Skip to main content
Log in

Copy number of ArsR reporter plasmid determines its arsenite response and metal specificity

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The key component in bacteria-based biosensors is a transcriptional reporter employed to monitor induction or repression of a reporter gene corresponding to environmental change. In this study, we made a series of reporters in order to achieve highly sensitive detection of arsenite. From these reporters, two biosensors were developed by transformation of Escherichia coli DH5α with pLHPars9 and pLLPars9, consisting of either a high or low copy number plasmid, along with common elements of ArsR-luciferase fusion and addition of two binding sequences, one each from E. coli and Acidithiobacillus ferrooxidans chromosome, in front of the R773 ArsR operon. Both of them were highly sensitive to arsenite, with a low detection limit of 0.04 μM arsenite (~ 5 μg/L). They showed a wide dynamic range of detection up to 50 μM using high copy number pLHPars9 and 100 μM using low copy number pLLPars9. Significantly, they differ in metal specificity, pLLPars9 more specific to arsenite, while pLHPars9 to both arsenite and antimonite. The only difference between pLHPars9 and pLLPars9 is their copy numbers of plasmid and corresponding ratios of ArsR to its binding promoter/operator sequence. Therefore, we propose a working model in which DNA bound-ArsR is different from its free form in metal specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ambriz-Aviña V, Contreras-Garduño JA, Pedraza-Reyes M (2014) Applications of flow cytometry to characterize bacterial physiological responses. Biomed Res Int 2014:1–14

    Article  Google Scholar 

  • Busenlehner LS, Pennella MA, Giedroc DP (2003) The SmtB/ArsR family of metalloregulatory transcriptional repressors: structural insights into prokaryotic metal resistance. FEMS Microbiol Rev 27:131–143

    Article  CAS  Google Scholar 

  • Butcher BG, Rawlings DE (2002) The divergent chromosomal ars operon of Acidithiobacillus ferrooxidans is regulated by an atypical ArsR protein. Microbiology 148:3983–3992

    Article  CAS  Google Scholar 

  • Chen J, Rosen BP (2014) Biosensors for inorganic and organic arsenicals. Biosensors 4:494–512

    Article  Google Scholar 

  • Chen J, Zhu YG, Rosen BP (2012) A novel biosensor selective for organoarsenicals. Appl Environ Microbiol 78:7145–7147

    Article  CAS  Google Scholar 

  • Chu J (2007) A safe and simple arsenic detector. MIT Technololy Review. https://www.technologyreview.com/s/407222/a-safe-and-simple-arsenic-detector/

  • Close DM, Ripp S, Sayler GS (2009) Reporter proteins in whole-cell optical bioreporter detection systems, biosensor integrations, and biosensing applications. Sensors 9:9147–9174

    Article  CAS  Google Scholar 

  • Fernández M, Morel B, Ramos JL, Krell T (2016) Paralogous regulators ArsR1 and ArsR2 of Pseudomonas putida KT2440 as a basis for arsenic biosensor development. Appl Environ Microbiol 82:4133–4144

    Article  Google Scholar 

  • Gilman J, Love J (2016) Synthetic promoter design for new microbial chassis. Biochem Soc Trans 44:731–737

    Article  CAS  Google Scholar 

  • Hödar C, Moreno P, Genova A, Latorre M, Reyes-Jara A, Maass A, González M, Cambiazo V (2012) Genome wide identification of Acidithiobacillus ferrooxidans (ATCC 23270) transcription factors and comparative analysis of ArsR and MerR metal regulators. Biometals 25:75–93

    Article  Google Scholar 

  • Hughes MF, Beck BD, Chen Y, Lewis AS, Thomas DJ (2011) Arsenic exposure and toxicology: a historical perspective. Toxicol Sci 123:305–332

    Article  CAS  Google Scholar 

  • Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D, Rhodes CJ, Valko M (2011) Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol 31:95–107

    CAS  PubMed  Google Scholar 

  • Juers DH, Matthews BW, Huber RE (2012) LacZ, β-galactosidase: structure and function of an enzyme of historical and molecular biological importance. Protein Sci 21:1792–1807

    Article  CAS  Google Scholar 

  • Kaur H, Kumar R, Babu JN, Mittal S (2015) Advances in arsenic biosensor development—a comprehensive review. Biosens Bioelectron 63:533–545

    Article  CAS  Google Scholar 

  • Lee PE, Demple B, Barton JK (2009) DNA-mediated redox signaling for transcriptional activation of SoxR. Proc Natl Acad Sci U S A 106:13164–13168

    Article  CAS  Google Scholar 

  • Li L, Liang J, Hong W, Zhao Y, Sun S, Yang X, Xu A, Hang H, Wu L, Chen S (2015) Evolved bacterial biosensor for arsenite detection in environmental water. Environ Sci Technol 49:6149–6155

    Article  CAS  Google Scholar 

  • McElroy WD, Seliger HH (1963) The chemistry of light emission. Adv Enzymol Relat Areas Mol Biol John Wiley & Sons, Inc. (25):119–166

  • Meighen EA (1988) Enzymes and genes from the lux operon of bioluminescent bacteria. Annu Rev Microbiol 42:151–176

    Article  CAS  Google Scholar 

  • Merulla D, van der Meer JR (2016) Regulatable and modulable background expression control in prokaryotic synthetic circuits by auxiliary repressor binding sites. ACS Synth Biol 5:36−45

    Article  Google Scholar 

  • O’Halloran TV, Frantz B, Shin MK, Ralston DM, Wright JG (1989) The MerR heavy metal receptor mediates positive activation in a topologically novel transcription complex. Cell 56:119–129

    Article  Google Scholar 

  • Outten CE, Outten FW, O’Halloran TV (1999) DNA distortion mechanism for transcriptional activation by ZntR, a Zn(II)-responsive MerR homologue in Escherichia coli. J Biol Chem 274:37517–37524

    Article  CAS  Google Scholar 

  • Qin J, Fu HL, Ye J, Bencze KZ, Stemmler TL, Rawlings DE, Rosen BP (2007) Convergent evolution of a new arsenic binding site in the ArsR/SmtB family of metalloregulators. J Biol Chem 282:34346–34355

    Article  CAS  Google Scholar 

  • San Francisco MJ, Hope CL, Owolabi JB, Tisa LS, Rosen BP (1990) Identification of the metalloregulatory element of the plasmid-encoded arsenical resistance operon. Nucleic Acids Res 18:619–624

    Article  CAS  Google Scholar 

  • Shi W, Wu J, Rosen BP (1994) Identification of a putative metal binding site in a new family of metalloregulatory proteins. J Biol Chem 269:19826–19829

    CAS  PubMed  Google Scholar 

  • Soangra R, Majumder CB, Roy P (2015) Whole cell arsenic biosensor—a cheap technology for bioavailable arsenic (As) determination. Eur J Adv Eng Technol 2:52–61

    Google Scholar 

  • Stocker J, Balluch D, Gsell M, Harms H, Feliciano J, Daunert S, Malik KA, van der Meer JR (2003) The development of a set of bacterial biosensors based on a nonpathogenic laboratory strain of Escherichia coli. Environ Sci Technol 37:4743–4750

    Article  CAS  Google Scholar 

  • Tauriainen S, Karp M, Chang W, Virta M (1997) Recombinant luminescent bacteria for measuring bioavailable arsenite and antimonite. Appl Environ Microbiol 63:4456–4461

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trang PT, Berg M, Viet PH, Mui NV, van Der Meer JR (2005) Bacterial bioassay for rapid and accurate analysis of arsenic in highly variable groundwater samples. Environ Sci Technol 39:7625–7630

    Article  CAS  Google Scholar 

  • Wu J, Rosen BP (1993) Metalloregulated expression of the ars operon. J Biol Chem 268:52–58

    CAS  PubMed  Google Scholar 

  • Xu C, Shi W, Rosen BP (1996) The chromosomal arsR gene of Escherichia coli encodes a trans-acting metalloregulatory protein. J Biol Chem 271:2427–2432

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the High-level Leading Talent Introduction Program of GDAS (2016GDASRC-0208) and the Science and Technology Planning Project of Guangzhou City (201707020021) to XL, the National Natural Science Foundation of China (31600077) and the China Postdoctoral Science Foundation Grant (2017M612622) to YF, and the Science and Technology Project of Guangdong Province (2016B070701017) to MX.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meiying Xu or Xianqiang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Zhu, C., Chen, X. et al. Copy number of ArsR reporter plasmid determines its arsenite response and metal specificity. Appl Microbiol Biotechnol 102, 5753–5761 (2018). https://doi.org/10.1007/s00253-018-9042-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-9042-1

Keywords

Navigation