Applied Microbiology and Biotechnology

, Volume 102, Issue 12, pp 5209–5220 | Cite as

Aspergillus flavus GPI-anchored protein-encoding ecm33 has a role in growth, development, aflatoxin biosynthesis, and maize infection

  • Perng-Kuang Chang
  • Qi Zhang
  • Leslie Scharfenstein
  • Brian Mack
  • Akira Yoshimi
  • Ken Miyazawa
  • Keietsu Abe
Applied genetics and molecular biotechnology

Abstract

Many glycosylphosphatidylinositol-anchored proteins (GPI-APs) of fungi are membrane enzymes, organization components, and extracellular matrix adhesins. We analyzed eight Aspergillus flavus transcriptome sets for the GPI-AP gene family and identified AFLA_040110, AFLA_063860, and AFLA_113120 to be among the top 5 highly expressed genes of the 36 family genes analyzed. Disruption of the former two genes did not drastically affect A. flavus growth and development. In contrast, disruption of AFLA_113120, an orthologue of Saccharomyces cerevisiae ECM33, caused a significant decrease in vegetative growth and conidiation, promoted sclerotial production, and altered conidial pigmentation. The A. flavus ecm33 null mutant, compared with the wild type and the complemented strain, produced predominantly aflatoxin B2 but accumulated comparable amounts of cyclopiazonic acid. It showed decreased sensitivity to Congo red at low concentrations (25–50 μg/mL) but had increased sensitivity to calcofluor white at high concentrations (250–500 μg/mL). Analyses of cell wall carbohydrates indicated that the α-glucan content was decreased significantly (p < 0.05), but the contents of chitin and ß-glucan were increased in the mutant strain. In a maize colonization study, the mutant was shown to be impaired in its infectivity and produced 3- to 4-fold lower amounts of conidia than the wild type and the complemented strain. A. flavus Ecm33 is required for proper cell wall composition and plays an important role in normal fungal growth and development, aflatoxin biosynthesis, and seed colonization.

Keywords

Aspergillus flavus Glycosylphosphatidylinisotol Cell wall integrity Glucan Chitin Calcofluor white 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain studies with human participants or animals.

Supplementary material

253_2018_9012_MOESM1_ESM.pdf (825 kb)
ESM 1 (PDF 824 kb)

References

  1. Aguilar-Uscanga B, Francois JM (2003) A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation. Lett Appl Microbiol 37:268–274CrossRefPubMedGoogle Scholar
  2. Ao J, Aldabbous M, Notaro MJ, Lojacono M, Free SJ (2016) A proteomic and genetic analysis of the Neurospora crassa conidia cell wall proteins identifies two glycosyl hydrolases involved in cell wall remodeling. Fungal Genet Biol 94:47–53CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bull AT (1970) Chemical composition of wild-type and mutant Aspergillus nidulans cell walls. The nature of polysaccharide and melanin constituents. J Gen Microbiol 63:75–94CrossRefPubMedGoogle Scholar
  4. Cary JW, Harris-Coward P, Scharfenstein L, Mack BM, Chang P-K, Wei Q, Lebar M, Carter-Wientjes C, Majumdar R, Mitra C, Banerjee S, Chanda A (2017) The Aspergillus flavus homeobox gene, hbx1, is required for development and aflatoxin production. Toxins (Basel) 9:315.  https://doi.org/10.3390/toxins9100315 CrossRefGoogle Scholar
  5. Castro NS, Maia ZA, Pereira M, Soares CM (2005) Screening for glycosylphosphatidylinositol-anchored proteins in the Paracoccidioides brasiliensis transcriptome. Genet Mol Res 4:326–345Google Scholar
  6. Chabane S, Sarfati J, Ibrahim-Granet O, Du C, Schmidt C, Mouyna I, Prevost MC, Calderone R, Latge JP (2006) Glycosylphosphatidylinositol-anchored Ecm33p influences conidial cell wall biosynthesis in Aspergillus fumigatus. Appl Environ Microbiol 72:3259–3267CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chalivendra SC, DeRobertis C, Chang P-K, Damann KE (2017) Cyclopiazonic acid is a pathogenicity factor for Aspergillus flavus and a promising target for screening germplasm for ear rot resistance. Mol Plant-Microbe Interact 30:361–373CrossRefPubMedGoogle Scholar
  8. Champer J, Ito JI, Clemons KV, Stevens DA, Kalkum M (2016) Proteomic analysis of pathogenic fungi reveals highly expressed conserved cell wall proteins. J Fungi (Basel, Switzerland) 2:6Google Scholar
  9. Chang P-K, Bennett JW, Cotty PJ (2002) Association of aflatoxin biosynthesis and sclerotial development in Aspergillus parasiticus. Mycopathologia 153:41–48CrossRefPubMedGoogle Scholar
  10. Chang P-K, Hua SS, Sarreal SB, Li RW (2015) Suppression of aflatoxin biosynthesis in Aspergillus flavus by 2-phenylethanol is associated with stimulated growth and decreased degradation of branched-chain amino acids. Toxins (Basel) 7:3887–3902CrossRefGoogle Scholar
  11. Chang P-K, Scharfenstein LL, Mack B, Ehrlich KC (2012) Deletion of the Aspergillus flavus orthologue of A. nidulans fluG reduces conidiation and promotes production of sclerotia but does not abolish aflatoxin biosynthesis. Appl Environ Microbiol 78:7557–7563CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chang P-K, Scharfenstein LL, Mack B, Yu J, Ehrlich KC (2014) Transcriptomic profiles of Aspergillus flavus CA42, a strain that produces small sclerotia, by decanal treatment and after recovery. Fungal Genet Biol 68:39–47CrossRefPubMedGoogle Scholar
  13. Chang P-K, Scharfenstein LL, Wei Q, Bhatnagar D (2010) Development and refinement of a high-efficiency gene-targeting system for Aspergillus flavus. J Microbiol Methods 81:240–246CrossRefPubMedGoogle Scholar
  14. Chen Y, Zhu J, Ying SH, Feng MG (2014) The GPI-anchored protein Ecm33 is vital for conidiation, cell wall integrity, and multi-stress tolerance of two filamentous entomopathogens but not for virulence. Appl Microbiol Biotechnol 98:5517–5529CrossRefPubMedGoogle Scholar
  15. Cotty PJ (1989) Virulence and cultural characteristics of two Aspergillus flavus strains pathogenic on cotton. Phytopathology 79:808–814CrossRefGoogle Scholar
  16. de Groot PW, Brandt BW, Horiuchi H, Ram AF, de Koster CG, Klis FM (2009) Comprehensive genomic analysis of cell wall genes in Aspergillus nidulans. Fungal Genet Biol 46(Suppl 1):S72–S81CrossRefPubMedGoogle Scholar
  17. de Groot PW, Hellingwerf KJ, Klis FM (2003) Genome-wide identification of fungal GPI proteins. Yeast 20:781–796CrossRefPubMedGoogle Scholar
  18. Ding Z, Fu L, Yan Y, Tie W, Xia Z, Wang W, Peng M, Hu W, Zhang J (2017) Genome-wide characterization and expression profiling of HD-zip gene family related to abiotic stress in cassava. PLoS One 12:e0173043CrossRefPubMedPubMedCentralGoogle Scholar
  19. Elorza MV, Rico H, Sentandreu R (1983) Calcofluor white alters the assembly of chitin fibrils in Saccharomyces cerevisiae and Candida albicans cells. J Gen Microbiol 129:1577–1582PubMedGoogle Scholar
  20. Fesel PH, Zuccaro A (2016) β-glucan: crucial component of the fungal cell wall and elusive MAMP in plants. Fungal Genet Biol 90:53–60CrossRefPubMedGoogle Scholar
  21. Gastebois A, Mouyna I, Simenel C, Clavaud C, Coddeville B, Delepierre M, Latge JP, Fontaine T (2010) Characterization of a new β-1,3-glucan branching activity of Aspergillus fumigatus. J Biol Chem 285:2386–2396CrossRefPubMedGoogle Scholar
  22. Geoghegan I, Steinberg G, Gurr S (2017) The role of the fungal cell wall in the infection of plants. Trends Microbiol 25:957–967.  https://doi.org/10.1016/j.tim.2017.05.015 CrossRefPubMedGoogle Scholar
  23. Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nature Rev Genet 17:333–351CrossRefPubMedGoogle Scholar
  24. Henry C, Latgé JP, Beauvais A (2012) α-1,3-Glucans are dispensable in Aspergillus fumigatus. Eukaryot Cell 11:26–29CrossRefPubMedPubMedCentralGoogle Scholar
  25. Horn BW, Dorner JW, Greene RL, Blankenship PD, Cole RJ (1994) Effect of Aspergillus parasiticus soil inoculum on invasion of peanut seeds. Mycopathologia 125:179–191CrossRefPubMedGoogle Scholar
  26. Hu W, Yang H, Yan Y, Wei Y, Tie W, Ding Z, Zuo J, Peng M, Li K (2016) Genome-wide characterization and analysis of bZIP transcription factor gene family related to abiotic stress in cassava. Sci Rep 6:22783CrossRefPubMedPubMedCentralGoogle Scholar
  27. Jiang L, Huang C, Sun Q, Guo H, Cheng T, Peng Z, Dang Y, Liu W, Xu G, Xia Q (2015) The 5′-UTR intron of the midgut-specific BmAPN4 gene affects the level and location of expression in transgenic silkworms. Insect Bioch Mol Biol 63:1–6CrossRefGoogle Scholar
  28. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kinoshita T, Fujita M (2016) Biosynthesis of GPI-anchored proteins: special emphasis on GPI lipid remodeling. J Lipid Res 57:6–24CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kubodera T, Yamashita N, Nishimura A (2000) Pyrithiamine resistance gene (ptrA) of Aspergillus oryzae: cloning, characterization and application as a dominant selectable marker for transformation. Biosci Biotechnol Biochem 64:1416–1421CrossRefPubMedGoogle Scholar
  31. Lan H, Sun R, Fan K, Yang K, Zhang F, Nie XY, Wang X, Zhuang Z, Wang S (2016) The Aspergillus flavus histone acetyltransferase AflGcnE regulates morphogenesis, aflatoxin biosynthesis, and pathogenicity. Front Microbiol 7:1324.  https://doi.org/10.3389/fmicb.2016.01324 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Laxa M, Muller K, Lange N, Doering L, Pruscha JT, Peterhansel C (2016) The 5'UTR intron of Arabidopsis GGT1 aminotransferase enhances promoter activity by recruiting RNA polymerase II. Plant Physiol 172:313–327CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lin JQ, Zhao XX, Zhi QQ, Zhao M, He ZM (2013) Transcriptomic profiling of Aspergillus flavus in response to 5-azacytidine. Fungal Genet Biol 56:78–86CrossRefPubMedGoogle Scholar
  34. Martinez-Nunez L, Riquelme M (2015) Role of BGT-1 and BGT-2, two predicted GPI-anchored glycoside hydrolases/glycosyltransferases, in cell wall remodeling in Neurospora crassa. Fungal Genet Biol 85:58–70CrossRefPubMedGoogle Scholar
  35. Mortazavi A, Williams BA, McCue K, Schaeffer L, Word B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628CrossRefPubMedGoogle Scholar
  36. Mutz M, Roemer T (2017) The GPI anchor pathway: a promising antifungal target? Future Med Chem 8:1387–1391CrossRefGoogle Scholar
  37. Nakajima M, Yamashita T, Takahashi M, Nakano Y, Takeda T (2012) A novel glycosylphosphatidylinositol-anchored glycoside hydrolase from Ustilago esculenta functions in β-1,3-glucan degradation. Appl Environ Microbiol 78:5682–5689CrossRefPubMedPubMedCentralGoogle Scholar
  38. Neiman AM (2011) Sporulation in the budding yeast Saccharomyces cerevisiae. Genetics 189:737–765CrossRefPubMedPubMedCentralGoogle Scholar
  39. Nishimura M (2016) Cell wall reorganization during infection in fungal plant pathogens. Physiol Mol Plant Pathol 95:14–19CrossRefGoogle Scholar
  40. Osherov N (2012) The top three areas of basic research on Aspergillus fumigatus in 2011. Anna New York Acad Sci 1273:74–77CrossRefGoogle Scholar
  41. Paladino S, Lebreton S, Zurzolo C (2015) Trafficking and membrane organization of GPI-anchored proteins in health and diseases. Curr Top Membr 75:269–303CrossRefPubMedGoogle Scholar
  42. Plaine A, Walker L, Da Costa G, Mora-Montes HM, McKinnon A, Gow NA, Gaillardin C, Munro CA, Richard ML (2008) Functional analysis of Candida albicans GPI-anchored proteins: roles in cell wall integrity and caspofungin sensitivity. Fungal Genet Biol 45:1404–1414CrossRefPubMedPubMedCentralGoogle Scholar
  43. Ram AF, Wolters A, Ten Hoopen R, Klis FM (1994) A new approach for isolating cell wall mutants in Saccharomyces cerevisiae by screening for hypersensitivity to calcofluor white. Yeast 10:1019–1030CrossRefPubMedGoogle Scholar
  44. Raper KB, Thom CA (1968) A manual of the penicilla. Williams & Wilkins, Baltimore, USAGoogle Scholar
  45. Romano J, Nimrod G, Ben-Tal N, Shadkchan Y, Baruch K, Sharon H, Osherov N (2006) Disruption of the Aspergillus fumigatus ECM33 homologue results in rapid conidial germination, antifungal resistance and hypervirulence. Microbiol 152:1919–1928CrossRefGoogle Scholar
  46. Roncero C, Duran A (1985) Effect of calcofluor white and Congo red on fungal cell wall morphogenesis: in vivo activation of chitin polymerization. J Bacteriol 163:1180–1185PubMedPubMedCentralGoogle Scholar
  47. Samadder P, Sivamani E, Lu J, Li X, Qu R (2008) Transcriptional and post-transcriptional enhancement of gene expression by the 5' UTR intron of rice rubi3 gene in transgenic rice cells. Mol Genet Genomics 279:429–439CrossRefPubMedGoogle Scholar
  48. Subramanyam C, Venkateswerlu G, Rao SL (1983) Cell wall composition of Neurospora crassa under conditions of copper toxicity. Appl Environ Microbiol 46:585–590PubMedPubMedCentralGoogle Scholar
  49. Szewczyk E, Nayak T, Oakley CE, Edgerton H, Xiong Y, Taheri-Talesh N, Osmani SA, Oakley BR (2006) Fusion PCR and gene targeting in Aspergillus nidulans. Nat Protoc 1:3111–3120CrossRefPubMedGoogle Scholar
  50. Umekawa M, Ujihara M, Nakai D, Takematsu H, Wakayama M (2017) Ecm33 is a novel factor involved in efficient glucose uptake for nutrition-responsive TORC1 signaling in yeast. FEBS Lett 59:3721–3729CrossRefGoogle Scholar
  51. Vadlapudi V, Borah N, Yellusani KR, Gade S, Reddy P, Rajamanikyam M, Vempati LNS, Gubbala SP, Chopra P, Upadhyayula SM, Amanchy R (2017) Aspergillus secondary metabolite database, a resource to understand the secondary metabolome of Aspergillus genus. Sci Rep 7:7325.  https://doi.org/10.1038/s41598-017-07436-w CrossRefPubMedPubMedCentralGoogle Scholar
  52. Wei F, Zhang J, Zhou S, He R, Schaeffer M, Collura K, Kudrna D, Faga BP, Wissotski M, Golser W, Rock SM, Graves TA, Fulton RS, Coe E, Schnable PS, Schwartz DC, Ware D, Clifton SW, Wilson RK, Wing RA (2009) The physical and genetic framework of the maize B73 genome. PLoS Genet 5:e1000715.  https://doi.org/10.1371/journal.pgen.1000715 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Wicklow DT, Wilson DM, Nelsen TC (1993) Survival of Aspergillus flavus sclerotia and conidia buried in soil in Illinois or Georgia. Phytopathology 83:1141–1147CrossRefGoogle Scholar
  54. Willetts HJ, Bullock S (1992) Developmental biology of sclerotia. Mycol Res 96(10):801–816CrossRefGoogle Scholar
  55. Wu X, Zhou B, Yin C, Guo Y, Lin Y, Pan L, Wang B (2014) Characterization of natural antisense transcript, sclerotia development and secondary metabolism by strand-specific RNA sequencing of Aspergillus flavus. PLoS One 9:e97814CrossRefPubMedPubMedCentralGoogle Scholar
  56. Yamazaki H, Tanaka A, Kaneko J, Ohta A, Horiuchi H (2008) Aspergillus nidulans ChiA is a glycosylphosphatidylinositol (GPI)-anchored chitinase specifically localized at polarized growth sites. Fungal Genet Biol 45:963–972CrossRefPubMedGoogle Scholar
  57. Yang K, Liang L, Ran F, Liu Y, Li Z, Lan H, Gao P, Zhuang Z, Zhang F, Nie X, Kalayu Yirga S, Wang S (2016) The DmtA methyltransferase contributes to Aspergillus flavus conidiation, sclerotial production, aflatoxin biosynthesis and virulence. Sci Rep 6:23259CrossRefPubMedPubMedCentralGoogle Scholar
  58. Yoshimi A, Miyazawa K, Abe K (2016) Cell wall structure and biogenesis in Aspergillus species. Biosci Biotechnol Biochem 80:1700–1711CrossRefPubMedGoogle Scholar
  59. Yoshimi A, Sano M, Inaba A, Kokubun Y, Fujioka T, Mizutani O, Hagiwara D, Fujikawa T, Nishimura M, Yano S, Kasahara S, Shimizu K, Yamaguchi M, Kawakami K, Abe K (2013) Functional analysis of the α-1,3-glucan synthase genes agsA and agsB in Aspergillus nidulans: agsB is the major α-1,3-glucan synthase in this fungus. PLoS One 8:e54893CrossRefPubMedPubMedCentralGoogle Scholar
  60. Yu J, Chang P-K, Ehrlich KC, Cary JW, Bhatnagar D, Cleveland TE, Payne GA, Linz JE, Woloshuk CP, Bennett JW (2004) Clustered pathway genes in aflatoxin biosynthesis. Appl Environ Microbiol 70:1253–1262CrossRefPubMedPubMedCentralGoogle Scholar
  61. Yu J, Fedorova ND, Montalbano BG, Bhatnagar D, Cleveland TE, Bennett JW, Nierman WC (2011) Tight control of mycotoxin biosynthesis gene expression in Aspergillus flavus by temperature as revealed by RNA-Seq. FEMS Microbiological Lett 322:145–149CrossRefGoogle Scholar
  62. Zhang F, Guo Z, Zhong H, Wang S, Yang W, Liu Y, Wang S (2014) RNA-Seq-based transcriptome analysis of aflatoxigenic Aspergillus flavus in response to water activity. Toxins (Basel) 6:3187–3207CrossRefGoogle Scholar
  63. Zhuang Z, Lohmar JM, Satterlee T, Cary JW, Calvo AM (2016) The master transcription factor mtfA governs aflatoxin production, morphological development and pathogenicity in the fungus Aspergillus flavus. Toxins (Basel) 8:29.  https://doi.org/10.3390/toxins8010029 CrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  • Perng-Kuang Chang
    • 1
  • Qi Zhang
    • 2
  • Leslie Scharfenstein
    • 1
  • Brian Mack
    • 1
  • Akira Yoshimi
    • 3
  • Ken Miyazawa
    • 4
  • Keietsu Abe
    • 3
    • 4
  1. 1.Southern Regional Research Center, Agricultural Research ServiceUS Department of AgricultureNew OrleansUSA
  2. 2.Oil Crops Research InstituteChinese Academy of Agricultural SciencesWuhanChina
  3. 3.ABE-Project, New Industry Creation Hatchery CenterTohoku UniversitySendaiJapan
  4. 4.Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural SciencesTohoku UniversitySendaiJapan

Personalised recommendations