Applied Microbiology and Biotechnology

, Volume 102, Issue 12, pp 5121–5131 | Cite as

Biocatalytic versatility of engineered and wild-type tyrosinase from R. solanacearum for the synthesis of 4-halocatechols

  • Reeta Davis
  • Susan Molloy
  • Blathnaid Quigley
  • Jasmina Nikodinovic-Runic
  • Francisco Solano
  • Kevin E. O’Connor
Biotechnological products and process engineering


We evaluated the kinetic characteristics of wild type (WT) and three engineered variants (RVC10, RV145, and C10_N322S) of tyrosinase from Ralstonia solanacearum and their potential as biocatalysts to produce halogenated catechols. RV145 exhibited a 3.6- to 14.5-fold improvement in catalytic efficiency (kcat/Km) with both reductions in Km and increases in kcat compared to WT, making it the best R. solanacearum tyrosinase variant towards halogenated phenols. RVC10 also exhibited increases in catalytic efficiency with all the tested phenols. A single-mutation variant (C10_N322S) exhibited the greatest improvement in kcat but lowest improvement in catalytic efficiency due to an increase in Km compared to WT. Consistent with kinetic characteristics, biotransformation experiments showed that RV145 was a superior biocatalyst in comparison to WT. To prevent through conversion of the catechol to quinone, ascorbic acid (AA) was added to the biotransformation medium in 1:2 (substrate:AA) ratio resulting in a catechol yield of > 90%. Flask experiments with 10 mM 4-iodophenol and 10 μg/mL of the RV145 enzyme yielded 9.5 mM 4-iodocatechol in the presence of 20 mM AA in 30 min. Similarly, 10 mM 4-fluorophenol was completely consumed by 20 μg/mL of RV145 enzyme and yielded 9.2 mM 4-fluorocatechol in the presence of 20 mM AA in 80 min. The biotransformation of 20 mM 4-fluorphenol was incomplete (93%) and the yield of 4-flurocatechol was 87.5%. The 4-halophenol conversion rates and product yields obtained in this study are the highest reported using tyrosinase or any other enzyme.


Tyrosinase Enzyme engineering Enzyme catalysis 4-Halophenol 4-Halocatechol 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Ates S, Cortenlioglu E, Bayraktar E, Mehmetoglu U (2007) Production of L-DOPA using Cu-alginate gel immobilized tyrosinase in a batch and packed bed reactor. Enzym Microb Technol 40:683–687CrossRefGoogle Scholar
  2. Baruah P, Swain T (1953) The effect of L-ascorbic acid on the in vitro activity of polyphenoloxidase from potato. Biochem J 55:392–399CrossRefPubMedPubMedCentralGoogle Scholar
  3. Battaini G, Monzani E, Casella L, Lonardi E, Tepper AW, Canters GW, Bubacco L (2002) Tyrosinase-catalyzed oxidation of fluorophenols. J Biol Chem 277:44606–44612CrossRefPubMedGoogle Scholar
  4. Ben-Yosef VS, Sendovski M, Fishman A (2010) Directed evolution of tyrosinase for enhanced monophenolase/diphenolase activity ratio. Enzym Microb Technol 47:372–376CrossRefGoogle Scholar
  5. Brooks SJ, Doyle EM, Hewage C, Malthouse JPG, Duetz W, O’Connor KE (2004) Biotransformation of halophenols using crude cell extracts of Pseudomonas putida F6. Appl Microbiol Biotechnol 64:486–492CrossRefPubMedGoogle Scholar
  6. Brooks SJ, Doyle EM, O’Connor KE (2006) Tyrosol to hydroxytyrosol biotransformation by immobilized cell extracts of Pseudomonas putida F6. Enzym Microb Technol 39:191–196CrossRefGoogle Scholar
  7. Burton SG (2003) Oxidizing enzymes as biocatalysts. Trends Biotechnol 21:543–549CrossRefPubMedGoogle Scholar
  8. Coulombel L, Nolan LC, Nikodinovic J, Doyle EM, O’Connor KE (2011) Biotransformation of 4-halophenols to 4-halocatechols using Escherichia coli expressing 4-hydroxyphenylacetate 3-hydroxylase. Appl Microbiol Biotechnol 89:1867–1875CrossRefPubMedGoogle Scholar
  9. Espin JC, Varon R, Fenoll LG, Gilabert MA, Garcia-Ruiz PA, Tudela J, Garcia-Canovas F (2000) Kinetic characterization of the substrate specificity and mechanism of mushroom tyrosinase. Eur J Biochem 267:1270–1279CrossRefPubMedGoogle Scholar
  10. Espín JC, Soler-Rivas C, Cantos E, Tomas-Barbera FA, Wichers HJ (2001) Synthesis of the antioxidant hydroxytyrosol using tyrosinase as biocatalyst. J Agric Food Chem 49:1187–1193CrossRefPubMedGoogle Scholar
  11. Fairhead M, Thony-Meyer L (2012) Bacterial tyrosinases: old enzymes with new relevance to biotechnology. New Biotechnol 29:183–191CrossRefGoogle Scholar
  12. Fiege H, Voges HW, Hamamoto T, Umemura S, Iwata T, Miki H, Fujita Y, Buysch HJ, Garbe D, Paulus W (2002) Phenol derivatives in Ullmann’s encyclopedia of industrial chemistry Wiley-VCH, WeinheimGoogle Scholar
  13. García-Borron JC, Solano F (2002) Molecular anatomy of tyrosinase and its related proteins: beyond the histidine bound metal catalytic center. Pigment Cell Res 15:162–173CrossRefPubMedGoogle Scholar
  14. Golan-Goldhirsh A, Whitaker JR (1984) Effect of ascorbic acid, sodium bisulfite, and thiol compounds on mushroom polyphenol oxidase. J Agric Food Chem 32:1003–1009CrossRefGoogle Scholar
  15. Goldfeder M, Kanteev M, Adir N, Fishman A (2013) Influencing the monophenolase/diphenolase activity ratio in tyrosinase. Biochim Biophys Acta 1834:629–633CrossRefPubMedGoogle Scholar
  16. Guazzaroni M, Crestini C, Saladino R (2012) Layer-by-Layer coated tyrosinase: an efficient and selective synthesis of catechols. Bioorg Med Chem 20:157–166CrossRefPubMedGoogle Scholar
  17. Hansen TV, Skattebol L (2005) One-pot synthesis of substituted catechols from the corresponding phenols. Tetrahedron Lett 46:3357–3358CrossRefGoogle Scholar
  18. Heinrich MR, Steglich W, Banwell MG, Kashman Y (2003) Total synthesis of the marine alkaloid halitulin. Tetrahedron 59:9239–9247CrossRefGoogle Scholar
  19. Hernandez-Romero D, Sanchez-Amat A, Solano F (2005) Polyphenol oxidase activity expression in Ralstonia solanacearum. Appl Environ Microbiol 71:6808–6815CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hernandez-Romero D, Sanchez-Amat A, Solano F (2006) A tyrosinase with an abnormally high tyrosine hydroxylase/dopa oxidase ratio—role of the seventh histidine and accessibility to the active site. FEBS J 273:257–270CrossRefPubMedGoogle Scholar
  21. Hille UE, Hu Q, Vock C, Negri M, Bartels M, Mueller-Vieira U, Lauterbach T, Hartmann RW (2009) Novel CYP17 inhibitors: synthesis, biological evaluation, structure-activity relationships and modeling of methoxy- and hydroxy-substituted methylene-imidazolyl biphenyls. Eur J Med Chem 44:2765–2775CrossRefPubMedGoogle Scholar
  22. Ho PY, Chiou MS, Chao AC (2003) Production of L-DOPA by tyrosinase immobilized on modified polystyrene. Appl Biochem Biotechnol 111:139–152CrossRefPubMedGoogle Scholar
  23. Kampmann M, Riedel N, Mo YL, Beckers L, Wichmann R (2016) Tyrosinase catalyzed production of 3,4-dihydroxyphenylacetic acid using immobilized mushroom (Agaricus bisporus) cells and in situ adsorption. J Mol Catal B Enzym 123:113–121CrossRefGoogle Scholar
  24. Kirk KL, Creveling CR (1984) The chemistry and biology of ring-fluorinated biogenic amines. Med Res Rev 4:189–220CrossRefPubMedGoogle Scholar
  25. Krueger RC (1950) The effect of ascorbic acid on the enzymatic oxidation of monohydric and o-dihydric phenols. J Am Chem Soc 72:5582–5587CrossRefGoogle Scholar
  26. Liu N, Zhang T, Wang YJ, Huang YP, Ou JH, Shen P (2004) A heat inducible tyrosinase with distinct properties from Bacillus thuringiensis. Lett Appl Microbiol 3:407–412CrossRefGoogle Scholar
  27. Marino SM, Fogal S, Bisaglia M, Moro S, Scartabelli G, De Gioia L, Spada A, Monzani E, Casella L, Mammi S, Bubacco L (2011) Investigation of Streptomyces antibioticus tyrosinase reactivity toward chlorophenols. Arch Biochem Biophys 505:67–74CrossRefPubMedGoogle Scholar
  28. Marín-Zamora ME, Rojas-Melgarejoa F, García-Cánovas F, García-Ruiza PA (2009) Production of o-diphenols by immobilized mushroom tyrosinase. J Biotechnol 139:163–168CrossRefPubMedGoogle Scholar
  29. Martin LB, Nikodinovic J, Mc Mahon AM, Vijgenboom E, O’Connor KE (2008) Assessing the catalytic activity of three different sources of tyrosinase: a study of the oxidation of mono- and difluorinated monophenols. Enzym Microb Technol 43:297–301CrossRefGoogle Scholar
  30. Michalik J, Emilianowicz-Czerska W, Switalski L, Raczyńska-Bojanowska K (1975) Monophenol monooxygenase and lincomysin biosynthesis in Streptomyces lincolnensis. Antimicrob Agents Chemother 8:526–531CrossRefPubMedPubMedCentralGoogle Scholar
  31. Molloy S, Nikodinovic-Runic J, Martin LB, Hartmann H, Solano F, Decker H, O’Connor KE (2013) Engineering of a bacterial tyrosinase for improved catalytic efficiency towards D-tyrosine using random and site directed mutagenesis approaches. Biotechnol Bioeng 110:1849–1857CrossRefPubMedGoogle Scholar
  32. Munoz-Munoz JL, Garcia-Molina F, Garcia-Ruiz P, Molina-Alarcon M, Tudela J, Garcia-Canovas F, Rodriguez-Lopez JN (2008) Phenolic substrates and suicide inactivation of tyrosinase: kinetics and mechanism. Biochem J 416:431–440CrossRefPubMedGoogle Scholar
  33. Paulini R, Lerner C, Diederich F, Jakob-Roetne R, Zürcher G, Borroni E (2006) Synthesis and biological evaluation of potent bisubstrate inhibitors of the enzyme catechol O-methyltransferase (COMT) lacking a nitro group. Helv Chim Acta 89:1856–1887CrossRefGoogle Scholar
  34. Pialis P, Saville BA (1998) Production of L-DOPA from tyrosinase immobilized on nylon 66: enzyme stability and scale up. Enzym Microb Technol 22:261–268CrossRefGoogle Scholar
  35. Qu Y, Shi S, Ma Q, Kong C, Zhou H, Zhang X, Zhou J (2013) Multistep conversion of para-substituted phenols by phenol hydroxylase and 2,3-dihydroxybiphenyl 1,2-dioxygenase. Appl Biochem Biotechnol 169:2064–2075CrossRefPubMedGoogle Scholar
  36. Ros JR, Rodriguez-Lopez JN, Garcia-canovas F (1993) Effect of L-ascorbic acid on the monophenolase activity of tyrosinase. Biochem J 295:309–312CrossRefPubMedPubMedCentralGoogle Scholar
  37. Sanchez-Ferrer A, Rodriguez-Lopez JN, Garcia-Canovas F, Garcia-Carmona F (1995) Tyrosinase: a comprehensive review of its mechanism. Biochim Biophys Acta 1247:1–11CrossRefPubMedGoogle Scholar
  38. Seetharam G, Saville BA (2002) L-DOPA production from tyrosinase immobilized on zeolite. Enzym Microb Technol 31:747–753CrossRefGoogle Scholar
  39. Seo SY, Sharma VK, Sharma N (2003) Mushroom tyrosinase: recent prospects. J Agric Food Chem 51:2837–2853CrossRefPubMedGoogle Scholar
  40. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85CrossRefPubMedGoogle Scholar
  41. Subrizi F, Crucianelli M, Grossi V, Passacantando M, Pesci L, Saladino R (2014) Carbon nanotubes as activating tyrosinase supports for the selective synthesis of catechols. ACS Catal 4:810–822CrossRefGoogle Scholar
  42. Surwase SN, Jadhav JP (2011) Bioconversion of L-tyrosine to L-DOPA by a novel bacterium Bacillus sp. JPJ. Amino Acids 41:495–506CrossRefPubMedGoogle Scholar
  43. Yabuki C, Yagi K, Nanjo F (2017) Highly efficient synthesis of theaflavins by tyrosinase from mushroom and its application to theaflavin related compounds. Process Biochem 55:61–69CrossRefGoogle Scholar
  44. Yamaguchi S, Tsuchida N, Miyazawa M, Hirai Y (2005) Synthesis of two naturally occurring 3-methyl-2, 5-dihydro-1-benzoxepin carboxylic acids. J Organomet Chem 70:7505–7511CrossRefGoogle Scholar
  45. Xu DY, Chen JY, Yang Z (2012) Use of cross linked tyrosinase aggregates as catalyst for synthesis of L-DOPA. Biochem Eng J 63:88–94.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Reeta Davis
    • 1
  • Susan Molloy
    • 1
  • Blathnaid Quigley
    • 1
  • Jasmina Nikodinovic-Runic
    • 1
    • 2
  • Francisco Solano
    • 3
  • Kevin E. O’Connor
    • 1
  1. 1.School of Biomolecular and Biomedical ScienceUniversity College DublinDublin 4Ireland
  2. 2.Institute for Molecular Genetics and Genetic EngineeringUniversity of BelgradeBelgradeSerbia
  3. 3.Department of Biochemistry and Molecular Biology B and ImmunologyUniversity of MurciaMurciaSpain

Personalised recommendations