Skip to main content

Advertisement

Log in

Harnessing fungi to mitigate CH4 in natural and engineered systems

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Methane (CH4) is a powerful greenhouse gas emitted from natural and anthropogenic sources, and its emission rates vary among sources as a function of environment, microbial respiration, and feedbacks. Biological CH4 flux from natural and engineered systems is typically represented simply as generation of CH4 by methanogens minus oxidation by methanotrophs. In many cases, however, CH4 flux is modulated by transport and solubility mechanisms that occur before oxidation or other chemical transformation. The ability of fungi to directly oxidize CH4 remains unclear; however, their hydrophobic growths extending above microbial biofilms can improve surface area and sorption of hydrophobic gases. This can improve overall oxidation rates in a biofilm simply by improving phase transfer dynamics and bioavailability to bacterial or archaeal associates. This indirect facilitation is not necessarily intuitive, but there has been a recent emerging interest in harnessing these fungal abilities in engineering bioreactors and filtration systems designed to capture and oxidize CH4. These dynamics may be playing a similar facilitative role in natural CH4 oxidation, where fungi may indirectly influence carbon mineralization and methanogen/methanotroph communities, and/or directly oxidize and dissolve gaseous CH4. This review highlights these unique roles for fungi in determining net CH4 oxidation rates, and it summarizes the potential to harness fungi to mitigate CH4 emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arif MAS, Houwen F, Verstraete W (1996) Agricultural factors affecting methane oxidation in arable soil. Biol Fertil Soils 21(1–2):95–102

    Article  Google Scholar 

  • Amend A (2014) From dandruff to deep-sea vents: Malassezia-like fungi are ecologically hyper-diverse. PLoS Path e1004277.

  • Avalos Ramirez A, Jones JP, Heitz M (2012) Methane treatment in biotrickling filters packed with inert materials in presence of a non-ionic surfactant. J Chem Technol Biotechnol 87(6):848–853

    Article  CAS  Google Scholar 

  • Aydin S, Yildirim E, Ince O, Ince B (2017) Rumen anaerobic fungi create new opportunities for enhanced methane production from microalgae biomass. Algal Res 23:150–160

    Article  Google Scholar 

  • Baldrian P (2017) Forest microbiome: diversity, complexity and dynamics. FEMS Microbiol Rev 41(2):109–130

    PubMed  Google Scholar 

  • Ball BC, Dobbie KE, Parker JP, Smith KA (1997a) The influence of gas transport and porosity on methane oxidation in soils. J Geophys Res 102(D19):23,301–23,308

    Article  CAS  Google Scholar 

  • Ball BC, Smith KA, Klemedtsson L, Brumme R, Sitaula BK, Hansen S, Priemd A, MacDonald J, Horgan GW (1997b) The influence of soil gas transport properties on methane oxidation in a selection of northern European soils. J Geophys Res 102(D19):23,309–23,317

    Article  CAS  Google Scholar 

  • Bauchop T (1981) The anaerobic fungi in rumen fibre digestion. Agric Environ 6(2):339–348

    Article  Google Scholar 

  • Beckmann S, Kruger M, Engelen B, Gorbushina AA, Cypionka H (2011) Role of bacteria, archaea and fungi involved in methane release in abandoned coal mines. Geomicrobiol J 28(4):347–358

    Article  CAS  Google Scholar 

  • Benstead J, King GM, Williams HG (1998) Methanol promotes atmospheric methane oxidation by methanotrophic cultures and soils. Appl Environ Microbiol 64(3):1091–1098

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bhullar GS, Iravani M, Edwards PJ, Venterink HO (2013) Methane transport and emissions from soil as affected by water table and vascular plants. Ecology 13:32

    PubMed  Google Scholar 

  • Boddy L (1999) Saprotrophic cord-forming fungi: meeting the challenge of heterogeneous environments. Mycologia 91(1):13–32

    Article  Google Scholar 

  • Borges AV, Champenois W, Gypens N, Delille B, Harlay J (2016) Massive marine methane emissions from near-shore shallow coastal areas. Sci Rep 6:27908

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brul S, Stumm CK (1994) Symbionts and organelles in ancrobic protozoa and fungi. Trends Ecol Evol 9(9):319–324

    Article  PubMed  CAS  Google Scholar 

  • Brune A, Ohkuma M (2011) Role of the termite gut microbiota in symbiotic digestion. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, Netherlands, pp 439–475

    Google Scholar 

  • Burke DJ, Smemo KA, Lopez-Gutierrez JC, DeForest JL (2012) Soil fungi influence the distribution of microbial functional groups that mediate forest greenhouse gas emissions. Soil Biol Biochem 53:112–119

    Article  CAS  Google Scholar 

  • Cabrol L, Malhautier L (2011) Integrating microbial ecology in bioprocess understanding: the case of gas biofiltration. Appl Microbiol Biotechnol 90(3):837–849

    Article  PubMed  CAS  Google Scholar 

  • Campbell JL, Rustad LE, Boyer EW, Christopher SF, Driscoll CT, Fernandez IJ, Groffman PM, Houle D, Kiekbusch J, Magill AH, Mitchell MJ, Ollinger SV (2009) Consequences of climate change for biogeochemical cycling in forests of northeastern North America. Can J For Res 39(2):264–284

    Article  CAS  Google Scholar 

  • Castro MS, Steudler PA, Melillo JM, Aber JD, Bowden RD (1995) Factors controlling atmospheric methane consumption by temperate forest soils. Glob Biogeochem Cycles 9(1):1–10

    Article  CAS  Google Scholar 

  • Chanton J, Abichou T, Langford C, Spokas K, Hater G, Green R, Goldsmith D, Barlaz MA (2011) Observations on the methane oxidation capacity of landfill soils. Waste Manag 31(5):914–925

    Article  PubMed  CAS  Google Scholar 

  • Cheng YF, Edwards JE, Allison GG, Zhu W-Y, Theodorou MK (2009) Diversity and activity of enriched ruminal cultures of anaerobic fungi and methanogens grown together on lignocellulose in consecutive batch culture. Bioresour Technol 100(20):4821–4828

    Article  PubMed  CAS  Google Scholar 

  • Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Funlay RD, Wardle DA, Lindahl BD (2013) Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339(6127):1615–1618

    Article  PubMed  CAS  Google Scholar 

  • Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 60(4):609–640

    PubMed  PubMed Central  CAS  Google Scholar 

  • Conrad R (2009) The global methane cycle: recent advances in understanding the microbial processes involved. Environ Microbiol Rep 1(5):285–292

    Article  PubMed  CAS  Google Scholar 

  • Costa KC, Leigh JA (2014) Metabolic versatility in methanogens. Cur Opin Biotechnol 29:70–75

    Article  CAS  Google Scholar 

  • Covey KR, Wood SA, Warren RJ, Lee X, Bradford MA (2012) Elevated methane concentrations in trees of an upland forest. Geophys Res Lett 39:L15705

    Article  CAS  Google Scholar 

  • Cox HHJ, Moerman RE, vanBaalen S, vanHeiningen WNM, Doddema HJ, Harder W (1997) Performance of a styrene-degrading biofilter containing the yeast Exophiala jeanselmei. Biotechnol Bioeng 53(3):259–266

    Article  PubMed  CAS  Google Scholar 

  • Curry S, Ciuffetti L, Hyman M (1996) Inhibition of growth of a Graphium sp on gaseous n-alkanes by gaseous n-alkynes and n-alkenes. Appl Environ Microbiol 62(6):2198–2200

    PubMed  PubMed Central  CAS  Google Scholar 

  • Dedysh S, Dunfield PF, Trotsenko YA (2004) Methane utilization by Methylobacterium species: new evidence but still no proof for an old controversy. Int J Syst Evol Microbiol 54:1919–1920

    Article  PubMed  Google Scholar 

  • Delhomenie MC, Heitz M (2005) Biofiltration of air: a review. Crit Rev Biotechnol 25(1–2):53–72

    Article  PubMed  CAS  Google Scholar 

  • Dollhofer V, Podmirseg SM, Callaghan TM, Griffith GW, Fliegerová K (2015) Anaerobic fungi and their potential for biogas production. In: Guebitz GM, Bauer A, Bochmann G, Gronauer A, Weiss S (eds) Biogas science and technology. Springer International Publishing, Cham, pp 41–61

    Chapter  Google Scholar 

  • Donoso-Bravo A, Mairet F (2012) Determining the limiting reaction in anaerobic digestion processes. How has this been tackled? J Chem Technol Biotechnol 87:1375–1378

    Article  CAS  Google Scholar 

  • Dorr H, Katruff L, Levin I (1993) Soil texture parameterization of the methane uptake in aerated soils. Chemosphere 26:697–713

  • EPA (2018) Inventory of U.S. greenhouse gas emissions and sinks: 1990-2016. United States Environmental Protection Agency, EPA 430-R-18-003

  • EPA (2015) Overview of greenhouse gases—methane. United States Environmental Protection Agency. http://epa.gov/climatechange/ghgemissions/gases/ch4.html

  • Estévez E, Veiga MC, Kennes C (2005) Biofiltration of waste gases with the fungi Exophiala oligosperma and Paecilomyces variotii. Appl Microbiol Biotechnol 67(4):563–8

  • Estrada JM, Lebrero R, Quijano G, Perez R, Figueroa-Gonzalez I, Garcia-Encina PA, Munoz R (2014) Methane abatement in a gas-recycling biotrickling filter: evaluating innovative operational strategies to overcome mass transfer limitations. Chem Eng J 253:385–393

    Article  CAS  Google Scholar 

  • Ettwig KF, Shima S, van de Pas-Schoonen KT, Kahnt J, Medema MH, Op den Camp HJM, Jetten MSM, Strous M (2008) Denitrifying bacteria anaerobically oxidize methane in the absence of archaea. Environ Microbiol 10:3164–3173

    Article  PubMed  CAS  Google Scholar 

  • Ferdowsi M, Ramirez AA, Jones JP, Heitz M (2017) Elimination of mass transfer and kinetic limited organic pollutants in biofilters: a review. Int Biodeterior Biodegrad 119:336–348

    Article  CAS  Google Scholar 

  • Fernandez CW, Kennedy PG (2015) Moving beyond the black-box: fungal traits, community structure, and carbon sequestration in forest soils. New Phytol 205(4):1378–1380

    Article  PubMed  CAS  Google Scholar 

  • Fernandez CW, Langley JA, Chapman S, McCormack ML, Koide RT (2016) The decomposition of ectomycorrhizal fungal necromass. Soil Biol Biochem 93:38–49

    Article  CAS  Google Scholar 

  • Fricker MD, Heaton LLM, Jones NS, Boddy L (2017) The mycelium as a network. Microbiol Spectr 5(3):1–32

    Google Scholar 

  • Gerber PJ, Steinfeld H, Henderson B, Mottet A, Opio C, Dijkman J, Falcucci A, Tempio G (2013) Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities. Food and Agricultural Organization of the United Nations

  • Girard M, Ramirez AA, Buelna G, Heitz M (2011) Biofiltration of methane at low concentrations representative of the piggery industry: influence of the methane and nitrogen concentrations. Chem Eng J 168(1):151–158

    Article  CAS  Google Scholar 

  • Girard M, Viens P, Ramirez AA, Brzezinski R, Buelna G, Heitz M (2012) Simultaneous treatment of methane and swine slurry by biofiltration. J Chem Technol Biotechnol 87(5):697–704

    Article  CAS  Google Scholar 

  • Gruninger RJ, Puniya AK, Callaghan TM, Edwards JE, Youssef N, Dagar SS (2014) Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiol Ecol 90:1–17

    Article  PubMed  CAS  Google Scholar 

  • Guo HG, Zhang JL, Han Q, Huang ZX, Urynowicz MA, Wang F (2017) Important role of fungi in the production of secondary biogenic coalbed methane in China’s southern Qinshui basin. Energy Fuel 31(7):7197–7207

    Article  CAS  Google Scholar 

  • Gutknecht JLM, Goodman RM, Balser TC (2006) Linking soil process and microbial ecology in freshwater wetland ecosystems. Plant Soil 289(1–2):17–34

    Article  CAS  Google Scholar 

  • Hamdan LJ, Wickland KP (2016) Methane emissions from oceans, coasts, and freshwater habitats: new perspectives and feedbacks on climate. Limnol Oceanogr 61:S3–S12

    Article  CAS  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60(2):439–471

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hietala AM, Dörsch P, Kvaalen H, Solheim H (2015) Carbon dioxide and methane formation in Norway spruce stems infected by white-rot fungi 6(9):3304–3325

  • Hirayama H, Abe M, Miyazaki J, Sakai S, Nagano Y, Takai K (2015) Data report: cultivation of microorganisms from basaltic rock and sediment cores from the north pond on the western flank of the mid-Atlantic ridge, IODP expedition 336. In: Edwards KJ, Bach W, Klaus A (eds) Proceedings of the Integrated Ocean Drilling Program, volume 336. Scientists Management International, Inc., Tokyo

    Google Scholar 

  • Ho A, Erens H, Mujinya BB, Boeckx P, Baert G, Schneider B, Frenzel P, Boon N, Van Ranst E (2013) Termites facilitate methane oxidation and shape the methanotrophic community. Appl Environ Microbiol 79(23):7234–7240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hogen DA, Wargo MJ, Beck N (2007) Bacterial biofilms on fungal surfaces. In: Kjelleberg S, Givskov M (eds) The biofilm mode of life, mechanisms and adaptations. Horizon Bioscience, Norfolk

    Google Scholar 

  • Hook SE, Wright ADG, McBride BW (2010) Methanogens: methane producers of the rumen and mitigation strategies. Archaea 945785:1–10

    Article  CAS  Google Scholar 

  • IPCC (2006) Guidelines for national greenhouse gas inventories. Chapter 10: Emissions from livestock and manure management. Intergovernmental Panel on Climate Change

  • IPCC (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Pachauri RK, Meyer LA (Eds) Intergovernmental Panel on Climate Change. Geneva, Switzerland

  • Ivarsson M, Bengtson S, Neubeck A (2016a) The igneous oceanic crust—Earth’s largest fungal habitat? Fungal Ecol 20:249–255

    Article  Google Scholar 

  • Ivarsson M, Schnürer A, Bengtson S, Neubeck A (2016b) Anaerobic fungi: a potential source of biological H2 in the ocean crust. Frontiers Microbiol 7(674):1–8

    Google Scholar 

  • Jackson CR, Raub S (2010) The microbial ecology of peat swamp forests. Nova Science Publishers Inc, Hauppauge, NY

    Google Scholar 

  • James RH, Bousquet P, Bussmann I, Haeckel M, Kipfer R, Leifer I, Niemann H, Ostrovsky I, Piskozub J, Rehder G, Treude T, Vielstadte L, Greinert J (2016) Effects of climate change on methane emissions from seafloor sediments in the Arctic Ocean: a review. Limnol Oceanogr 61:S283–S299

    Article  CAS  Google Scholar 

  • Jensen S, Prieme A, Bakken L (1998) Methanol improves methane uptake in starved methanotrophic microorganisms. Appl Environ Microbiol 64(3):1143–1146

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kennes C, Veiga MC (2004) Fungal biocatalysts in the biofiltration of VOC-polluted air. J Biotechnol 113(1–3):305–319

    Article  PubMed  CAS  Google Scholar 

  • Keppler F, Hamilton JTG, Braß M, Rockmann T (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439(7073):187–191

    Article  PubMed  CAS  Google Scholar 

  • Kim K, Yim W, Trivedi P, Madhaiyan M, Boruah HPD, Islam MR, Lee G, Sa T (2010) Synergistic effects of inoculating arbuscular mycorrhizal fungi and Methylobacterium oryzae strains on growth and nutrient uptake of red pepper (Capsicum annuum L.). Plant Soil 327(1):429–440

    Article  CAS  Google Scholar 

  • Kimura M, Murasea J, Lub Y (2004) Carbon cycling in rice field ecosystems in the context of input, decomposition and translocation of organic materials and the fates of their end products (CO2 and CH4). Soil Biol Biochem 36(9):1399–1416

    Article  CAS  Google Scholar 

  • Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG, Dlugokencky EJ, Bergamaschi P, Bergmann D, Blake DR, Bruhwiler L, Cameron-Smith P, Castaldi S, Chevallier F, Feng L, Fraser A, Heimann M, Hodson EL, Houweling S, Josse B, Fraser PJ, Krummel PB, Lamarque JF, Langenfelds RL, Le Quere C, Naik V, O’Doherty S, Palmer PI, Pison I, Plummer D, Poulter B, Prinn RG, Rigby M, Ringeval B, Santini M, Schmidt M, Shindell DT, Simpson IJ, Spahni R, Steele LP, Strode SA, Sudo K, Szopa S, van der Werf GR, Voulgarakis A, van Weele M, Weiss RF, Williams JE, Zeng G (2013) Three decades of global methane sources and sinks. Nat Geosci 6(10):813–823

    Article  CAS  Google Scholar 

  • Klimes A, Dobinson KF (2006) A hydrophobin gene, VDH1, is involved in microscle-rotial development and spore viability in the plant pathogen Verticillium dahliae. Fungal Genet Biol 43(4):283–294

    Article  PubMed  CAS  Google Scholar 

  • Konopka A (2009) What is microbial community ecology? ISME J 3(11):1223–30

  • Kostka JE, Weston DJ, Glass JB, Lilleskov EA, Shaw AJ, Turetsky MR (2016) The Sphagnum microbiome: new insights from an ancient plant lineage. New Phytol 211(1):57–64

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Indugu N, Vecchiarelli B, Pitta DW (2015) Associative patterns among anaerobic fungi, methanogenic archaea, and bacterial communities in response to changes in diet and age in the rumen of dairy cows. Front Microbiol 6(781):1–10

    Google Scholar 

  • Lai DYF (2009) Methane dynamics in northern peatlands: a review. Pedosphere 19(4):409–421

    Article  CAS  Google Scholar 

  • Le Calvez T, Burgaud G, Mahe S, Barbier G, Vandenkoornhuyse P (2009) Fungal diversity in deep-sea hydrothermal ecosystems. Appl Environ Microbiol 75(20):6415–6421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lebrero R, Lopez JC, Lehtinen I, Perez R, Quijano G, Munoz R (2016) Exploring the potential of fungi for methane abatement: performance evaluation of a fungal-bacterial biofilter. Chemosphere 144:97–106

    Article  PubMed  CAS  Google Scholar 

  • Lenhart K, Althoff F, Greule M, Keppler F (2015) Technical note: methionine, a precursor of methane in living plants. Biogeosci 12(6):1907–1914

    Article  CAS  Google Scholar 

  • Lenhart K, Bunge M, Ratering S, Neu TR, Schuttmann I, Greule M, Kammann C, Schnell S, Muller C, Zorn H, Keppler F (2012) Evidence for methane production by saprotrophic fungi. Nat Commun 3(1046):1–8

    Google Scholar 

  • Ley K, Christofferson A, Penna M, Winkler D, Maclaughlin S, Yarovsky I (2015) Surface-water interface induces conformational changes critical for protein adsorption: implications for monolayer formation of EAS hydrophobin. Front Mol Biosci 2(64):1–12

    Google Scholar 

  • Limbri H, Gunawan C, Rosche B, Scott J (2013) Challenges to developing methane biofiltration for coal mine ventilation air: a review. Water Air Soil Pollut 224(6):1566

    Article  CAS  Google Scholar 

  • Limbri H, Gunawan C, Thomas T, Smith A, Scott J, Rosche B (2014) Coal-packed methane biofilter for mitigation of green house gas emissions from coal mine ventilation air. PLoS One 9(4):e94641

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Linder MB (2009) Hydrophobins: proteins that self assemble at interfaces. Curr Op Colloid Interface Sci 14(5):356–363

    Article  CAS  Google Scholar 

  • Liu JG, Chen H, Zhu QA, Shen Y, Wang X, Wang M, Peng CH (2015) A novel pathway of direct methane production and emission by eukaryotes including plants, animals and fungi: an overview. Atmos Environ 115:26–35

    Article  CAS  Google Scholar 

  • Lopes AR, Faria C, Prieto-Fernández Á, Trasar-Cepeda C, Manaia CM, Nunes OC, (2011) Comparative study of the microbial diversity of bulk paddy soil of two rice fields subjected to organic and conventional farming. Soil Biol Biochem 43(1):115–125

  • López JC, Quijano G, Souza TSO, Estrada JM, Lebrero R, Muñoz R (2013) Biotechnologies for greenhouse gases (CH4, N2O, and CO2) abatement: state of the art and challenges. Appl Microbiol Biotechnol 97:2277–2303

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Freara C, Z-w W, Yua L, Zhaob Q, Lib X, Chen S (2013) A simple methodology for rate-limiting step determination for anaerobic digestion of complex substrates and effect of microbial community ratio. Bioresour Technol 134:391–395

    Article  PubMed  CAS  Google Scholar 

  • Maiera M, Longdozb B, Laemmela T, Schack-Kirchnera H, Langa F (2017) 2D profiles of CO2, CH4, N2O and gas diffusivity in a well aerated soil: measurement and finite element modeling. Agric For Meteorol 247:21–33

    Article  Google Scholar 

  • Mancinelli RL (1995) The regulation of methane oxidation in soil. Annu Rev Microbiol 49:581–605

    Article  PubMed  CAS  Google Scholar 

  • Martin C, Morgavi DP, Doreau M (2009) Methane mitigation in ruminants: from microbe to the farm scale. Animal 4(3):351–365

    Article  CAS  Google Scholar 

  • McDonald JE, Houghton JNI, Rooks DJ, Allison HE, McCarthy AJ (2012) The microbial ecology of anaerobic cellulose degradation in municipal waste landfill sites: evidence of a role for fibrobacters. Environ Microbiol 14:1077–1087

    Article  PubMed  CAS  Google Scholar 

  • Menard C, Ramirez AA, Nikiema J, Heitz M (2012) Biofiltration of methane and trace gases from landfills: a review. Environ Rev 20(1):40–53

    Article  CAS  Google Scholar 

  • Mountfort DO, Asher RA, Bauchop T (1982) Fermentation of cellulose to methane and carbon-dioxide by a rumen anaerobic fungus in a triculture with Methanobrevibacter sp. strain RA1 and Methanosarcina-barkeri. Appl Environ Microbiol 44(1):128–134

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mukhin VA, Voronin PY (2007) Methane emission during wood fungal decomposition. Dokl Biol Sci 413(1):159–160

    Article  Google Scholar 

  • Mukhin VA, Voronin PY (2008) A new source of methane in boreal forests. Appl Biochem Microbiol 44(3):297–299

    Article  CAS  Google Scholar 

  • Mueller UG, Gerardo N (2002) Fungus-farming insects: multiple origins and diverse evolutionary histories. PNAS 99(24):15247–15249

    Article  PubMed  CAS  Google Scholar 

  • Nagano Y, Nagahama T (2012) Fungal diversity in deep-sea extreme environments. Fungal Ecol 5(4):463–471

    Article  Google Scholar 

  • Natchimuthu S, Sundgren I, Gålfalk M, Klemedtsson L, Crill P, Danielsson Å, Bastviken D (2016) Spatio-temporal variability of lake CH4 fluxes and its influence on annual whole lake emission estimates. Limnol Oceanogr 61(S1):S13–S26

    Article  CAS  Google Scholar 

  • Nazaries L, Murrell JC, Millard P, Baggs L, Singh BK (2013) Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions. Environ Microbiol 15(9):2395–2417

    Article  PubMed  CAS  Google Scholar 

  • Nikiema J, Payre G, Heitz M (2009) A mathematical steady state model for methane bioelimination in a closed biofilter. Chem Eng J 150:418–425

    Article  CAS  Google Scholar 

  • NOAA (2017) Trends in atmospheric methane. National Oceanic and Atmospheric Administration, Earth System Research Laboratory, Global Greenhouse Gas Reference Network, https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/

  • Obulisamy PK, Sim Yan May J, Rajasekar B (2016) Gradient packing bed bio-filter for landfill methane mitigation. Bioresour Technol 217:205–209

    Article  PubMed  CAS  Google Scholar 

  • Oliver JP, Janni KA, Schilling JS (2016) Bait and scrape: an approach for assessing biofilm microbial communities on organic media used for gas-phase biofiltration. Ecol Eng 91:50–57

    Article  Google Scholar 

  • Oliver JP, Schilling JS (2016) Capture of methane by fungi: evidence from laboratory-scale biofilter and chromatographic isotherm studies. Trans ASABE 59(6):1791–1801

    Article  CAS  Google Scholar 

  • Palanisamy K, Mezgebe B, Sorial GA, Sahle-Demessie E (2016) Biofiltration of chloroform in a trickle bed air biofilter under acidic conditions. Water Air Soil Pollut 227(12):13

    Article  CAS  Google Scholar 

  • Pasulka AL, Levin LA, Steele JA, Case DH, Landry MR, Orphan VJ (2016) Microbial eukaryotic distributions and diversity patterns in a deep-sea methane seep ecosystem. Environ Microbiol 18(9):3022–3043

    Article  PubMed  CAS  Google Scholar 

  • Patel AJ, Garde S (2014) Efficient method to characterize the context-dependent hydrophobicity of proteins. J Phys Chem B 118:1564–1573

    Article  PubMed  CAS  Google Scholar 

  • Puniya AK, Salem AZM, Kumar S, Dagar SS, Griffith GW, Puniya M, Ravella SR, Kumar N, Dhewa T, Kumar R (2015) Role of live microbial feed supplements with reference to anaerobic fungi in ruminant productivity: a review. J Int Agric 14(3):550–560

    Article  Google Scholar 

  • Raghoebarsing AA, Pol A, vande Pas-Schoonen KT, AJP S, Ettwig KF, WIC R, Schouten S, JSS D, HJM OC, MSM J, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440:918–921

    Article  PubMed  CAS  Google Scholar 

  • Ritz K, Young IM (2004) Interactions between soil structure and fungi. Mycologist 18(2):52–59

    Article  Google Scholar 

  • Rouches E, Herpoel-Gimbert I, Steyer JP, Carrere H (2016) Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: a review. Renew Sust Energ Rev 59:179–198

    Article  CAS  Google Scholar 

  • Saunois M, Bousquet P, Poulter B, Peregon A, Ciais P, Canadell JG, Dlugokencky EJ, Etiope G, Bastviken D, Houweling S, Janssens-Maenhout G, Tubiello FN, Castaldi S, Jackson RB, Alexe M, Arora VK, Beerling DJ, Bergamaschi P, Blake DR, Brailsford G, Brovkin V, Bruhwiler L, Crevoisier C, Crill P, Covey K, Curry C, Frankenberg C, Gedney N, Hoglund-Isaksson L, Ishizawa M, Ito A, Joos F, Kim HS, Kleinen T, Krummel P, Lamarque JF, Langenfelds R, Locatelli R, Machida T, Maksyutov S, McDonald KC, Marshall J, Melton JR, Morino I, Naik V, O’Doherty S, Parmentier FJW, Patra PK, Peng CH, Peng SS, Peters GP, Pison I, Prigent C, Prinn R, Ramonet M, Riley WJ, Saito M, Santini M, Schroeder R, Simpson IJ, Spahni R, Steele P, Takizawa A, Thornton BF, Tian HQ, Tohjima Y, Viovy N, Voulgarakis A, van Weele M, van der Werf GR, Weiss R, Wiedinmyer C, Wilton DJ, Wiltshire A, Worthy D, Wunch D, Xu XY, Yoshida Y, Zhang B, Zhang Z, Zhu Q (2016) The global methane budget 2000-2012. Earth System Sci Data 8(2):697–751

    Article  Google Scholar 

  • Sauvant D (2005) Rumen acidosis: modeling ruminant response to yeat culture. In: Lyons TP, Jacques KA (eds) Nutritional biotechnology in the feed and food industries. Nottingham University Press, Nottingham, pp 221–228

  • Scheublin TR, Sanders IR, Keel C, van der Meer JR (2010) Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi. ISME J 4:752–763

    Article  PubMed  Google Scholar 

  • Scheutz C, Kjeldsen P, Bogner JE, De Visscher A, Gebert J, Hilger HA, Huber-Humer M, Spokas K (2009) Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Manag Res 27(5):409–455

    Article  PubMed  CAS  Google Scholar 

  • Segers R (1998) Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochem 41(1):23–51

    Article  CAS  Google Scholar 

  • Shen L-d, He Z-f, H-s W, Z-q G (2015) Nitrite-dependent anaerobic methane-oxidising bacteria: unique microorganisms with special properties. Curr Microbiol 70:562–570

    Article  PubMed  CAS  Google Scholar 

  • Singh AL, Singh PK, Singh MP (2012) Biomethanization of coal to obtain clean coal energy: a review. Energy Explor Exploit 30(5):837–852

    Article  CAS  Google Scholar 

  • Singh BK, Bardgett RD, Smith P, Reay DS (2010) Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol 8(11):779–790

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto A, Inoue T, Kirtibutr N, Abe T (1998) Methane oxidation by termite mounds estimated by the carbon isotopic composition of methane. Glob Biogeochem Cycles 12(4):595–605

    Article  CAS  Google Scholar 

  • Tapio I, Snelling TJ, Strozzi F, Wallace RJ (2017) The ruminal microbiome associated with methane emissions from ruminant livestock. J Animal Sci Biotechnol 8:11

    Article  CAS  Google Scholar 

  • Todd-Brown KEO, Hopkins FM, Kivlin SN, Talbot JM, Allison SD (2012) A framework for representing microbial decomposition in coupled climate models. Biogeochem 109(1):19–33

    Article  Google Scholar 

  • Treseder KK, Lennon JT (2015) Fungal traits that drive ecosystem dynamics on land. Microbiol Mol Biol Rev 79(2):243–262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • UNEP, WMO (2011) Summary of decision makers of the integrated assessment of black carbon and tropospheric ozone. United Nations Environmental Program and World Meteorological Organization, Doc. UNEP/GC/26/INF/20

  • Veillette M, Girard M, Viens P, Brzezinski R, Heitz M (2012) Function and limits of biofilters for the removal of methane in exhaust gases from the pig industry. Appl Microbiol Biotechnol 94(3):601–611

    Article  PubMed  CAS  Google Scholar 

  • Veraart AJ, Steenbergh AK, Ho A, Kim SY, Bodelier PLE (2015) Beyond nitrogen: the importance of phosphorus for CH4 oxidation in soils and sediments. Geoderma 259:337–346

    Article  CAS  Google Scholar 

  • Vergara-Fernández A, Van Haaren B, Revah S (2006) Phase partition of gaseous hexane and surface hydrophobicity of Fusarium solani when grown in liquid and solid media with hexanol and hexane. Biotechnol Lett 28:2011–2017

    Article  PubMed  CAS  Google Scholar 

  • Vigueras G, Shirai K, Martins de Souza D, Franco TT, Fleuri LF, Revah S (2008) Toluene gas phase biofiltration by Paecilomyces lilacinus and isolation and identification of a hydrophobin protein produced thereof. Appl Microbiol Biotechnol 80(1):147–154

    Article  PubMed  CAS  Google Scholar 

  • Watzinger A, Stemmer M, Pfeffer M, Rasche F, Reichenauer T (2008) Methanotrophic communities in a landfill cover soil as revealed by [13C] PLFAs and respiratory quinones: Impact of high methane addition and landfill leachate irrigation. Soil Biol Biochem 40:751–762

  • Whalen SC, Reeburgh WS, Sandbeck KA (1990) Rapid methane oxidation in a landfill cover soil. Appl Environ Microbiol 56(11):3405–3411

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wieder WR, Bonan GB, Allison SD (2013) Global soil carbon projections are improved by modelling microbial processes. Nat Clim Chang 3:909–912

    Article  CAS  Google Scholar 

  • Wong ML, An D, Caffrey SM, Soh J, Dong X, Sensen CW, Oldenburg TB, Larter SR, Voordouw G (2015) Roles of thermophiles and fungi in bitumen degradation in mostly cold oil sands outcrops. Appl Environ Microbiol 81(19):6825–6838

  • Wosten HAB (2001) Hydrophobins: multipurpose proteins. Ann Rev Microbiol 55:625–646

    Article  CAS  Google Scholar 

  • Wu HH, Xu XK, Duan CT, Li TS, Cheng WG (2016) Synergistic effects of dissolved organic carbon and inorganic nitrogen on methane uptake in forest soils without and with freezing treatment. Sci Report 6:12

    Article  CAS  Google Scholar 

  • Xu X, Yuan F, Hanson PJ, Wullschleger SD, Thornton PE, Riley WJ, Song X, Graham DE, Song C, Tian H (2016) Reviews and syntheses: four decades of modeling methane cycling in terrestrial ecosystems. Biogeosci 13:3735–3755

    Article  CAS  Google Scholar 

  • Yarlett N, Orpin CG, Munn EA, Yarlett NC, Greenwood CA (1986) Hydrogenosomes in the rumen fungus Neocallimastix patriciarum. Biochem J 236(3):729–739

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yıldırım E, Ince O, Aydin S, Ince B (2017) Improvement of biogas potential of anaerobic digesters using rumen fungi. Renew Energ 109(C):346–353

  • Zhang B, Tian H, Lu C, Chen G, Pan S, Anderson C, Poulter B (2017a) Methane emissions from global wetlands: an assessment of the uncertainty associated with various wetland extent data sets. Atmos Environ 165:310–321

    Article  CAS  Google Scholar 

  • Zhang X, Wang L, Ma F, Yang JX (2017b) Effects of arbuscular mycorrhizal fungi on CH4 emissions from rice paddies. Int J Phytoremediation 19(1):39–45

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman PR, Greenberg JP, Wandiga SO, Crutzen PJ (1982) Termites: a potentially large source of atmospheric methane, carbon dioxide, and molecular hydrogen. Science 218(4572):563–565

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason P. Oliver.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliver, J.P., Schilling, J.S. Harnessing fungi to mitigate CH4 in natural and engineered systems. Appl Microbiol Biotechnol 102, 7365–7375 (2018). https://doi.org/10.1007/s00253-018-9203-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-9203-2

Keywords

Navigation