Applied Microbiology and Biotechnology

, Volume 102, Issue 14, pp 6119–6142 | Cite as

A proteomic analysis of ferulic acid metabolism in Amycolatopsis sp. ATCC 39116

  • Florian Meyer
  • Julius Netzer
  • Christina Meinert
  • Birgit Voigt
  • Katharina Riedel
  • Alexander Steinbüchel
Genomics, transcriptomics, proteomics


The pseudonocardiate Amycolatopsis sp. ATCC 39116 is used for the biotechnical production of natural vanillin from ferulic acid. Our laboratory has performed genetic modifications of this strain previously, but there are still many gaps in our knowledge regarding its vanillin tolerance and the general metabolism. We performed cultivations with this bacterium and compared the proteomes of stationary phase cells before ferulic acid feeding with those during ferulic acid feeding. Thereby, we identified 143 differently expressed proteins. Deletion mutants were constructed and characterized to analyze the function of nine corresponding genes. Using these mutants, we identified an active ferulic acid β-oxidation pathway and the enzymes which constitute this pathway. A combined deletion mutant in which the β-oxidation as well as non-β-oxidation pathways of ferulic acid degradation were deleted was unable to grow on ferulic acid as the sole source of carbon and energy. This mutant differs from the single deletion mutants and was unable to grow on ferulic acid. Furthermore, we showed that the non-β-oxidation pathway is involved in caffeic acid degradation; however, its deletion is complemented even in the double deletion mutant. This shows that both pathways can complement each other. The β-oxidation deletion mutant produced significantly reduced amounts of vanillic acid (0.12 instead of 0.35 g/l). Therefore, the resulting mutant could be used as an improved production strain. The quinone oxidoreductase deletion mutant (ΔytfG) degraded ferulic acid slower at first but produced comparable amounts of vanillin and significantly less vanillyl alcohol when compared to the parent strain.


Actinomycetes Amycolatopsis Proteome Vanillin Ferulic acid 



We thank Isabelle Plugge for excellent technical assistance. We also thank Robin Vivod and Kim Cohrs for helpful discussions and proofreading.


This paper was financially supported by King Abdulaziz University under Grant no. 2-10-1432/HiCi. The project was also partially funded by SYMRISE AG, Holzminden, Germany. SYMRISE AG had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2018_9061_MOESM1_ESM.pdf (513 kb)
ESM 1 (PDF 513 kb)


  1. Achterholt S, Priefert H, Steinbüchel A (2000) Identification of Amycolatopsis sp. strain HR167 genes, involved in the bioconversion of ferulic acid to vanillin. Appl Microbiol Biotechnol 54:799–807. CrossRefPubMedGoogle Scholar
  2. Agarwala R, Barrett T, Beck J, Benson DA, Bollin C, Bolton E, Bourexis D, Brister JR, Bryant SH, Canese K, Charowhas C, Clark K, Dicuccio M, Dondoshansky I, Federhen S, Feolo M, Funk K, Geer LY, Gorelenkov V, Hoeppner M, Holmes B, Johnson M, Khotomlianski V, Kimchi A, Kimelman M, Kitts P, Klimke W, Krasnov S, Kuznetsov A, Landrum MJ, Landsman D, Lee JM, Lipman DJ, Lu Z, Madden TL, Madej T, Marchler-Bauer A, Karsch-Mizrachi I, Murphy T, Orris R, Ostell J, O’sullivan C, Panchenko A, Phan L, Preuss D, Pruitt KD, Rodarmer K, Rubinstein W, Sayers E, Schneider V, Schuler GD, Sherry ST, Sirotkin K, Siyan K, Slotta D, Soboleva A, Soussov V, Starchenko G, Tatusova TA, Todorov K, Trawick BW, Vakatov D, Wang Y, Ward M, Wilbur WJ, Yaschenko E, Zbicz K (2016) Database resources of the National Center for Biotechnology Information. Nucl Acids Res 44:D7–D19. CrossRefGoogle Scholar
  3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. CrossRefPubMedGoogle Scholar
  4. Alves AMCR, Euverink GJW, Hektor HJ, Hessels GI, van der Vlag J, Vrijbloed JW, Hondmann D, Visser J, Dijkhuizen L (1994) Enzymes of glucose and methanol metabolism in the actinomycete Amycolatopsis methanolica. J Bacteriol 176:6827–6835. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Alves AMCR, Euverink GJW, Bibb MJ, Dijkhuizen L (1997) Identification of ATP-dependent phosphofructokinase as a regulatory step in the glycolytic pathway of the actinomycete Streptomyces coelicolor A3(2). Appl Environ Microbiol 63:956–961PubMedPubMedCentralGoogle Scholar
  6. Alves AMCR, Euverink GJW, Santos H, Dijkhuizen L (2001) Different physiological roles of ATP- and PPi-dependent phosphofructokinase isoenzymes in the methylotrophic actinomycete Amycolatopsis methanolica. J Bacteriol 183:7231–7240. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Andreoni V, Bestetti G (1986) Comparative analysis of different Pseudomonas strains that degrade cinnamic acid. Appl Environ Microbiol 52:930–934PubMedPubMedCentralGoogle Scholar
  8. Barnes MR, Duetz WA, Williams PA (1997) A 3-(3-hydroxyphenyl)propionic acid catabolic pathway in Rhodococcus globerulus PWD1: cloning and characterization of the hpp operon. J Bacteriol 179:6145–6153CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bennett JP, Bertin L, Moulton B, Fairlamb IJS, Brzozowski AM, Walton NJ, Grogan G (2008) A ternary complex of hydroxycinnamoyl-CoA hydratase–lyase (HCHL) with acetyl-CoA and vanillin gives insights into substrate specificity and mechanism. Biochem J 414:281–289. CrossRefPubMedGoogle Scholar
  10. Bertani G (1951) Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62:293–300PubMedPubMedCentralGoogle Scholar
  11. Beste DJV, Bonde B, Hawkins N, Ward JL, Beale MH, Noack S, Nöh K, Kruger NJ, Ratcliffe RG, McFadden J (2011) 13C metabolic flux analysis identifies an unusual route for pyruvate dissimilation in Mycobacteria which requires isocitrate lyase and carbon dioxide fixation. PLoS Pathog 7:e1002091. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Borodina I, Schöller C, Eliasson A, Nielsen J (2005) Metabolic network analysis of Streptomyces tenebrarius, a Streptomyces species with an active Entner-Doudoroff pathway. Appl Environ Microbiol 71:2294–2302. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. CrossRefPubMedGoogle Scholar
  14. Brandt U, Waletzko C, Voigt B, Hecker M, Steinbüchel A (2014) Mercaptosuccinate metabolism in Variovorax paradoxus strain B4—a proteomic approach. Appl Microbiol Biotechnol 98:6039–6050. CrossRefPubMedGoogle Scholar
  15. Brochado AR, Matos C, Møller BL, Hansen J, Mortensen UH, Patil KR (2010) Improved vanillin production in baker’s yeast through in silico design. Microb Cell Factories 9:84. CrossRefGoogle Scholar
  16. Campillo T, Renoud S, Kerzaon I, Vial L, Baude J, Gaillard V, Bellvert F, Chamignon C, Comte G, Nesme X, Lavire C, Hommais F (2014) Analysis of hydroxycinnamic acid degradation in Agrobacterium fabrum reveals a coenzyme A-dependent, beta-oxidative deacetylation pathway. Appl Environ Microbiol 80:3341–3349. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chen H-P, Chow M, Liu C-C, Lau A, Liu J, Eltis LD (2012) Vanillin catabolism in Rhodococcus jostii RHA1. Appl Environ Microbiol 78:586–588. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Chen C, Pan J, Yang X, Guo C, Ding W, Si M, Zhang Y, Shen X, Wang Y (2016) Global transcriptomic analysis of the response of Corynebacterium glutamicum to vanillin. PLoS One 11:1–16. CrossRefGoogle Scholar
  19. Chen C, Pan J, Yang X, Xiao H, Zhang Y, Si M, Shen X, Wang Y (2017) Global transcriptomic analysis of the response of Corynebacterium glutamicum to ferulic acid. Arch Microbiol 199:325–334. CrossRefPubMedGoogle Scholar
  20. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–840. CrossRefPubMedGoogle Scholar
  21. Costa DJS, Kothe E, Abate CM, Amoroso MJ (2012) Unraveling the Amycolatopsis tucumanensis copper-resistome. Biometals 25:905–917. CrossRefGoogle Scholar
  22. Crosas E, Porté S, Moeini A, Farrés J, Biosca JA, Parés X, Fernández MR (2011) Novel alkenal/one reductase activity of yeast NADPH:quinone reductase Zta1p. Prospect of the functional role for the ζ-crystallin family. Chem Biol Interact 191:32–37. CrossRefPubMedGoogle Scholar
  23. Davis JR, Goodwin LA, Woyke T, Teshima H, Bruce D, Detter C, Tapia R, Han S, Han J, Pitluck S, Nolan M, Mikhailova N, Land ML, Sello JK (2012) Genome sequence of Amycolatopsis sp. strain ATCC 39116, a plant biomass-degrading actinomycete. J Bacteriol 194:2396–2397. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Ehira S, Ogino H, Teramoto H, Inui M, Yukawa H (2009) Regulation of quinone oxidoreductase by redox-sensing transcriptional regulator QorR in Corynebacterium glutamicum. J Biol Chem 284:16736–16742. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Falconnier B, Lapierre C, Lesage-Meessen L, Yonnet G, Brunerie P, Colonna-Ceccaldi B, Corrieu G, Asther M (1994) Vanillin as a product of ferulic acid biotransformation by the white-rot fungus Pycnoporus cinnabarinus I-937: identification of metabolic pathways. J Biotechnol 37:123–132. CrossRefGoogle Scholar
  26. Fleige C, Hansen G, Kroll J, Steinbüchel A (2013) Investigation of the Amycolatopsis sp. strain ATCC 39116 vanillin dehydrogenase and its impact on the biotechnical production of vanillin. Appl Environ Microbiol 79:81–90. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Fleige C, Steinbüchel A (2014) Construction of expression vectors for metabolic engineering of the vanillin-producing actinomycete Amycolatopsis sp. ATCC 39116. Appl Microbiol Biotechnol 98:6387–6395. CrossRefPubMedGoogle Scholar
  28. Fleige C, Meyer F, Steinbüchel A (2016) Metabolic engineering of the actinomycete Amycolatopsis sp. strain ATCC 39116 towards enhanced production of natural vanillin. Appl Environ Microbiol 82:3410–3419. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Foldes M, Munro R, Sorrell TC, Shanker S, Toohey M (1983) In-vitro effects of vancomycin, rifampicin, and fusidic acid, alone and in combination, against methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 11:21–26. CrossRefPubMedGoogle Scholar
  30. Frey UH, Bachmann HS, Peters J, Siffert W (2008) PCR-amplification of GC-rich regions: “slowdown PCR”. Nat Protoc 3:1312–1317. CrossRefPubMedGoogle Scholar
  31. Funahashi A, Tanimura N, Morohashi M, Kitano H (2003) CellDesigner: a process diagram editor for gene-regulatory and biochemical networks. Biosilico 1:159–162. CrossRefGoogle Scholar
  32. Gallo G, Renzone G, Alduina R, Stegmann E, Weber T, Lantz AE, Thykaer J, Sangiorgi F, Scaloni A, Puglia AM (2010) Differential proteomic analysis reveals novel links between primary metabolism and antibiotic production in Amycolatopsis balhimycina. Proteomics 10:1336–1358. CrossRefPubMedGoogle Scholar
  33. Hanahan D, Jessee J, Bloom RF (1991) Plasmid transformation of Escherichia coli and other bacteria. Methods Enzymol 204:63–113. CrossRefPubMedGoogle Scholar
  34. Hansen EH, Møller BL, Kock GR, Bünner CM, Kristensen C, Jensen OR, Okkels FT, Olsen CE, Motawia MS, Hansen J (2009) De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker’s yeast (Saccharomyces cerevisiae). Appl Environ Microbiol 75:2765–2774. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hiller K, Grote A, Maneck M, Münch R, Jahn D (2006) JVirGel 2.0: computational prediction of proteomes separated via two-dimensional gel electrophoresis under consideration of membrane and secreted proteins. Bioinformatics 22:2441–2443. CrossRefPubMedGoogle Scholar
  36. Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bork P, Das U, Daugherty L, Duquenne L, Finn RD, Gough J, Haft D, Hulo N, Kahn D, Kelly E, Laugraud A, Letunic I, Lonsdale D, Lopez R, Madera M, Maslen J, Mcanulla C, McDowall J, Mistry J, Mitchell A, Mulder N, Natale D, Orengo C, Quinn AF, Selengut JD, Sigrist CJA, Thimma M, Thomas PD, Valentin F, Wilson D, Wu CH, Yeats C (2009) InterPro: the integrative protein signature database. Nucl Acids Res 37:211–215. CrossRefGoogle Scholar
  37. Joseph P, Long DJ, Klein-Szanto AJ, Jaiswal AK (2000) Role of NAD(P)H:quinone oxidoreductase 1 (DT diaphorase) in protection against quinone toxicity. Biochem Pharmacol 60:207–214. CrossRefPubMedGoogle Scholar
  38. Kallscheuer N, Vogt M, Kappelmann J, Krumbach K, Noack S, Bott M, Marienhagen J (2016) Identification of the phd gene cluster responsible for phenylpropanoid utilization in Corynebacterium glutamicum. Appl Microbiol Biotechnol 100:1871–1881. CrossRefPubMedGoogle Scholar
  39. Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J, Cheng T, Kho Y, Xiao H, Xiao L, Grishin NV, White M, Yang X-J, Zhao Y (2006b) Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell 23:607–618. CrossRefPubMedGoogle Scholar
  40. Kim YH, Cho K, Yun S-H, Kim JY, Kwon K-H, Yoo JS, Kim SI (2006a) Analysis of aromatic catabolic pathways in Pseudomonas putida KT 2440 using a combined proteomic approach: 2-DE/MS and cleavable isotope-coded affinity tag analysis. Proteomics 6:1301–1318. CrossRefPubMedGoogle Scholar
  41. Kim I-K, Yim H-S, Kim M-K, Kim D-W, Kim Y-M, Cha S-S, Kang S-O (2008) Crystal structure of a new type of NADPH-dependent quinone oxidoreductase (QOR2) from Escherichia coli. J Mol Biol 379:372–384. CrossRefPubMedGoogle Scholar
  42. Konishi Y, Shimizu M (2003) Transepithelial transport of ferulic acid by monocarboxylic acid transporter in Caco-2 cell monolayers. Biosci Biotechnol Biochem 67:856–862. CrossRefPubMedGoogle Scholar
  43. Kornberg HL, Krebs HA (1957) Synthesis of cell constituents from C2-units by a modified tricarboxylic acid cycle. Nature 179:988–991. CrossRefPubMedGoogle Scholar
  44. Krings U, Pilawa S, Theobald C, Berger RG (2001) Phenyl propenoic side chain degradation of ferulic acid by Pycnoporus cinnabarinus—elucidation of metabolic pathways using [5-2H]-ferulic acid. J Biotechnol 85:305–314. CrossRefPubMedGoogle Scholar
  45. Larroy C, Fernández MR, González E, Parés X, Biosca JA (2002) Characterization of the Saccharomyces cerevisiae YMR318C (ADH6) gene product as a broad specificity NADPH-dependent alcohol dehydrogenase: relevance in aldehyde reduction. Biochem J 361:163–172. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Lee E-G, Yoon S-H, Das A, Lee S-H, Li C, Kim J-Y, Choi M-S, Oh D-K, Kim S-W (2009) Directing vanillin production from ferulic acid by increased acetyl-CoA consumption in recombinant Escherichia coli. Biotechnol Bioeng 102:200–208. CrossRefPubMedGoogle Scholar
  47. Li K, Frost JW (1998) Synthesis of vanillin from glucose. J Am Chem Soc 120:10545–10546. CrossRefGoogle Scholar
  48. Magrane M, The UniProt Consortium (2011) UniProt Knowledgebase: a hub of integrated protein data. Database 2011:bar009. CrossRefPubMedPubMedCentralGoogle Scholar
  49. Meinert C, Brandt U, Heine V, Beyert J, Schmidl S, Wübbeler JH, Voigt B, Riedel K, Steinbüchel A (2017) Proteomic analysis of organic sulfur compound utilisation in Advenella mimigardefordensis strain DPN7T. PLoS One 12:1–26. CrossRefGoogle Scholar
  50. Merkens H, Beckers G, Wirtz A, Burkovski A (2005) Vanillate metabolism in Corynebacterium glutamicum. Curr Microbiol 51:59–65. CrossRefPubMedGoogle Scholar
  51. Meyer F, Pupkes H, Steinbüchel A (2017) Development of an improved system for the generation of knockout mutants of Amycolatopsis sp. strain ATCC 39116. Appl Environ Microbiol 83:e02660–e02616. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Mitra A, Kitamura Y, Gasson MJ, Narbad A, Parr AJ, Payne J, Rhodes MJC, Sewter C, Walton NJ (1999) 4-Hydroxycinnamoyl-CoA hydratase/lyase (HCHL)—an enzyme of phenylpropanoid chain cleavage from Pseudomonas. Arch Biochem Biophys 365:10–16. CrossRefPubMedGoogle Scholar
  53. Monks TJ, Hanzlik RP, Cohen GM, Ross D, Graham DG (1992) Quinone chemistry and toxicity. Toxicol Appl Pharmacol 112:2–16. CrossRefPubMedGoogle Scholar
  54. Muheim A, Lerch K (1999) Towards a high-yield bioconversion of ferulic acid to vanillin. Appl Microbiol Biotechnol 51:456–461. CrossRefGoogle Scholar
  55. Nadkarni SR, Patel MV, Chatterjee S, Vijayakumar EKS, Desikan KR, Blumbach J, Ganguli BN, Limbert M (1994) Balhimycin, a new glycopeptide antibiotic produced by Amycolatopsis sp. Y-86,21022. Taxonomy, production, isolation and biological activity. J Antibiot (Tokyo) 47:334–341. CrossRefGoogle Scholar
  56. Otani H, Lee Y-E, Casabon I, Eltis LD (2014) Characterization of p-hydroxycinnamate catabolism in a soil actinobacterium. J Bacteriol 196:4293–4303. CrossRefPubMedPubMedCentralGoogle Scholar
  57. Overhage J, Priefert H, Steinbüchel A (1999) Biochemical and genetic analyses of ferulic acid catabolism in Pseudomonas sp. strain HR199. Appl Env Microbiol 65:4837–4847Google Scholar
  58. Pfennig N (1974) Rhodopseudomonas globiformis, sp. n., a new species of the Rhodospirillaceae. Arch Microbiol 100:197–206. CrossRefGoogle Scholar
  59. Pospiech A, Neumann B (1995) A versatile quick-prep of genomic DNA from Gram-positive bacteria. Trends Genet 11:217–218. CrossRefPubMedGoogle Scholar
  60. Priefert H, Rabenhorst J, Steinbüchel A (2001) Biotechnological production of vanillin. Appl Microbiol Biotechnol 56:296–314. CrossRefPubMedGoogle Scholar
  61. Priefert H, Achterholt S, Steinbüchel A (2002) Transformation of the Pseudonocardiaceae Amycolatopsis sp. strain HR167 is highly dependent on the physiological state of the cells. Appl Microbiol Biotechnol 58:454–460. CrossRefPubMedGoogle Scholar
  62. Qi S-W, Chaudhry MT, Zhang Y, Meng B, Huang Y, Zhao K-X, Poetsch A, Jiang C-Y, Liu S, Liu S-J (2007) Comparative proteomes of Corynebacterium glutamicum grown on aromatic compounds revealed novel proteins involved in aromatic degradation and a clear link between aromatic catabolism and gluconeogenesis via fructose-1,6-bisphosphatase. Proteomics 7:3775–3787. CrossRefPubMedGoogle Scholar
  63. Rabenhorst J, Hopp R (1997) Verfahren zur Herstellung von Vanillin und dafür geeignete Mikroorganismen. DE 195 32 317 A1. GermanyGoogle Scholar
  64. Raberg M, Reinecke F, Reichelt R, Malkus U, König S, Pötter M, Fricke WF, Pohlmann A, Voigt B, Hecker M, Friedrich B, Bowien B, Steinbüchel A (2008) Ralstonia eutropha H16 flagellation changes according to nutrient supply and state of poly(3-hydroxybutyrate) accumulation. Appl Environ Microbiol 74:4477–4490. CrossRefPubMedPubMedCentralGoogle Scholar
  65. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrell B (2000) Artemis: sequence visualization and annotation. Bioinformatics 16:944–945. CrossRefPubMedGoogle Scholar
  66. Salmon RC, Cliff MJ, Rafferty JB, Kelly DJ (2013) The CouPSTU and TarPQM transporters in Rhodopseudomonas palustris: redundant, promiscuous uptake systems for lignin-derived aromatic substrates. PLoS One 8:1–13. CrossRefGoogle Scholar
  67. Schlegel HG, Kaltwasser H, Gottschalk G (1961) Ein Submersverfahren zur Kultur wasserstoffoxydierender Bakterien: Wachstumsphysiologische Untersuchungen. Arch Mikrobiol 38:209–222. CrossRefPubMedGoogle Scholar
  68. Shima J, Hesketh A, Okamoto S, Kawamoto S, Ochi K (1996) Induction of actinorhodin production by rpsL (encoding ribosomal protein S12) mutations that confer streptomycin resistance in Streptomyces lividans and Streptomyces coelicolor A3(2). J Bacteriol 178:7276–7284. CrossRefPubMedPubMedCentralGoogle Scholar
  69. Shimizu M, Kobayashi Y, Tanaka H, Wariishi H (2005) Transportation mechanism for vanillin uptake through fungal plasma membrane. Appl Microbiol Biotechnol 68:673–679. CrossRefPubMedGoogle Scholar
  70. Simon O, Klaiber I, Huber A, Pfannstiel J (2014) Comprehensive proteome analysis of the response of Pseudomonas putida KT2440 to the flavor compound vanillin. J Proteome 109:212–227. CrossRefGoogle Scholar
  71. Sutherland JB, Crawford DL, Pometto AL (1983) Metabolism of cinnamic, p-coumaric, and ferulic acids by Streptomyces setonii. Can J Microbiol 29:1253–1257. CrossRefPubMedGoogle Scholar
  72. Tyler B (1978) Regulation of the assimilation of nitrogen compounds. Annu Rev Biochem 47:1127–1162. CrossRefPubMedGoogle Scholar
  73. Wolf C, Hochgräfe F, Kusch H, Albrecht D, Hecker M, Engelmann S (2008) Proteomic analysis of antioxidant strategies of Staphylococcus aureus: diverse responses to different oxidants. Proteomics 8:3139–3153. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Molekulare Mikrobiologie und BiotechnologieWestfälische Wilhelms-Universität MünsterMünsterGermany
  2. 2.Institut für MikrobiologieErnst-Moritz-Arndt UniversitätGreifswaldGermany
  3. 3.Environmental Sciences DepartmentKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations