Applied Microbiology and Biotechnology

, Volume 102, Issue 12, pp 5021–5031 | Cite as

Solvent production by engineered Ralstonia eutropha: channeling carbon to biofuel

  • Jayashree Chakravarty
  • Christopher J. Brigham


Microbial production of solvents like acetone and butanol was a couple of the first industrial fermentation processes to gain global importance. These solvents are important feedstocks for the chemical and biofuel industry. Ralstonia eutropha is a facultatively chemolithoautotrophic bacterium able to grow with organic substrates or H2 and CO2 under aerobic conditions. This bacterium is a natural producer of polyhydroxyalkanoate biopolymers. Recently, with the advances in the development of genetic engineering tools, the range of metabolites R. eutropha can produce has enlarged. Its ability to utilize various carbon sources renders it an interesting candidate host for synthesis of renewable biofuel and solvent production. This review focuses on progress in metabolic engineering of R. eutropha for the production of alcohols, terpenes, methyl ketones, and alka(e)nes using various resources. Biological synthesis of solvents still presents the challenge of high production costs and competition from chemical synthesis. Better understanding of R. eutropha biology will support efforts to engineer and develop superior microbial strains for solvent production. Continued research on multiple fronts is required to engineer R. eutropha for truly sustainable and economical solvent production.


Ralstonia eutropha Carbon metabolism Alcohols Biofuels Solvents Chemolithoautotroph 



We thank Prof. Alexander Steinbüchel and the editorial team of Applied Microbiology and Biotechnology for the opportunity to write and publish this work. CJB thanks Prof. Anthony Sinskey of Massachusetts Institute of Technology for the opportunity to work on a biofuel production project, which serves as the inspiration for continued interest in this topic.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451(7174):86–90. CrossRefPubMedGoogle Scholar
  2. Bernardi AC, Gai CS, Lu J, Sinskey AJ, Brigham CJ (2016) Experimental evolution and gene knockout studies reveal AcrA-mediated isobutanol tolerance in Ralstonia eutropha. J Biosci Bioeng 122(1):64–69. CrossRefPubMedGoogle Scholar
  3. Bi C, Su P, Müller J, Yeh YC, Chhabra SR, Beller HR, Singer SW, Hillson NJ (2013) Development of a broad-host synthetic biology toolbox for Ralstonia eutropha and its application to engineering hydrocarbon biofuel production. Microb Cell Factories 12:107. CrossRefGoogle Scholar
  4. Black WB, Zhang L, Kamoku C, Liao JC, Li H (2018) Rearrangement of coenzyme A-acetylated carbon chain enables synthesis of isobutanol via a novel pathway in Ralstonia eutropha. ACS Synth Biol 7:794–800. CrossRefPubMedGoogle Scholar
  5. Bonacci W, Teng PK, Afonso B, Niederholtmeyer H, Grob P, Silver PA, Savage DF (2012) Modularity of a carbon-fixing protein organelle. Proc Natl Acad Sci U S A 109(2):478–483CrossRefPubMedGoogle Scholar
  6. Bond-Watts BB, Bellerose RJ, Chang MC (2011) Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat Chem Biol 7(4):222–227. CrossRefPubMedGoogle Scholar
  7. Bowien B, Kusian B (2002) Genetics and control of CO2 assimilation in the chemoautotroph Ralstonia eutropha. Arch Microbiol 178(2):85–93. CrossRefPubMedGoogle Scholar
  8. Brigham CJ, Gai CS, Lu J, Speth D, Worden RM, Sinskey AJ (2013) Engineering Ralstonia eutropha for production of isobutanol from CO2, H2, and O2. In: Lee JW (Ed.) Advanced Biofuels and Bioproducts. Springer. New York 1065–1090. doi:
  9. Brigham CJ, Zhila N, Shishatskaya E, Volova TG, Sinskey AJ (2012) Manipulation of Ralstonia eutropha carbon storage pathways to produce useful bio-based products. Subcell Biochem 64:343–366. CrossRefPubMedGoogle Scholar
  10. Budde CF, Riedel SL, Willis LB, Rha CK, Sinskey AJ (2011) Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from plant oil by engineered Ralstonia eutropha strains. Appl Environ Microbiol 77(9):2847–2854. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Burgdorf T, Lenz O, Buhrke T, van der Linden E, Jones AK, Albracht SPJ, Friedrich B (2005) [NiFe]-hydrogenases of Ralstonia eutropha H16: modular enzymes for oxygen-tolerant biological hydrogen oxidation. J Mol Microbiol Biotechnol 10(2–4):181–196. CrossRefPubMedGoogle Scholar
  12. Clark D, Cronan J (1980) Escherichia coli mutants with altered control of alcohol dehydrogenase and nitrate reductase. J Bacteriol 141(1):177–183PubMedPubMedCentralGoogle Scholar
  13. Crepin L, Lombard E, Guillouet SE (2016) Metabolic engineering of Cupriavidus necator for heterotrophic and autotrophic alka(e)ne production. Metab Eng 37:92–101. CrossRefPubMedGoogle Scholar
  14. De la Plaza M, de Palencia PF, Pelaez C, Requena T (2004) Biochemical and molecular characterization of alpha-ketoisovalerate decarboxylase, an enzyme involved in the formation of aldehydes from amino acids by Lactococcus lactis. FEMS Microbiol Lett 238(2):367–374CrossRefPubMedGoogle Scholar
  15. Eggers J, Steinbüchel A (2013) Poly(3-hydroxybutyrate) degradation in Ralstonia eutropha H16 is mediated stereoselectively to (S)-3-hydroxybutyryl coenzyme A (CoA) via crotonyl-CoA. J Bacteriol 195(14):3213–3223. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fei Q, Brigham CJ, Lu J, Fu R, Sinskey AJ (2013) Production of branched-chain alcohols by recombinant Ralstonia eutropha in fed-batch cultivation. Biomass Bioenergy 56:334–341CrossRefGoogle Scholar
  17. Gai CS, Lu J, Brigham CJ, Bernardi AC, Sinskey AJ (2014) Insights into bacterial CO2 metabolism revealed by the characterization of four carbonic anhydrases in Ralstonia eutropha H16. AMB Express 4:2. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Goh EB, Baidoo EEK, Keasling J, Beller H (2012) Engineering of bacterial methyl ketone synthesis for biofuels. Appl Environ Microbiol 78(1):70–80. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Grousseau E, Lu J, Gorret N, Guillouet SE, Sinskey AJ (2014) Isopropanol production with engineered Cupriavidus necator as bioproduction platform. Appl Microbiol Biotechnol 98(9):4277–4290. CrossRefPubMedGoogle Scholar
  20. Ishizaki A, Tanaka K, Taga N (2001) Microbial production of poly-D-3-hydroxybutyrate from CO2. Appl Microbiol Biotechnol 57(1–2):6–12PubMedGoogle Scholar
  21. Jendrossek D (2009) Polyhydroxyalkanoate granules are complex subcellular organelles (carbonosomes). J Bacteriol 191(10):3195–3202. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Jendrossek D, Handrick R (2002) Microbial degradation of polyhydroxyalkanoates. Annu Rev Microbiol 56:403–432. CrossRefPubMedGoogle Scholar
  23. Jendrossek D, Kruger N, Steinbüchel A (1990) Characterization of alcohol dehydrogenase genes of derepressible wild-type Alcaligenes eutrophus H16 and constitutive mutants. J Bacteriol 172(9):4844–4851. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Jeon BY, Yi JY, Jung IL, Park DH (2013) Activation of ethanol production by combination of recombinant Ralstonia eutropha and electrochemical reducing power. Adv Microbiol 3(1):42–45. CrossRefGoogle Scholar
  25. Kawashima Y, Chang W, Mifune J, Orita I, Nakamura S, Fukui T (2012) Characterization and functional analyses of R-specific enoyl coenzyme A hydratases in polyhydroxyalkanoate-producing Ralstonia eutropha. Appl Environ Miocrbiol 78(2):493–502. CrossRefGoogle Scholar
  26. Klein MG, Zwart P, Bagby SC, Cai F, Chisholm SW, Heinhorst S, Cannon GC, Kerfeld CA (2009) Identification and structural analysis of a novel carboxysome shell protein with implications for metabolite transport. J Mol Biol 392(2):319–333. CrossRefPubMedGoogle Scholar
  27. Krieg T, Sydow A, Faust S, Huth I, Holtmann D (2018) CO2 to terpenes: autotrophic and electroautotrophic α-humulene production with Cupriavidus necator. Angew Chem Int Ed 57:1–5. CrossRefGoogle Scholar
  28. Kusian B, Sueltmeyer D, Bowein B (2002) Carbonic anhydrase is essential for growth of Ralstonia eutropha at ambient CO2 concentrations. J Bacteriol 184(18):5018–5026. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lan EI, Liao JC (2012) Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources. Bioresour Technol 135:339–349. CrossRefPubMedGoogle Scholar
  30. Lee H, Jeon B, Oh M (2016) Microbial production of ethanol from acetate by engineered Ralstonia eutropha. Biotechnol Bioprocess Eng 21: 402–407 (2016) DOI
  31. Lenz O, Ludwig M, Schubert T, Buerstel I, Ganskow S, Goris T, Schwarze A, Friedrich B (2010) H2 conversion in the presence of O2 as performed by the membrane-bound [NiFe]-hydrogenase of Ralstonia eutropha. ChemPhysChem 11(6):1107–1119. CrossRefPubMedGoogle Scholar
  32. Li S, Lu J, Brigham CJ, Sinskey AJ (2015) Improving the efficiency of carbon fixation in Ralstonia eutropha with carbon-concentrating microcompartments. MURJ 29:36–42CrossRefGoogle Scholar
  33. Li H, Opgenorth PH, Wernick DG, Rogers S, Wu TY, Higashide W, Malati P, Huo YX, Cho KM, Liao JC (2012) Integrated electromicrobial conversion of CO2 to higher alcohols. Science 335(6076):1596. CrossRefPubMedGoogle Scholar
  34. Lu J, Brigham CJ, Gai CS, Sinskey AJ (2012) Studies on the production of branched-chain alcohols in engineered Ralstonia eutropha. Appl Microbiol Biotechnol 96(1):283–297. CrossRefPubMedGoogle Scholar
  35. Macedo N, Brigham CJ (2014) From beverages to biofuels: journeys of ethanol-producing microorganisms. Int J Biotechnol Wellness Ind 3(3):79–87. CrossRefGoogle Scholar
  36. Marc J, Grousseau E, Lombard E, Sinskey AJ, Gorret N (2017) Over expression of GroESL in Cupriavidus necator for heterotrophic and autotrophic isopropanol production. Metabolic Eng 42:74–84. CrossRefGoogle Scholar
  37. Minty JJ, Lesnefsky AA, Lin F, Chen Y, Zaroff TA, Veloso AB, Xie B, McConnell CA, Ward RJ, Schwartz DR, Rouillard JM, Gao Y, Gulari E, Lin XN (2011) Evolution combined with genomic study elucidates genetic bases of isobutanol tolerance in Escherichia coli. Microb Cell Factories 10:18. CrossRefGoogle Scholar
  38. Müller J, Maceachran D, Burd H, Sathitsuksanoh N, Bi C, Yeh Y, Lee TS, Hillson NJ, Chhabra SR, Singer SW, Beller HR (2013) Engineering of Ralstonia eutropha H16 for autotrophic and heterotrophic production of methyl ketones. Appl Environ Microbiol 79(14):4433–4439. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Peralta-Yahya PP, Keasling JD (2010) Advanced biofuel production in microbes. Biotechnol J 5(2):147–162. CrossRefPubMedGoogle Scholar
  40. Pfeiffer D, Wahl A, Jendrossek D (2011) Identification of a multifunctional protein, PhaM, that determines number, surface to volume ratio, subcellular localization and distribution to daughter cells of poly(3-hydroxybutyrate), PHB, granules in Ralstonia eutropha H16. Mol Microbiol 82(4):936–951. CrossRefPubMedGoogle Scholar
  41. Pohlmann A, Fricke WF, Reinecke F, Kusian B, Liesegang H, Cramm R, Eitinger T, Ewring C, Potter M, Schwartz E, Strittmatter A, Voss I, Gottschalk G, Steinbüchel A, Friedrich B, Bowein B (2006) Genome sequence of the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16. Nat Biotechnol 24(10):1257–1262CrossRefPubMedGoogle Scholar
  42. Richter H, Qureshi N, Heger S, Dien B, Cotta MA, Angenent LT (2012) Prolonged conversion of n-butyrate to n-butanol with Clostridium saccharoperbutylacetonicum in a two-stage continuous culture with in-situ product removal. Biotechnol Bioeng 109:913–921. CrossRefPubMedGoogle Scholar
  43. Schatz A, Bovell C Jr (1952) Growth and hydrogenase activity of a new bacterium, Hydrogenomonas facilis. J Bacteriol 63(1):87–98PubMedPubMedCentralGoogle Scholar
  44. Schwartz E, Voigt B, Zuehlke D, Pohlmann A, Lenz O, Albrecht D, Schwarze A, Kohlmann Y, Krause C, Hecker M, Friedrich B (2009) A proteomic view of the chemolithoautotrophic lifestyle of Ralstonia eutropha H16. Proteomics 9(22):5132–5142. CrossRefPubMedGoogle Scholar
  45. Schwarz KM, Grosse-Honebrink A, Derecka K, Rotta C, Zhang Y, Minton NP (2017) Towards improved butanol production through targeted genetic modification of Clostridium pasteurianum. Metab Eng 40:124–137. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, Liao JC (2011) Driving forces enable high-titer anaerobic 1-butanol synthesis in E. coli. Appl Environ Microbiol 77(9):2901–2915. CrossRefGoogle Scholar
  47. Steinbüchel A (1991) Polyhydroxyalkanoic acids. In: Byrom D (Ed.) Biomaterials—novel materials from biological sources, Palgrave MacMillan, UK pp. 123–213. doi:
  48. Steinbüchel A, Frund C, Jendrossek D, Schlegel HG (1987) Isolation of mutants of Alcaligenes eutrophus unable to derepress the fermentative alcohol-dehydrogenase. Arch Microbiol 148(3):178–186. CrossRefGoogle Scholar
  49. Steinbüchel A, Schlegel HG (1989) Excretion of pyruvate by mutants of Alcaligenes eutrophus which are impaired in the accumulation of poly-([beta]-hydroxybutyric acid) (PHB), under conditions permitting synthesis of PHB. Appl Microbiol Biotechnol 31(2):168–175 CrossRefGoogle Scholar
  50. Sznajder A, Pfeiffer D, Jendrossek D (2015) Comparative proteome analysis reveals four novel polyhydroxybutyrate (PHB) granule-associated proteins in Ralstonia eutropha H16. Appl Environ Microbiol 81(5):1847–1858. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Tomas CA, Welker NE, Papoutsakis ET (2003) Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell’s transcriptional program. Appl Environ Microbiol 69(8):4951–4965. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Torella JP, Gagliardi CJ, Chen JS, Bediako K, Colon B, Way JC, Silver PA, Nocera DG (2015) Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system. Proc Natl Acad Sci U S A 112(8):2337–2342. CrossRefPubMedPubMedCentralGoogle Scholar
  53. Vilasi S, Bulone D, Bavisotto CC, Campanella C, Gammazza AM, San Biagio PL, Cappello F, de Macario EC, Macario AJL (2018) Chaperonin of group I: oligomeric spectrum and biochemical and biological implications. Front Mol Biosci 4(99):1–14. CrossRefGoogle Scholar
  54. Volova TG, Kalacheva GS (2005) The synthesis of hydroxybutyrate and hydroxyvalerate copolymers by the bacterium Ralstonia eutropha. Microbiology 74(1):63–69. CrossRefPubMedGoogle Scholar
  55. Wilde E (1962) Studies on growth and storage synthesis of Hydrogenomonas. Arch Mikrobiol 43(2):109–137. CrossRefGoogle Scholar
  56. Zheng YN, Li LZ, Xian M, Mia YJ, Yang JM, Xu X, He DZ (2009) Problems with the microbial production of butanol. J Ind Microbiol Biotechnol 36:1127–1138CrossRefPubMedGoogle Scholar
  57. Zingaro KA, Papoutsakis ET (2013) GroESL overexpression imparts Escherichia coli tolerance to i-, n-, and 2-butanol, 1,2,4-butanetriol and ethanol with complex and unpredictable patterns. Metab Eng 15:196–205. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jayashree Chakravarty
    • 1
  • Christopher J. Brigham
    • 2
  1. 1.Department of BioengineeringUniversity of Massachusetts DartmouthNorth DartmouthUSA
  2. 2.Department of Interdisciplinary EngineeringWentworth Institute of TechnologyBostonUSA

Personalised recommendations