Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 13, pp 5753–5761 | Cite as

Copy number of ArsR reporter plasmid determines its arsenite response and metal specificity

  • Yun Fang
  • Chunjie Zhu
  • Xingjuan Chen
  • Yan Wang
  • Meiying Xu
  • Guoping Sun
  • Jun Guo
  • Jinnon Yoo
  • Cuijuan Tie
  • Xin Jiang
  • Xianqiang Li
Environmental biotechnology
  • 264 Downloads

Abstract

The key component in bacteria-based biosensors is a transcriptional reporter employed to monitor induction or repression of a reporter gene corresponding to environmental change. In this study, we made a series of reporters in order to achieve highly sensitive detection of arsenite. From these reporters, two biosensors were developed by transformation of Escherichia coli DH5α with pLHPars9 and pLLPars9, consisting of either a high or low copy number plasmid, along with common elements of ArsR-luciferase fusion and addition of two binding sequences, one each from E. coli and Acidithiobacillus ferrooxidans chromosome, in front of the R773 ArsR operon. Both of them were highly sensitive to arsenite, with a low detection limit of 0.04 μM arsenite (~ 5 μg/L). They showed a wide dynamic range of detection up to 50 μM using high copy number pLHPars9 and 100 μM using low copy number pLLPars9. Significantly, they differ in metal specificity, pLLPars9 more specific to arsenite, while pLHPars9 to both arsenite and antimonite. The only difference between pLHPars9 and pLLPars9 is their copy numbers of plasmid and corresponding ratios of ArsR to its binding promoter/operator sequence. Therefore, we propose a working model in which DNA bound-ArsR is different from its free form in metal specificity.

Keywords

ArsR Biosensors pLHPars9 and pLLPars9 plasmid Metal specificity 

Notes

Funding information

This work was supported by the High-level Leading Talent Introduction Program of GDAS (2016GDASRC-0208) and the Science and Technology Planning Project of Guangzhou City (201707020021) to XL, the National Natural Science Foundation of China (31600077) and the China Postdoctoral Science Foundation Grant (2017M612622) to YF, and the Science and Technology Project of Guangdong Province (2016B070701017) to MX.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals.

References

  1. Ambriz-Aviña V, Contreras-Garduño JA, Pedraza-Reyes M (2014) Applications of flow cytometry to characterize bacterial physiological responses. Biomed Res Int 2014:1–14CrossRefGoogle Scholar
  2. Busenlehner LS, Pennella MA, Giedroc DP (2003) The SmtB/ArsR family of metalloregulatory transcriptional repressors: structural insights into prokaryotic metal resistance. FEMS Microbiol Rev 27:131–143CrossRefPubMedGoogle Scholar
  3. Butcher BG, Rawlings DE (2002) The divergent chromosomal ars operon of Acidithiobacillus ferrooxidans is regulated by an atypical ArsR protein. Microbiology 148:3983–3992CrossRefPubMedGoogle Scholar
  4. Chen J, Rosen BP (2014) Biosensors for inorganic and organic arsenicals. Biosensors 4:494–512CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chen J, Zhu YG, Rosen BP (2012) A novel biosensor selective for organoarsenicals. Appl Environ Microbiol 78:7145–7147CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chu J (2007) A safe and simple arsenic detector. MIT Technololy Review. https://www.technologyreview.com/s/407222/a-safe-and-simple-arsenic-detector/
  7. Close DM, Ripp S, Sayler GS (2009) Reporter proteins in whole-cell optical bioreporter detection systems, biosensor integrations, and biosensing applications. Sensors 9:9147–9174CrossRefPubMedPubMedCentralGoogle Scholar
  8. Fernández M, Morel B, Ramos JL, Krell T (2016) Paralogous regulators ArsR1 and ArsR2 of Pseudomonas putida KT2440 as a basis for arsenic biosensor development. Appl Environ Microbiol 82:4133–4144CrossRefPubMedPubMedCentralGoogle Scholar
  9. Gilman J, Love J (2016) Synthetic promoter design for new microbial chassis. Biochem Soc Trans 44:731–737CrossRefPubMedPubMedCentralGoogle Scholar
  10. Hödar C, Moreno P, Genova A, Latorre M, Reyes-Jara A, Maass A, González M, Cambiazo V (2012) Genome wide identification of Acidithiobacillus ferrooxidans (ATCC 23270) transcription factors and comparative analysis of ArsR and MerR metal regulators. Biometals 25:75–93CrossRefPubMedGoogle Scholar
  11. Hughes MF, Beck BD, Chen Y, Lewis AS, Thomas DJ (2011) Arsenic exposure and toxicology: a historical perspective. Toxicol Sci 123:305–332CrossRefPubMedPubMedCentralGoogle Scholar
  12. Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D, Rhodes CJ, Valko M (2011) Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol 31:95–107PubMedGoogle Scholar
  13. Juers DH, Matthews BW, Huber RE (2012) LacZ, β-galactosidase: structure and function of an enzyme of historical and molecular biological importance. Protein Sci 21:1792–1807CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kaur H, Kumar R, Babu JN, Mittal S (2015) Advances in arsenic biosensor development—a comprehensive review. Biosens Bioelectron 63:533–545CrossRefPubMedGoogle Scholar
  15. Lee PE, Demple B, Barton JK (2009) DNA-mediated redox signaling for transcriptional activation of SoxR. Proc Natl Acad Sci U S A 106:13164–13168Google Scholar
  16. Li L, Liang J, Hong W, Zhao Y, Sun S, Yang X, Xu A, Hang H, Wu L, Chen S (2015) Evolved bacterial biosensor for arsenite detection in environmental water. Environ Sci Technol 49:6149–6155CrossRefPubMedGoogle Scholar
  17. McElroy WD, Seliger HH (1963) The chemistry of light emission. Adv Enzymol Relat Areas Mol Biol John Wiley & Sons, Inc. (25):119–166Google Scholar
  18. Meighen EA (1988) Enzymes and genes from the lux operon of bioluminescent bacteria. Annu Rev Microbiol 42:151–176CrossRefGoogle Scholar
  19. Merulla D, van der Meer JR (2016) Regulatable and modulable background expression control in prokaryotic synthetic circuits by auxiliary repressor binding sites. ACS Synth Biol 5:36−45CrossRefPubMedGoogle Scholar
  20. O’Halloran TV, Frantz B, Shin MK, Ralston DM, Wright JG (1989) The MerR heavy metal receptor mediates positive activation in a topologically novel transcription complex. Cell 56:119–129CrossRefPubMedGoogle Scholar
  21. Outten CE, Outten FW, O’Halloran TV (1999) DNA distortion mechanism for transcriptional activation by ZntR, a Zn(II)-responsive MerR homologue in Escherichia coli. J Biol Chem 274:37517–37524CrossRefPubMedGoogle Scholar
  22. Qin J, Fu HL, Ye J, Bencze KZ, Stemmler TL, Rawlings DE, Rosen BP (2007) Convergent evolution of a new arsenic binding site in the ArsR/SmtB family of metalloregulators. J Biol Chem 282:34346–34355CrossRefPubMedPubMedCentralGoogle Scholar
  23. San Francisco MJ, Hope CL, Owolabi JB, Tisa LS, Rosen BP (1990) Identification of the metalloregulatory element of the plasmid-encoded arsenical resistance operon. Nucleic Acids Res 18:619–624CrossRefPubMedPubMedCentralGoogle Scholar
  24. Shi W, Wu J, Rosen BP (1994) Identification of a putative metal binding site in a new family of metalloregulatory proteins. J Biol Chem 269:19826–19829PubMedGoogle Scholar
  25. Soangra R, Majumder CB, Roy P (2015) Whole cell arsenic biosensor—a cheap technology for bioavailable arsenic (As) determination. Eur J Adv Eng Technol 2:52–61Google Scholar
  26. Stocker J, Balluch D, Gsell M, Harms H, Feliciano J, Daunert S, Malik KA, van der Meer JR (2003) The development of a set of bacterial biosensors based on a nonpathogenic laboratory strain of Escherichia coli. Environ Sci Technol 37:4743–4750CrossRefPubMedGoogle Scholar
  27. Tauriainen S, Karp M, Chang W, Virta M (1997) Recombinant luminescent bacteria for measuring bioavailable arsenite and antimonite. Appl Environ Microbiol 63:4456–4461PubMedPubMedCentralGoogle Scholar
  28. Trang PT, Berg M, Viet PH, Mui NV, van Der Meer JR (2005) Bacterial bioassay for rapid and accurate analysis of arsenic in highly variable groundwater samples. Environ Sci Technol 39:7625–7630CrossRefPubMedGoogle Scholar
  29. Wu J, Rosen BP (1993) Metalloregulated expression of the ars operon. J Biol Chem 268:52–58PubMedGoogle Scholar
  30. Xu C, Shi W, Rosen BP (1996) The chromosomal arsR gene of Escherichia coli encodes a trans-acting metalloregulatory protein. J Biol Chem 271:2427–2432CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yun Fang
    • 1
    • 2
  • Chunjie Zhu
    • 1
    • 2
  • Xingjuan Chen
    • 1
    • 2
  • Yan Wang
    • 3
  • Meiying Xu
    • 1
    • 2
  • Guoping Sun
    • 1
    • 2
  • Jun Guo
    • 1
    • 2
  • Jinnon Yoo
    • 4
  • Cuijuan Tie
    • 4
  • Xin Jiang
    • 4
  • Xianqiang Li
    • 1
    • 2
    • 4
  1. 1.Guangdong Provincial Key Laboratory of Microbial Culture Collection and ApplicationGuangdong Institute of MicrobiologyGuangzhouChina
  2. 2.State Key Laboratory of Applied Microbiology Southern ChinaGuangzhouChina
  3. 3.Science and Technology Library of Guangdong ProvinceGuangdong Institute of Science and Technology Information and Development StrategyGuangzhouChina
  4. 4.Signosis Inc.Santa ClaraUSA

Personalised recommendations