Skip to main content
Log in

Back to the past: “find the guilty bug—microorganisms involved in the biodeterioration of archeological and historical artifacts”

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Microbial deterioration accounts for a significant percentage of the degradation processes that occur on archeological/historical objects and artworks, and identifying the causative agents of such a phenomenon should therefore be a priority, in consideration of the need to conserve these important cultural heritage items. Diverse microbiological approaches, such as microscopic evaluations, cultural methods, metabolic- and DNA-based techniques, as well as a combination of the aforementioned methods, have been employed to characterize the bacterial, archaeal, and fungal communities that colonize art objects. The purpose of the present review article is to report the interactions occurring between the microorganisms and nutrients that are present in stones, bones, wood, paper, films, paintings, and modern art specimens (namely, collagen, cellulose, gelatin, albumin, lipids, and hydrocarbons). Some examples, which underline that a good knowledge of these interactions is essential to obtain an in depth understanding of the factors that favor colonization, are reported. These data can be exploited both to prevent damage and to obtain information on historical aspects that can be decrypted through the study of microbial population successions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abraham WR, Strömpl C, Meyer H, Lindholst S, Moore ER, Christ R, Tesar M (1999) Phylogeny and polyphasic taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the type species, and emended description of the genera Brevundimonas and Caulobacter. Int J Syst Evol Microbiol 49:1053–1073

    CAS  Google Scholar 

  • Abrusci C, Allen NS, Del Amo A, Edge M, Martín-González A (2004a) Biodegradation of motion picture film stocks. J film preservation 67:37

    Google Scholar 

  • Abrusci C, Martın-González A, Del Amo A, Corrales T, Catalina F (2004b) Biodegradation of type-B gelatine by bacteria isolated from cinematographic films. A viscometric study. Polym Degrad Stab 86:283–291

    Article  CAS  Google Scholar 

  • Abrusci C, Martín-González A, Del Amo A, Catalina F, Collado J, Platas G (2005) Isolation and identification of bacteria and fungi from cinematographic films. Int Biodeterior Biodegrad 56:58–68

    Article  CAS  Google Scholar 

  • Abrusci C, Marquina D, Santos A, Del Amo A, Corrales T, Catalina F (2007) A chemiluminescence study on degradation of gelatine: biodegradation by bacteria and fungi isolated from cinematographic films. J Photochem Photobiol A Chem 185:188–197

    Article  CAS  Google Scholar 

  • Bada JL, Protsch R (1973) Racemization reaction of aspartic acid and its use in dating fossil bones. Proc Natl Acad Sci 70:1331–1334

    Article  PubMed  CAS  Google Scholar 

  • Beech IB, Sunner J (2004) Biocorrosion: towards understanding interactions between biofilms and metals. Curr Opin Biotechnol 15:181–186

    Article  PubMed  CAS  Google Scholar 

  • Bellezza S, Paradossi G, De Philippis R, Albertano P (2003) Leptolyngbya strains from Roman hypogea: cytochemical and physicochemical characterization of exopolysaccharides. J Appl Phycol 15:193–200

    Article  CAS  Google Scholar 

  • Björdal CG (2012a) Microbial degradation of waterlogged archaeological wood. J Cult Herit 13:S118–S122

    Article  Google Scholar 

  • Björdal CG (2012b) Evaluation of microbial degradation of shipwrecks in the Baltic Sea. Int Biodeterior Biodegrad 70:126–140

    Article  Google Scholar 

  • Björdal CG, Nilsson T, Daniel G (1999) Microbial decay of waterlogged archaeological wood found in Sweden applicable to archaeology and conservation. Int Biodeterior Biodegrad 43:63–73

    Article  Google Scholar 

  • Bomble YJ, Lin CY, Amore A, Wei H, Holwerda EK, Ciesielski PN, Donohoe BS, Decker SR, Lynd LR, Himmel ME (2017) Lignocellulose deconstruction in the biosphere. Curr Opin Chem Biol 41:61–70

    Article  PubMed  CAS  Google Scholar 

  • Borrego S, Guiamet P, de Saravia SG, Batistini P, Garcia M, Lavin P, Perdomo I (2010) The quality of air at archives and the biodeterioration of photographs. Int Biodeterior Biodegrad 4:139–145

    Article  CAS  Google Scholar 

  • Breuker M, McNamara C, Young L, Perry T, Young A, Mitchell R (2003) Fungal growth on synthetic cloth from Apollo spacesuits. Ann Microbiol 53:47–54

    Google Scholar 

  • Bučková M, Puškárová A, Sclocchi MC, Bicchieri M, Colaizzi P, Pinzari F, Pangallo D (2014) Co-occurrence of bacteria and fungi and spatial partitioning during photographic materials biodeterioration. Polym Degrad Stab 108:1–11

    Article  CAS  Google Scholar 

  • Canhoto O, Pinzari F, Fanelli C, Magan N (2004) Application of electronic nose technology for the detection of fungal contamination in library paper. Int Biodeterior Biodegrad 54:303–309

    Article  Google Scholar 

  • Cappitelli F, Sorlini C (2008) Microorganisms attack synthetic polymers in items representing our cultural heritage. Appl Environ Microbiol 74:564–569

    Article  PubMed  CAS  Google Scholar 

  • Cappitelli F, Principi P, Sorlini C (2006) Biodeterioration of modern materials in contemporary collections: can biotechnology help? Trends Biotechnol 24:350–354

    Article  PubMed  CAS  Google Scholar 

  • Cappitelli F, Principi P, Pedrazzani R, Toniolo L, Sorlini C (2007) Bacterial and fungal deterioration of the Milan Cathedral marble treated with protective synthetic resins. Sci Total Environ 385:172–181

    Article  PubMed  CAS  Google Scholar 

  • Cappitelli F, Pasquariello G, Tarsitani G, Sorlini C (2010) Scripta manent? Assessing microbial risk to paper heritage. Trends Microbiol 18:538–542

    Article  PubMed  CAS  Google Scholar 

  • Child AM (1995a) Microbial taphonomy of archaeological bone. Stud Conserv 40:19–30

    Google Scholar 

  • Child AM (1995b) Towards and understanding of the microbial decomposition of archaeological bone in the burial environment. J Archaeol Sci 22:165–174

    Article  Google Scholar 

  • Child AM, Gillard RD, Pollard AM (1993) Microbially-induced promotion of amino acid racemization in bone: isolation of the microorganisms and the detection of their enzymes. J Archaeol Sci 20:159–168

    Article  Google Scholar 

  • Collins MJ, Penkman KE, Rohland N, Shapiro B, Dobberstein RC, Ritz-Timme S, Hofreiter M (2009) Is amino acid racemization a useful tool for screening for ancient DNA in bone? Proc Biol Sci 276:2971–2977

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cutler NA, Viles HA, Ahmad S, McCabe S, Smith BJ (2013) Algal ‘greening’ and the conservation of stone heritage structures. Sci Total Environ 442:152–164

    Article  PubMed  CAS  Google Scholar 

  • Daniel G, Nilsson T (1997) Developments in the study of soft rot and bacterial decay. In: Bruce A, Palfreyman JW (eds) Forest products biotechnology. Taylor and Francis, London, pp 37–62

    Google Scholar 

  • De Clerck E, De Vos P (2002) Study of the bacterial load in a gelatine production process focussed on Bacillus and related endosporeforming genera. Syst Appl Microbiol 25:611–617

    Article  PubMed  Google Scholar 

  • Del Junco AS, Moreno DA, Ranninger C, Ortega-Calvo JJ, Sáiz-Jiménez C (1992) Microbial induced corrosion of metallic antiquities and works of art: a critical review. Int Biodeterior Biodegrad 29:367–375

    Article  Google Scholar 

  • Demarchi B, Collins M (2014) Amino acid racemization dating. In: Encyclopedia of scientific dating methods. Springer, Dordrecht, pp 1–22

    Google Scholar 

  • Di Martino P (2016) What about biofilms on the surface of stone monuments? The Open Conference Proc J 7:14–28

    Article  CAS  Google Scholar 

  • Essoussi I, Ghodhbane-Gtari F, Amairi H, Sghaier H, Jaouani A, Brusetti L, Daffonchio D, Boudabous A, Gtari M (2010) Esterase as an enzymatic signature of Geodermatophilaceae adaptability to Sahara desert stones and monuments. J Appl Microbiol 108:1723–1732

    Article  PubMed  CAS  Google Scholar 

  • Ettenauer JD, Jurado V, Piñar G, Miller AZ, Santner M, Saiz-Jimenez C, Sterflinger K (2014) Halophilic microorganisms are responsible for the rosy discolouration of saline environments in three historical buildings with mural paintings. PLoS One 9:e103844

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Forlani G, Seves AM, Ciferri O (2000) A bacterial extracellular proteinase degrading silk fibroin. Int Biodeterior Biodegrad 46:271–275

    Article  CAS  Google Scholar 

  • Friedrich J, Zalar P, Mohorčič M, Klun U, Kržan A (2007) Ability of fungi to degrade synthetic polymer nylon-6. Chemosphere 67:2089–2095

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Guinea J, Cárdenes V, Martínez AT, Martínez M (2001) Fungal bioturbation paths in a compact disk. Naturwissenschaften 88:351–354

    Article  PubMed  CAS  Google Scholar 

  • Ghiara G, Grande C, Ferrando S, Piccardo P (2018) The influence of Pseudomonas fluorescens on corrosion products of archaeological tin-bronze analogues. JOM 70:81–85

    Article  CAS  Google Scholar 

  • Giuffrida MG, Mazzoli R, Pessione E (2018) Back to the past. Deciphering cultural heritage secrets by protein identification. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-018-8963-z

  • Gtari M, Essoussi I, Maaoui R, Sghaier H, Boujmil R, Gury J, Pujic P, Brusetti L, Chouaia B, Crotti E, Daffonchio D, Boudabous A, Normand P (2012) Contrasted resistance of stone-dwelling Geodermatophilaceae species to stresses known to give rise to reactive oxygen species. FEMS Microbiol Ecol 80:566–577

    Article  PubMed  CAS  Google Scholar 

  • Gurtner C, Heyrman J, Piñar G, Lubitz W, Swings J, Rölleke S (2000) Comparative analyses of the bacterial diversity on two different biodeteriorated wall paintings by DGGE and 16S rDNA sequence analysis. Int Biodeterior Biodegrad 46:229–239

    Article  CAS  Google Scholar 

  • Gutarowska B, Pietrzak K, Machnowski W, Miczarek JM (2017) Historical textiles—a review of microbial deterioration analysis and disinfection methods. Text Res J 87:2388–2404

    Article  CAS  Google Scholar 

  • Helms AC, Martiny AC, Hofman-Bang J, Ahring BK, Kilstrup M (2004) Identification of bacterial cultures from archaeological wood using molecular biological techniques. Int Biodeterior Biodegrad 53:79–88

    Article  CAS  Google Scholar 

  • Heyrman J, Mergaert J, Denys R, Swings J (1999) The use of fatty acid methyl ester analysis (FAME) for the identification of heterotrophic bacteria present on three mural paintings showing severe damage by microorganisms. FEMS Microbiol Lett 181:55–62

    Article  PubMed  CAS  Google Scholar 

  • Imperi F, Caneva G, Cancellieri L, Ricci MA, Sodo A, Visca P (2007) The bacterial aetiology of rosy discoloration of ancient wall paintings. Environ Microbiol 9:2894–2902

    Article  PubMed  CAS  Google Scholar 

  • Jans MME, Nielsen-Marsh CM, Smith CI, Collins MJ, Kars H (2004) Characterisation of microbial attack on archaeological bone. J Archaeol Sci 31:87–95

    Article  Google Scholar 

  • Kehoe DM, Grossman AR (1994) Complementary chromatic adaptation: photoperception to gene regulation. Semin Cell Biol 5:303–313

    Article  PubMed  CAS  Google Scholar 

  • Kendall C, Eriksen AMH, Kontopoulos I, Collins MJ, Turner-Walker G (2018) Diagenesis of archaeological bone and tooth. Palaeogeogr Palaeoclimatol Palaeoecol 491:21–37

    Article  Google Scholar 

  • Kip N, van Veen JA (2015) The dual role of microbes in corrosion. ISME J 9:542–551

    Article  PubMed  CAS  Google Scholar 

  • Krumbein WE, Urzì CE, Gehrmann C (1991) Biocorrosion and biodeterioration of antique and medieval glass. Geomicrobiol J 9:139–160

    Article  CAS  Google Scholar 

  • Laiz L, Piñar G, Lubitz W, Saiz-Jimenez C (2003) Monitoring the colonization of monuments by bacteria: cultivation versus molecular methods. Environ Microbiol 5:72–74

    Article  PubMed  Google Scholar 

  • Lamprinou V, Mammali M, Katsifas EA, Pantazidou AI, Karagouni AD (2013) Phenotypic and molecular biological characterization of cyanobacteria from marble surfaces of treated and untreated sites of Propylaea (Acropolis, Athens). Geomicrobiol J 30:371–378

    Article  CAS  Google Scholar 

  • Landy ET, Mitchell JI, Hotchkiss S, Eaton RA (2008) Bacterial diversity associated with archaeological waterlogged wood: ribosomal RNA clone libraries and denaturing gradient gel electrophoresis (DGGE). Int Biodeterior Biodegrad 61:106–116

    Article  CAS  Google Scholar 

  • Lech T, Ziembinska-Buczynska A, Krupa N (2015) Analysis of microflora present on historical textiles with the use of molecular techniques. Int J Conserv Sci 6:137–144

    CAS  Google Scholar 

  • Marty F, Gueuné H, Malard E, Sánchez-Amaya JM, Sjögren L, Abbas B, Muyzer G (2014) Identification of key factors in accelerated low water corrosion through experimental simulation of tidal conditions: influence of stimulated indigenous microbiota. Biofouling 30:281–297

    Article  PubMed  CAS  Google Scholar 

  • Marvasi M, Vedovato E, Balsamo C, Macherelli A, Dei L, Mastromei G, Perito B (2009) Bacterial community analysis on the Mediaeval stained glass window “Natività” in the Florence Cathedral. J Cult Herit 10:124–133

    Article  Google Scholar 

  • McCain JW, Mirocha CJ (1994) Screening computer diskettes and other magnetic media for susceptibility to fungal colonization. Int Biodeterior Biodegrad 33:255–268

    Article  Google Scholar 

  • McNamara CJ, Mitchell R (2005) Microbial deterioration of historic stone. Front Ecol Environ 3:445–451

    Article  Google Scholar 

  • Milanesi C, Baldi F, Vignani R, Ciampolini F, Faleri C, Cresti M (2006) Fungal deterioration of medieval wall fresco determined by analysing small fragments containing copper. Int Biodeterior Biodegrad 57:7–13

    Article  CAS  Google Scholar 

  • Neely AN, Maley MP (2000) Survival of enterococci and staphylococci on hospital fabrics and plastic. J Clin Microbiol 38:724–726

    PubMed  PubMed Central  CAS  Google Scholar 

  • Nilsson T, Björdal C, Fällman E (2008) Culturing erosion bacteria: procedures for obtaining purer cultures and pure strains. Int Biodeterior Biodegrad 61:17–23

    Article  CAS  Google Scholar 

  • Oliveira VM, Lopes-Oliveira PF, Passarini MR, Menezes CB, Oliveira WR, Rocha AJ, Sette LD (2011) Molecular analysis of microbial diversity in corrosion samples from energy transmission towers. Biofouling 27:435–447

    Article  PubMed  Google Scholar 

  • Palla F, Mancuso FP, Billeci N (2013) Multiple approaches to identify bacteria in archaeological waterlogged wood. J Cult Herit 14:e61–e64

    Article  Google Scholar 

  • Piccardo P, Mödlinger M, Ghiara G, Campodonico S, Bongiorno V (2013) Investigation on a “tentacle-like” corrosion feature on Bronze Age tin-bronze objects. Appl Phys A 113:1039–1047

    Article  CAS  Google Scholar 

  • Pietrzak K, Puchalski M, Otlewska A, Wrzosek H, Guiamet P, Piotrowska M, Gutarowska B (2017) Microbial diversity of pre-Columbian archaeological textiles and the effect of silver nanoparticles misting disinfection. J Cult Herit 23:138–147

    Article  Google Scholar 

  • Poinar HN, Höss M, Bada JL, Pääbo S (1996) Amino acid racemization and the preservation of ancient DNA. Science 272:864–866

    Article  PubMed  CAS  Google Scholar 

  • Prijambada ID, Negoro S, Yomo T, Urabe I (1995) Emergence of nylon oligomer degradation enzymes in Pseudomonas aeruginosa PAO through experimental evolution. Appl Environ Microbiol 61:2020–2202

    PubMed  PubMed Central  CAS  Google Scholar 

  • Radaelli A, Paganini M, Basavecchia V, Elli V, Neri M, Zanotto C, De Giuli Morghen C (2004) Identification, molecular biotyping and ultrastructural studies of bacterial communities isolated from two damaged frescoes of St Damian’s Monastery in Assisi. Lett Appl Microbiol 38:447–453

    Article  PubMed  CAS  Google Scholar 

  • Rémazeilles C, Dheilly A, Sable S, Lanneluc I, Neff D, Refait P (2010a) Microbiologically influenced corrosion process of archaeological iron nails from the sixteenth century. Corros Eng Sci Technol 45:388–394

    Article  CAS  Google Scholar 

  • Rémazeilles C, Saheb M, Neff D, Guilminot E, Tran K, Bourdoiseau JA, Sabot R, Jeannin M, Matthiesen H, Dillmann P, Refait P (2010b) Microbiologically influenced corrosion of archaeological artefacts: characterisation of iron(II) sulfides by Raman spectroscopy. J Raman Spectrosc 41:1425–1433

    Article  CAS  Google Scholar 

  • Rölleke S, Gurtner C, Drewello U, Drewello R, Lubitz W, Weissmann R (1999) Analysis of bacterial communities on historical glass by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. J Microbiol Methods 36:107–114

  • Rölleke S, Muyzer G, Wawer C, Wanner G, Lubitz W (1996) Identification of bacteria in a biodegraded wall painting by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol 62:2059–2065

    PubMed  PubMed Central  Google Scholar 

  • Rowe L, Howard GT (2002) Growth of Bacillus subtilis on polyurethane and the purification and characterization of a polyurethanase-lipase enzyme. Int Biodeterior Biodegrad 50:33–40

    Article  CAS  Google Scholar 

  • Saarela M, Alakomi HL, Suihko ML, Maunuksela L, Raaska L, Mattila-Sandholm T (2004) Heterotrophic microorganisms in air and biofilm samples from Roman catacombs, with special emphasis on actinobacteria and fungi. Int Biodeterior Biodegrad 54:27–37

    Article  Google Scholar 

  • Sakai K, Yamauchi T, Nakasu F, Ohe T (1996) Biodegradation of cellulose acetate by Neisseria sicca. Biosci Biotechnol Biochem 60:1617–1622

    Article  PubMed  CAS  Google Scholar 

  • Sclocchi MC, Damiano E, Matè D, Colaizzi P, Pinzari F (2013) Fungal biosorption of silver particles on 20th-century photographic documents. Int Biodeterior Biodegrad 84:367–371

    Article  CAS  Google Scholar 

  • Seal KJ (1988) The biodegradation of naturally occurring and synthetic plastic polymers. Biodeterior Abstr 2:296–317

    Google Scholar 

  • Seves A, Romano M, Maifreni T, Sora S, Ciferri O (1998) The microbial degradation of silk: a laboratory investigation. Int Biodeterior Biodegrad 42:203–211

    Article  CAS  Google Scholar 

  • Singh AP (2012) A review of microbial decay types found in wooden objects of cultural heritage recovered from buried and waterlogged environments. J Cult Herit 13:S16–S20

    Article  Google Scholar 

  • Sterflinger K (2010) Fungi: their role in deterioration of cultural heritage. Fungal Biol Rev 24:47–55

    Article  Google Scholar 

  • Szostak-Kotow J (2004) Biodeterioration of textiles. Int Biodeterior Biodegrad 53:165–170

    Article  CAS  Google Scholar 

  • Videla HA, Herrera LK (2005) Microbiologically influenced corrosion: looking to the future. Int Microbiol 8:169–180

    PubMed  CAS  Google Scholar 

  • Villa F, Pitts B, Lauchnor E, Cappitelli F, Stewart PS (2015) Development of a laboratory model of a phototroph-heterotroph mixed-species biofilm at the stone/air Interface. Front Microbiol 6:1251

    Article  PubMed  PubMed Central  Google Scholar 

  • Violetta MR, Mazzoli R, Barello C, Fattori P, Giuffrida MG, Pessione E (2014) Combining LC-MS/MS, PMF and N-terminal amino acid sequencing for multiplexed characterization of a bacterial surfactant glycoprotein biosynthesized by Acinetobacter radioresistens S13. RSC Adv 4:10918–10927

    Article  CAS  Google Scholar 

  • Wadsworth C, Procopio N, Anderung C, Carretero JM, Iriarte E, Valdiosera C, Elburg R, Penkman K, Buckley M (2017) Comparing ancient DNA survival and proteome content in 69 archaeological cattle tooth and bone samples from multiple European sites. J Proteome 158:1–8

    Article  CAS  Google Scholar 

  • Webb JS, Nixon M, Eastwood IM, Greenhalgh M, Robson GD, Handley PS (2000) Fungal colonization and biodeterioration of plasticized polyvinyl chloride. Appl Environ Microbiol 66:3194–3200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, Toyohara K, Miyamoto K, Kimura Y, Oda K (2016) A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351:1196–1199

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported financially by “Ricerca Locale-ex 60%” of the Turin University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrica Pessione.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazzoli, R., Giuffrida, M.G. & Pessione, E. Back to the past: “find the guilty bug—microorganisms involved in the biodeterioration of archeological and historical artifacts”. Appl Microbiol Biotechnol 102, 6393–6407 (2018). https://doi.org/10.1007/s00253-018-9113-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-9113-3

Keywords

Navigation