Applied Microbiology and Biotechnology

, Volume 102, Issue 12, pp 5299–5308 | Cite as

An effective established biosensor of bifunctional probes-labeled AuNPs combined with LAMP for detection of fish pathogen Streptococcus iniae

  • Ya Zhou
  • Jingfan Xiao
  • Xin Ma
  • Qiyao Wang
  • Yuanxing Zhang
Methods and protocols


In purpose of valid Streptococcus iniae detection, we established a colorimetric biosensor using gold nanoparticles (AuNPs) labeled with dual functional probes and along with loop-mediated isothermal amplification (LAMP) assay (LAMP-AuNPs). Based on the characteristics of self-aggregation and bio-conjugation with ligands, AuNPs were chosen for observable color change in tandem with LAMP amplification method to reach high sensitivity and easy operation. Meanwhile, the improvement of dual probes that could fully utilize the LAMP product gave the biosensor a stable result exhibition. LAMP-AuNPs targeting gene ftsB, one of the ATP transporter-related genes, turned out favorable specificity in cross reaction among other fish pathogens. The detect limit of 102 CFU revealed a better sensitivity compared with polymerase chain reaction (PCR) method and AuNPs lateral flow test strip (LFTS). It was also proved to be effective by zebrafish infection model trials with less than 2-h time consumption and nearly no devices which make it a convenient biosensor for point-to-care S. iniae detection.


LAMP Gold nanoparticles Bifunctional probes Streptococcus iniae 


Conflict of interest

The authors declare that they have no competing interests.


This work was supported by grants from the Ministry of Agriculture of China (nos. CARS-47-G17 and nyhyzx-201303047), the National Natural Sciences Foundation of China (no. 31672696), and the Project of Marine Public Welfare Profession (no. 201405003-2).

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Agnew W, Barnes AC (2007) Streptococcus iniae: an aquatic pathogen of global veterinary significance and a challenging candidate for reliable vaccination. Vet Microbiol 122(1–2):1–15CrossRefPubMedGoogle Scholar
  2. Arunrut N, Kampeera J, Sirithammajak S, Sanguanrut P, Proespraiwong P, Suebsing R, Kiatpathomchai W (2016) Sensitive visual detection of AHPND bacteria using loop-mediated isothermal amplification combined with DNA-functionalized gold nanoparticles as probes. PLoS One 11(3):e0151769CrossRefPubMedPubMedCentralGoogle Scholar
  3. Austin B, Zhang XH (2006) Vibrio harveyi: a significant pathogen of marine vertebrates and invertebrates. Lett Appl Microbiol 43(2):119–124CrossRefPubMedGoogle Scholar
  4. Carter C, Akrami K, Hall D, Smith D, Aronoff-Spencer E (2017) Lyophilized visually readable loop-mediated isothermal reverse transcriptase nucleic acid amplification test for detection Ebola Zaire RNA. J Virol Methods 244:32–38CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chen Y, Cheng N, Xu Y, Huang K, Luo Y, Xu W (2016) Point-of-care and visual detection of P. aeruginosa and its toxin genes by multiple LAMP and lateral flow nucleic acid biosensor. Biosens Bioelectron 81:317–323CrossRefPubMedGoogle Scholar
  6. David AG, Dwight SS, Weston LD, Matthew DM, Pinal CP, Chad AM (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed 49(19):3280–3294CrossRefGoogle Scholar
  7. Deng ML, Yu ZH, Geng Y, Wang KY, Chen DF, Huang XL, Ou YP, Chen ZL, Zhong ZJ, Lai WM (2017) Outbreaks of Streptococcosis associated with Streptococcus iniae in Siberian sturgeon (Acipenser baerii) in China. Aquac Res 48(3):909–919Google Scholar
  8. Dharanivasan G, Riyaz SUM, Jesse DMI, Muthuramalingam TR, Rajendran G, Kathiravan K (2016) DNA templated self-assembly of gold nanoparticle clusters in the colorimetric detection of plant viral DNA using a gold nanoparticle conjugated bifunctional oligonucleotide probe. RSC Adv 6(14):11773–11785CrossRefGoogle Scholar
  9. Fu Z, Zhou X, Xing D (2013) Rapid colorimetric gene-sensing of food pathogenic bacteria using biomodification-free gold nanoparticle. Sensors Actuators B Chem 182(1):633–641CrossRefGoogle Scholar
  10. Gao J, Huang X, Liu H, Zan F, Ren J (2012) Colloidal stability of gold nanoparticles modified with thiol compounds: bioconjugation and application in cancer cell imaging. Langmuir the Acs J Surfaces Colloids 28(9):4464–4471CrossRefGoogle Scholar
  11. Han HJ, Jung SJ, Oh MJ, Kim DH (2011) Rapid and sensitive detection of Streptococcus iniae by loop-mediated isothermal amplification (LAMP). J Fish Dis 34(5):395–398CrossRefPubMedGoogle Scholar
  12. Hayashida K, Kajino K, Hachaambwa L, Namangala B, Sugimoto C (2015) Direct blood dry LAMP: a rapid, stable, and easy diagnostic tool for human african trypanosomiasis. PLoS Negl Trop Dis 9(3):e0003578CrossRefPubMedPubMedCentralGoogle Scholar
  13. Itsaro A, Suanyuk N, Tantikitti C (2012) Multiplex PCR for simultaneous detection of Streptococcus agalactiae, Streptococcus iniae and Lactococcus garvieae: a case of S. agalactiae infection in cultured Nile tilapia (Oreochromis niloticus) and red tilapia (Oreochromis niloticus x Oreochromis moss). Songklanakarin J Sci Technol 34(5):495–500Google Scholar
  14. Kaewphinit T, Arunrut N, Kiatpathomchai W, Santiwatanakul S, Jaratsing P, Chansiri K (2013) Detection of Mycobacterium tuberculosis by using loop-mediated isothermal amplification combined with a lateral flow dipstick in clinical samples. Biomed Res Int 2013(2013):926230PubMedPubMedCentralGoogle Scholar
  15. Klesius P, Evans J, Shoemaker C, Yeh H, Goodwin AE, Adams A, Thompson K (2006) Rapid detection and identification of Streptococcus iniae using a monoclonal antibody-based indirect fluorescent antibody technique. Aquaculture 258(1–4):180–186CrossRefGoogle Scholar
  16. Kundapur RR, Nema V (2016) Loop-mediated isothermal amplification: beyond microbial identification. 1137110Google Scholar
  17. Liang SY, Chan YH, Kantai H, Jinglun L, Mingchu K, Kuoyuan H, Chan CW, Tingyi C, Chen JS, Wu FT (2009) Development of loop-mediated isothermal amplification assay for detection of Entamoeba histolytica. J Clin Microbiol 47(6):1892–1895CrossRefPubMedPubMedCentralGoogle Scholar
  18. Liu J, Lu Y (2006) Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat Protoc 1(1):246–252CrossRefPubMedGoogle Scholar
  19. Mao X, Ma Y, Zhang A, Zhang L, Zeng L, Liu G (2009) Disposable nucleic acid biosensors based on gold nanoparticle probes and lateral flow strip. Anal Chem 81(4):1660–1668CrossRefPubMedGoogle Scholar
  20. Mata AI, Blanco MM, Domínguez L, Fernández-Garayzábal JF, Gibello A (2004) Development of a PCR assay for Streptococcus iniae based on the lactate oxidase (lctO) gene with potential diagnostic value. Vet Microbiol 101(2):109–119CrossRefPubMedGoogle Scholar
  21. Omidfar K, Kia S, Larijani B (2011) Development of a colloidal gold-based immunochromatographic test strip for screening of microalbuminuria. Hybridoma 30(2):117–124CrossRefPubMedGoogle Scholar
  22. Rosi NL, Giljohann DA, Thaxton CS, Lyttonjean AK, Han MS, Mirkin CA (2006) Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312(5776):1027–1030CrossRefPubMedGoogle Scholar
  23. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112(5):2739–2779CrossRefPubMedPubMedCentralGoogle Scholar
  24. Sato K, Hosokawa K, Maeda M (2003) Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization. J Am Chem Soc 125(27):8102–8103CrossRefPubMedGoogle Scholar
  25. Shelby R, Shoemaker C, Klesius P (2002) Detection of humoral response to Streptococcus iniae infection of Nile Tilapia, Oreochromis niloticus, by a monoclonal antibody-based ELISA. J Appl Aquac 12(3):23–31Google Scholar
  26. Song J, Li Z, Cheng Y, Liu C (2010) Self-aggregation of oligonucleotide-functionalized gold nanoparticles and its applications for highly sensitive detection of DNA. Chem Commun 46(30):5548–5550CrossRefGoogle Scholar
  27. Storhoff JJ, Lazarides AA, Mucic RC, Mirkin CA, Letsinger RL, Schatz GC (2003) What controls the optical properties of DNA-linked gold nanoparticle assemblies? J Am Chem Soc 125(6):1643–1654Google Scholar
  28. Vandenberghe J, Thompson FL, Gomez-Gil B, Swings J (2003) Phenotypic diversity amongst Vibrio isolates from marine aquaculture systems. Aquaculture 219(1–4):9–20CrossRefGoogle Scholar
  29. Wang Y, Li H, Wang Y, Zhang L, Xu J, Ye C (2017) Loop-mediated isothermal amplification label-based gold nanoparticles lateral flow biosensor for detection of Enterococcus faecalis and Staphylococcus aureus. Front Microbiol 8:192–206PubMedPubMedCentralCrossRefGoogle Scholar
  30. Watthanapanpituck K, Kiatpathomchai W, Chu E, Panvisavas N (2014) Identification of human DNA in forensic evidence by loop-mediated isothermal amplification combined with a colorimetric gold nanoparticle hybridization probe. Int J Legal Med 128(6):923–931CrossRefPubMedGoogle Scholar
  31. Wong YP, Othman S, Lau YL, Son R, Chee HY (2017) Loop mediated isothermal amplification (LAMP): a versatile technique for detection of microorganisms. J Appl Microbiol 300(1):83–89Google Scholar
  32. Zhenyu X, Shaowen K, Chaoqun H, Zhixiong Z, Shifeng W, Yongcan Z (2013) First characterization of bacterial pathogen, Vibrio alginolyticus, for Porites andrewsi white syndrome in the south China sea. PLoS One 8(9):e75425Google Scholar
  33. Zhou ZJ, Li S (2016) Edwardsiella tarda-induced inhibition of apoptosis: a strategy for intracellular survival. Front Cell Infect Microbiol 6:76–80PubMedPubMedCentralGoogle Scholar
  34. Zou L, Wang J, Huang B, Xie M, Li A (2010) A solute-binding protein for iron transport in Streptococcus iniae. BMC Microbiol 10(1):1–10CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiChina
  2. 2.Shanghai Engineering Research Center of Maricultured Animal VaccinesShanghaiChina
  3. 3.Shanghai Collaborative Innovation Center for BiomanufacturingShanghaiChina

Personalised recommendations