Skip to main content

Advertisement

Log in

A novel antifungal property for the Bacillus licheniformis ComX pheromone and its possible role in inter-kingdom cross-talk

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Quorum sensing molecules (QSMs) regulate, through a chemical communication process, multiple complex systems in bacterial and some fungal populations on the basis of cell density. The bacterial QSMs involved in inter-kingdom cross-talk may exhibit antagonistic activity against fungi. This provides an important opportunity for biocontrol of fungal invasion in plants. It has been shown that cultures of Bacillus spp. inhibit fungal growth. Here, we explore the inhibitory potential of the industrial workhorse Bacillus licheniformis NCIMB-8874 and its QSM (ComX pheromone) on the growth of Aspergillus flavus, a cereal, legume, and nut crop pathogen. Our studies show that ComX filtered extracts from cultures of B. licheniformis can cause a significant reduction in the growth of A. flavus NRRL 3357 and ESP 15 at a concentration as low as 13 μg ml−1. This work evidences, for the first time, the inter-kingdom utility of the bacterial quorum sensing ComX pheromone indicating potential antifungal food security against A. flavus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel-Hadi A, Schmidt-Heydt M, Parra R, Geisen R, Magan N (2011) A systems approach to model the relationship between aflatoxin gene cluster expression, environmental factors, growth and toxin production by Aspergillus flavus. J R Soc Interface 9:757–767

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Amaike S, Keller NP (2011) Aspergillus flavus. Annu Rev Phytopathol 49:107–133

    Article  PubMed  CAS  Google Scholar 

  • Atkinson S, Williams P (2009) Quorum sensing and social networking in the microbial world. J R Soc Interface 6:959–978

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bauer WD, Mathesius U (2004) Plant responses to bacterial quorum sensing signals. Curr Opin Plant Biol 7:429–433

    Article  PubMed  CAS  Google Scholar 

  • Brown SH, Scott JB, Bhaheetharan J, Sharpee WC, Milde L, Wilson RK, Keller NP (2009) Oxygenase coordination is required for morphological transition and the host-fungus interaction of Aspergillus flavus. Mol Plant Microbe Interact 22:882–894

    Article  PubMed  CAS  Google Scholar 

  • Brown SH, Zarnowski R, Sharpee WC, Keller NP (2008) Morphological transitions governed by density dependence and lipoxygenase activity in Aspergillus flavus. Appl Environ Microbiol 74:5674–5685

    Article  CAS  Google Scholar 

  • Campbell KW, White DG (1995) Evaluation of corn genotypes for resistance to Aspergillus ear rot, kernel infection, and aflatoxin production. Plant Dis 79:1039–1045

    Article  CAS  Google Scholar 

  • Chen ZY, Brown RL, Damann KE, Cleveland TE (2010) PR10 expression in maize and its effect on host resistance against Aspergillus flavus infection and aflatoxin production. Mol Plant Pathol 11:69–81

    Article  PubMed  CAS  Google Scholar 

  • CLSI (2008) Reference method for broth dilution antifungal susceptibility testing for filamentous fungi; approved standard-second edition. CLSI document M38-A2. The Clinical and Laboratory Standard Institute, Wayne, Pennsylvania

    Google Scholar 

  • Cugini C, Calfee MW, Farrow JM, Morales DK, Pesci EC, Hogan DA (2007) Farnesol, a common sesquiterpene, inhibits PQS production in Pseudomonas aeruginosa. Mol Microbiol 65:896–906

    Article  PubMed  CAS  Google Scholar 

  • du Toit EA, Rautenbach M (2000) A sensitive standardised micro-gel well diffusion assay for the determination of antimicrobial activity. J Microbiol Methods 42:159–165

    Article  PubMed  Google Scholar 

  • Dudler R, Eberl L (2006) Interactions between bacteria and eukaryotes via small molecules. Curr Opin Biotechnol 17:268–273

    Article  PubMed  CAS  Google Scholar 

  • Dufresne PJ, Moonjely SS, Ozaki K, Tremblay C, Laverdière M, Dufresne SF (2017) High frequency of pathogenic Aspergillus species among nonsporulating moulds from respiratory tract samples. Med Mycol 55:233–236

    Article  PubMed  Google Scholar 

  • Esmaeilishirazifard E (2016) Investigation of a quorum sensing peptide in Bacillus licheniformis and its novel antifungal property. Dissertation, University of Westminster, London, UK

  • Esmaeilishirazifard E, De Vizio D, Moschos SA, Keshavarz T (2017) Genomic and molecular characterization of a novel quorum sensing molecule in Bacillus licheniformis. Appl Microbiol Biot Expr 7:78

    Google Scholar 

  • Evans KA, Chai D, Graybill TL, Burton G, Sarisky RT, Lin-Goerke J, Johnston VK, Rivero RA (2006) An efficient, asymmetric solid-phase synthesis of benzothiadiazine-substituted tetramic acids: potent inhibitors of the hepatitis C virus RNA-dependent RNA polymerase. Bioorg Med Chem Lett 16:2205–2208

    Article  PubMed  CAS  Google Scholar 

  • Fox JE (2004) Chemical communication threatened by endocrine- disrupting chemicals. Environ Health Perspect 112:648–653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gabrielli E, Fothergill AW, Brescini L, Sutton DA, Marchionni E, Orsetti E, Staffolani S, Castelli P, Gesuita R, Barchiesi F (2014) Osteomyelitis caused by Aspergillus species: a review of 310 reported cases. Clin Microbiol and Infec 20:559–565

    Article  CAS  Google Scholar 

  • Gnonlonfin GJB, Hell K, Adjovi Y, Fandohan P, Koudande DO, Mensah GA, Sanni A, Brimer L (2013) A review on aflatoxin contamination and its implications in the developing world: a Sub-Saharan African perspective. Crit Rev Food Sci 53:349–365

    Article  CAS  Google Scholar 

  • Gokmen V, Acar J, Sarioðlu K (2005) Liquid chromatographic method for the determination of patulin in apple juice using solid-phase extraction. Anal Chim Acta 543:64–69

    Article  CAS  Google Scholar 

  • Hogan DA (2006) Talking to themselves: autoregulation and quorum sensing in fungi. Eukaryot Cell 5:613–619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joint I, Tait K, Callow ME, Callow JA, Milton D, Williams P, Camara M (2002) Cell-to-cell communication across the prokaryote-eukaryote boundary. Science 298:1207

    Article  PubMed  Google Scholar 

  • Kaufmann GF, Sartorio R, Lee SH, Rogers CJ, Meijler MM, Moss JA, Clapham B, Brogan AP, Dickerson TJ, Janda KD (2005) Revisiting quorum sensing: discovery of additional chemical and biological functions for 3-oxo-Nacylhomoserine lactones. P Natl Acad Sci USA 102:309–314

    Article  CAS  Google Scholar 

  • Lee JH, Kim C, Kim SH, Sethi G, Ahn KS (2015) Farnesol inhibits tumour growth and enhances the anticancer effects of bortezomib in multiple myeloma xenograft mouse model through the modulation of STAT3 signalling pathway. Cancer Lett 360:280–293

    Article  PubMed  CAS  Google Scholar 

  • Lee RJ, Workman AD, Carey RM, Chen B, Rosen PL, Doghramji L, Adappa ND, Palmer JN, Kennedy DW, Cohen NA (2016) Fungal aflatoxins reduce respiratory mucosal ciliary function. Sci Rep-uk 6:33221

    Article  CAS  Google Scholar 

  • Leema G, Chou DS, Jesudasan CAN, Geraldine P, Thomas PA (2011) Expression of genes of the aflatoxin biosynthetic pathway in Aspergillus flavus isolates from keratitis. Mol Vis 17:2889–2897

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lewis RE (2011) Current concepts in antifungal pharmacology. Mayo Clin Proc 86:805–817

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Llanos A, François JM, Parrou JL (2015) Tracking the best reference genes for RT-qPCR data normalisation in filamentous fungi. BMC Genomics 16:71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Losada L, Ajayi O, Frisvad JC, Yu J, Nierman WC (2009) Effect of competition on the production and activity of secondary metabolites in Aspergillus species. Med Mycol 47:S88–S96

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Su C, Unoje O, Liu H (2014) Quorum sensing controls hyphal initiation in Candida albicans through Ubr1-mediated protein degradation. P Natl Acad Sci 111:1975–1980

    Article  CAS  Google Scholar 

  • Mathesius U, Mulders S, Gao MS, Teplitski M, Caetano-Anolles G, Rolfe BG, Bauer WD (2003) Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc Natl Acad Sci U S A 100:1444–1449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meis JF, Chowdhary A, Rhodes JL, Fisher MC, Verweij PE (2016) Clinical implications of globally emerging azole resistance in Aspergillus fumigatus. Philos Trans R Soc B 371:20150460

    Article  CAS  Google Scholar 

  • Miller JD (1995) Fungi and mycotoxins in grain: implications for stored product research. J Stored Prod Res 31:1–16

    Article  CAS  Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in Bacteria. Annu Rev Microbiol 55:165–199

    Article  PubMed  CAS  Google Scholar 

  • Mowat E, Lang S, Williams C, McCulloch E, Jones B, Ramage G (2008) Phase-dependent antifungal activity against Aspergillus fumigatus developing multicellular filamentous biofilms. J Antimicrob Chemother 62:1281–1284

    Article  PubMed  CAS  Google Scholar 

  • Mullard A (2009) Microbiology: tinker, bacteria, eukaryote, spy. Nature 459:159–161

    Article  PubMed  CAS  Google Scholar 

  • Nealson KH, Platt T, Hastings W (1970) Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol 104:313–322

    PubMed  PubMed Central  CAS  Google Scholar 

  • Nesci AV, Bluma RV, Etcheverry MG (2005) In vitro selection of maizerhizobacteria to study potential biological control of Aspergillus section Flavi and aflatoxin production. Eur J Plant Pathol 113:159–171

    Article  CAS  Google Scholar 

  • Palumbo JD, Baker JL, Mahoney NE (2006) Isolation of bacterial antagonists of Aspergillus flavus from almonds. Microb Ecol 52:45–52

    Article  PubMed  CAS  Google Scholar 

  • Park SY, Yoon JA, Kim SH (2017) Voriconazole-refractory invasive aspergillosis. Korean J Intern Med 32:805–812

    Article  PubMed  PubMed Central  Google Scholar 

  • Payne GA (1998) Process of contamination by aflatoxin producing fungi and their impacts on crops. In: Sinha KK, Bhatnagar D (eds) Mycotoxins in agriculture and food safety. Marcel Dekker Inc, New York, pp 279–306

    Google Scholar 

  • Porpon R, Chen YC, Chakrabarti A, Li RY, Shivaprakash RM, Yu J, Kung HC, Watcharananan S, Tan A.L., Saffari SE and Tan BH (2017) Epidemiology and clinical characteristics of invasive mould infections: a multicenter, retrospective analysis in five Asian countries. Med Mycol

  • Rahimi S, Sohrabi N, Ebrahimi MA, Tebyanian M, Zadeh MT, Rahimi S (2016) Studying the effect of aflatoxin genes Aflp and Aflq on Aspergillus flavus and Aspergillus parasiticus in the cattle feed used in industrial animal husbandries. Acta Med Austriaca 32:2091

    Google Scholar 

  • Raiesi O, Siavash M, Mohammadi F, Chabavizadeh J, Mahaki B. Maherolnaghsh M and Dehghan P (2017) Frequency of cutaneous fungal infections and azole resistance of the isolates in patients with diabetes mellitus. Adv Biomed Res 6

  • Ramage G, Rajendran R, Gutierrez-Correa M, Jones B, Williams C (2011) Aspergillus biofilms: clinical and industrial significance. FEMS Microbiol Lett 324:89–97

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen TB, Skindersoe ME, Bjarnsholt T, Phipps RK, Christensen KB, Jensen PO, Andersen JB, Koch B, Larsen TO, Hentzer M, Eberl L (2005) Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology 151:1325–1340

    Article  PubMed  CAS  Google Scholar 

  • Reddy KRN, Raghavender CR, Reddy BN, Salleh B (2010) Biological control of Aspergillus flavus growth and subsequent aflatoxin B1 production in sorghum grains. Afr J Biotechnol 9:4247–4250

    CAS  Google Scholar 

  • Rumbaugh KP (2007) Convergence of hormones and autoinducers at the host/pathogen interface. Annu Bioanal Chem 387:425–435

    Article  CAS  Google Scholar 

  • Sayem SM, Manzo E, Ciavatta L, Tramice A, Cordone A, Zanfardino A, De Felice M, Varcamonti M (2011) Anti-biofilm activity of an exopolysaccharide from a sponge-associated strain of Bacillus licheniformis. Microb Cell Factories 10(1):74

    Article  CAS  Google Scholar 

  • Schimmel TG, Coffman AD, Parsons SJ (1998) Effect of butyrolactone I on the producing fungus, Aspergillus terreus. Appl Environ Microbiol 64:3707–3712

    PubMed  PubMed Central  CAS  Google Scholar 

  • Schuhegger R, Ihring A, Gantner S, Bahnweg G, Knappe C, Vogg G, Hutzler P, Schmid M, Van Breusegem F, Eberl LEO, Hartmann A (2006) Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ 29:909–918

    Article  PubMed  CAS  Google Scholar 

  • Seidler MJ, Salvenmoser S, Muller FM (2008) Aspergillus fumigatus forms biofilms with reduced antifungal drug susceptibility on bronchial epithelial cells. Antimicrob Agents Chemother 52:4130–4136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shiner EK, Rumbaugh KP, Williams SC (2005) Inter-kingdom signalling deciphering the language of acyl homoserine lactones. FEMS Microbiol Rev 29:935–947

    Article  PubMed  CAS  Google Scholar 

  • Sorrentino F, Roy I, Keshavarz T (2010) Impact of linoleic acid supplementation on lovastatin production in Aspergillus terreus cultures. Appl Microbiol Biotechnol 88:65–73

    Article  PubMed  CAS  Google Scholar 

  • Sperandio V, Torres AG, Jarvis B, Nataro JP, Kaper JB (2003) Bacteria-host communication: the language of hormones. P Natl Acad Sci USA 100:8951–8956

    Article  CAS  Google Scholar 

  • Troskie AM, Vlok NM, Rautenbach M (2012) A novel 96-well gel-based assay for determining antifungal activity against filamentous fungi. J Microbiol Methods 91:551–558

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Whitelaw CA, Nierman WC, Bhatnagar D, Cleveland TE (2004) Aspergillus flavus expressed sequence tags for identification of genes with putative roles in aflatoxin contamination of crops. FEMS Microbiol Lett 237:333–340

    PubMed  Google Scholar 

  • Yu F, Zaleta-Rivera K, Zhu X, Huffman J, Millet JC, Harris SD, Yuen G, Li XC, Du L (2007) Structure and biosynthesis of heat-stable antifungal factor (HSAF), a broad-spectrum antimycotic with a novel mode of action. Antimicrob Agents Chemother 51:64–72

    Article  PubMed  CAS  Google Scholar 

  • Viegas C, Faria T, Carolino E, Sabino R, Gomes A, Viegas S (2016) Occupational exposure to fungi and particles in animal feed industry. Med Pr 67:143–154

    Article  PubMed  Google Scholar 

  • Wang CY, Wang B, Wiryowidagdo S, Wray V, van Soest R, Steube K, Guan H, Proksch P, Ebel R (2003) Melophlins C-O, thirteen novel tetramic acids from themarine sponge Melophlus sarassinorum. J Nat Prod 66:51–56

    Article  PubMed  CAS  Google Scholar 

  • Wiesmüller GA, Heinzow B, Aurbach U, Bergmann KC, Bufe A, Buzina W, Cornely OA, Engelhart S, Fischer G, Gabrio T and Heinz W (2017) Abridged version of the AWMF guideline for the medical clinical diagnostics of indoor mould exposure. Allergo J Int 1–26

  • Williams P (2007) Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology 153:3923–3938

    Article  PubMed  CAS  Google Scholar 

  • Williams HE, Steele JCP, Clements MO, Keshavarz T (2012) γ-Heptalactone is an endogenously produced quorum-sensing molecule regulating growth and secondary metabolite production by Aspergillus nidulans. Appl Microbiol Biotechnol 96:773–781

    Article  PubMed  CAS  Google Scholar 

  • Zhao G, Zaidi TS, Bozkurt-Guzel C, Zaidi TH, Lederer JA, Priebe GP, Pier GB (2016) Efficacy of antibody to PNAG against keratitis caused by fungal pathogens Antibody to PNAG Protects Against Fungal Keratitis. Invest Ophth Vis Sci 57:6797–6804

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the laboratory staff member of the Faculty of Science and Technology, University of Westminster, for all the supports. We also thank Dr. Pamela Greenwell for valuable discussions.

Funding

This work was part of a PhD project and supported by University of Westminster and the expenses were covered by the department of life sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elham Esmaeilishirazifard.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 474 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmaeilishirazifard, E., Dariush, A., Moschos, S.A. et al. A novel antifungal property for the Bacillus licheniformis ComX pheromone and its possible role in inter-kingdom cross-talk. Appl Microbiol Biotechnol 102, 5197–5208 (2018). https://doi.org/10.1007/s00253-018-9004-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-9004-7

Keywords

Navigation