuyama M, Kimura A (2013) Characterization of a new oxygen-insensitive azoreductase from Brevibacillus laterosporus TISTR1911: toward dye decolorization using a packed-bed metal affinity reactor. Bioresour Technol 150:298–306. https://doi.org/10.1016/j.biortech.2013.09.124

    CAS  Article  PubMed  Google Scholar 

  28. Matsumoto K, Mukai Y, Ogata D, Shozui F, Nduko JM, Taguchi S, Ooi T (2010) Characterization of thermostable FMN-dependent NADH azoreductase from the moderate thermophile Geobacillus stearothermophilus. Appl Microbiol Biotechnol 86:1431–1438. https://doi.org/10.1007/s00253-009-2351-7

    CAS  Article  PubMed  Google Scholar 

  29. Mendes S, Pereira L, Batista C, Martins LO (2011) Molecular determinants of azo reduction activity in the strain Pseudomonas putida MET94. Appl Microbiol Biotechnol 92:393–405. https://doi.org/10.1007/s00253-011-3366-4

    CAS  Article  PubMed  Google Scholar 

  30. Misal SA, Lingojwar DP, Gawai KR (2013) Properties of NAD(P)H azoreductase from alkaliphilic red bacteria Aquiflexum sp. DL6. Protein J 32:601–608. https://doi.org/10.1007/s10930-013-9522-1

    CAS  Article  PubMed  Google Scholar 

  31. Nakajima K, Hirota K, Nodasaka Y, Yumoto I (2005) Alkalibacterium iburiense sp. nov., an obligate alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol 55:1525–1530. https://doi.org/10.1099/ijs.0.63487-0

    CAS  Article  PubMed  Google Scholar 

  32. Nakanishi M, Yatome C, Ishida N, Kitade Y (2001) Putative ACP phosphodiesterase gene (acpD) encodes an azoreductase. J Biol Chem 276:46394–46399. https://doi.org/10.1074/jbc.M104483200

    CAS  Article  PubMed  Google Scholar 

  33. Nicholson SK, John P (2005) The mechanism of bacterial indigo reduction. Appl Microbiol Biotechnol 68:117–123. https://doi.org/10.1007/s00253-004-1839-4

    CAS  Article  PubMed  Google Scholar 

  34. Nogi Y, Takami H, Horikoshi K (2005) Characterization of alkaliphilic Bacillus strains used in industry: proposal of five novel species. Int J Syst Evol Microbiol 55:2309–2315. https://doi.org/10.1099/ijs.0.63649-0

    CAS  Article  PubMed  Google Scholar 

  35. Ochman H, Gerber AS, Hartl DL (1988) Genetic applications of an inverse polymerase chain-reaction. Genetics 120:621–623

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ooi T, Shibata T, Sato R, Ohno H, Kinoshita S, Thuoc TL, Taguchi S (2007) An azoreductase, aerobic NADH-dependent flavoprotein discovered from Bacillus sp. Appl Microbiol Biotechnol 75:377–386. https://doi.org/10.1007/s00253-006-0836-1

    CAS  Article  PubMed  Google Scholar 

  37. Padden AN, Dillon VM, Edmonds J, Collins MD, Alvarez N, John P (1999) An indigo-reducing moderate thermophile from a woad vat, Clostridium isatidis sp. nov. Int J Syst Bacteriol 49:1025–1031. https://doi.org/10.1099/00207713-49-3-1025

    CAS  Article  PubMed  Google Scholar 

  38. Padden AN, Dillon VM, John P, Edmonds J, Collins MD, Alvarez N (1998) Clostridium used in mediaeval dyeing. Nature 396:225–225. https://doi.org/10.1038/24290

    CAS  Article  Google Scholar 

  39. Pricelius S, Held C, Murkovic M, Bozic M, Kokol V, Cavaco–Paulo A, Guebitz GM (2007) Enzymatic reduction of azo and indigoid compounds. Appl Microbiol Biotechnol 77:321–327. https://doi.org/10.1007/s00253-007-1165-8

    CAS  Article  PubMed  Google Scholar 

  40. Segel IH (1975) Enzyme kinetics. John Wiley & Sons, New York

    Google Scholar 

  41. Sugiura W, Yoda T, Matsuba T, Tanaka Y, Suzuki Y (2006) Expression and characterization of the genes encoding azoreductases from Bacillus subtilis and Geobacillus stearothermophilus. Biosci Biotechnol Biochem 70:1655–1665. https://doi.org/10.1271/bbb.60014

    CAS  Article  PubMed  Google Scholar 

  42. Yang Y, Lu L, Gao F, Zhao Y (2013) Characterization of an efficient catalytic and organic solvent-tolerant azoreductase toward methyl red from Shewanella oneidensis MR-1. Environ Sci Pollut Res 20:3232–3239. https://doi.org/10.1007/s11356-012-1221-5

    CAS  Article  Google Scholar 

  43. Yumoto I, Hirota K, Nodasaka Y, Tokiwa Y, Nakajima K (2008) Alkalibacterium indicireducens sp. nov., an obligate alkaliphile that reduces indigo dye. Int J Syst Evol Microbiol 58:901–905. https://doi.org/10.1099/ijs.0.64995-0

    CAS  Article  PubMed  Google Scholar 

  44. Yumoto I, Hirota K, Nodasaka Y, Yokota Y, Hoshino T, Nakajima K (2004) Alkalibacterium psychrotolerans sp. nov., a psychrotolerant obligate alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol 54:2379–2383. https://doi.org/10.1099/ijs.0.63130-0

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Aika Tanaka Kasuri Koubou (Fukuoka, Japan) for providing the polygonum alkaline liquor.

Funding

This work was supported by an Innovative Research Program Award of the Japan Society for Bioscience, Biotechnology, and Agrochemistry and the Institute for Fermentation, Osaka, Japan.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hirokazu Suzuki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Suzuki, H., Abe, T., Doi, K. et al. Azoreductase from alkaliphilic Bacillus sp. AO1 catalyzes indigo reduction. Appl Microbiol Biotechnol 102, 9171–9181 (2018). https://doi.org/10.1007/s00253-018-9284-y

Download citation

Keywords

  • Alkaliphile
  • Azoreductase
  • Bacillus
  • Indigo
  • Indigo carmine
  • Polygonum