Biosynthesis and production of quercitols and their application in the production of pharmaceuticals: current status and prospects

Mini-Review
  • 6 Downloads

Abstract

(−)-vibo-Quercitol is a deoxyinositol (1l-1,2,4/3,5-cyclohexanepentol) that occurs naturally in low concentrations in oak species, honeydew honey, and Gymnema sylvestre. The author’s research group recently reported that (−)-vibo-quercitol and scyllo-quercitol (2-deoxy-myo-inositol, 1,3,5/2,4-cyclohexanepentol), a stereoisomer of (−)-vibo-quercitol, are stereoselectively synthesized from 2-deoxy-scyllo-inosose by the reductive reaction of a novel (−)-vibo-quercitol 1-dehydrogenase in Burkholderia terrae and of a known scyllo-inositol dehydrogenase in Bacillus subtilis, respectively. The author’s research group therefore identified two enzymes capable of producing both stereoisomers of deoxyinositols, which are rare in nature. (−)-vibo-Quercitol and scyllo-quercitol are potential intermediates for pharmaceuticals. In this review, the author describes the biosynthesis and enzymatic production of quercitols and myo-inositol stereoisomers and their application in the production of potential pharmaceuticals.

Keywords

(−)-vibo-Quercitol scyllo-Quercitol scyllo-Inositol (−)-vibo-Quercitol 1-dehydrogenase (2-deoxy-scyllo-inosose reductase) scyllo-Inositol dehydrogenase (IolX) Enzymatic synthesis of quercitols Pharmaceutical 

Notes

Compliance with ethical standards

Conflict of interest

The author declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

References

  1. Anderson L (1972) The cyclitols. In: Pigman W, Horton D (eds) The carbohydrates, chemistry and biochemistry. Academic Press, London, pp 520–579Google Scholar
  2. Anderson WA, Magasanik B (1971) The pathway of myo-inositol degradation in Aerobacter aerogenes. Conversion of 2-deoxy-5-keto-d-gluconic acid to glycolytic intermediates. J Biol Chem 246:540–552Google Scholar
  3. Asano N, Kameda Y, Matsui K, Horii S, Fukase H (1990) Validamycin A, new pseudo-tetrasaccharide antibiotic. J Antibiot 43:1039–1041CrossRefPubMedGoogle Scholar
  4. Bates SH, Jones RB, Bailey CJ (2000) Insulin-like effect of pinitol. Br J Phramacol 130:1944–1948CrossRefGoogle Scholar
  5. Carlavilla D, Villamiel M, Martínez-Castro I, Moreno-Arribas V (2006) Occurrence and significance of quercitol and other inositols in wines during oak wood aging. Am J Enol Vitic 57:468–473Google Scholar
  6. Croze ML, Soulage CO (2013) Potential role and therapeutic interests of myo-inositol in metabolic diseases. Biochimie 95:1811–1827CrossRefPubMedGoogle Scholar
  7. Daniellou R, Phenix CP, Tam PH, Laliberte MC, Palmer DRJ (2005) Stereoselective oxidation of protected inositol derivatives catalyzed by inositol dehydrogenase from Bacillus subtilis. Org Biomol Chem 3:401–403CrossRefPubMedGoogle Scholar
  8. Dabhi AS, Bhatt NR, Shah MJ (2013) Voglibose: an alpha glucosidase inhibitor. J Clin Diagn Res 7:3023–3027PubMedPubMedCentralGoogle Scholar
  9. Dion HW, Woo PWK, Willmer NE, Kern DL, Onaga J, Fusari SA (1972) Butirosin, a new aminoglycosidic antibiotic complex: isolation and characterization. Antimicrob Ag Chemther 2:84–88CrossRefGoogle Scholar
  10. Horii S, Fukase H, Kameda Y (1985) Stereoselective conversion of valienamine and validamine into valiolamine. Carbohydr Res 140:185–200CrossRefGoogle Scholar
  11. Itoh N, Isotani K, Nakamura M, Inoue K, Isogai Y, Makino Y (2012) Efficient synthesis of optically pure alcohols by asymmetric hydrogen-transfer biocatalysis: application of engineered enzymes in a 2-propanol-water medium. Appl Microbiol Biotechnol 93:1075–1085CrossRefPubMedGoogle Scholar
  12. Itoh N, Kurokawa J, Toda H, Konishi K (2017) Identification and characterization of a novel (−)-vibo-quercitol 1-dehydrogenase from Burkholderia terrae suitable for production of (−)-vibo-quercitol from 2-deoxy-scyllo-inosose. Appl Microbiol Biotechnol 101:7545–7555CrossRefPubMedGoogle Scholar
  13. Iuorno MJ, Jakubowicz DJ, Baillargeon JP, Dillon P, Gunn RD, Allan G, Nestler JE (2002) Effects of d-chiro-inositol in lean women with the polycystic ovary syndrome. Endocr Pract 8:417–423CrossRefPubMedGoogle Scholar
  14. Jiang G, Krishnan HA, Kim YW, Wacek TJ, Krishnan HB (2001) A functional myo-inositol dehydrogenase gene is required for efficient nitrogen fixation and competitiveness of Sinorhizobium fredii USDA191 to nodulate soybean (Glycine max [L.] Merr.). J Bacteriol 183:2595–2604CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kakinuma K, Nango E, Kudo F, Matsushima Y, Eguchi T (2000) An expeditious chemo-enzymatic route from glucose to catechol by the use of 2-deoxy-scyllo-inosose synthase. Tetrahedron Lett 41:1935–1938CrossRefGoogle Scholar
  16. Kogure T, Wakisaka N, Takaku H, Takagi M (2007) Efficient production of 2-deoxy-scyllo-inosose from d-glucose by metabolically engineered Escherichia coli. J Biotechnol 129:502–509CrossRefPubMedGoogle Scholar
  17. Kohler PRA, Zheng JY, Schoffers E, Rossbach S (2010) Inositol catabolism, a key pathway in Sinorhizobium meliloti for competitive host nodulation. Appl Environ Microbiol 76:7972–7980CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kudo F, Numakura M, Tamegai H, Yamamoto H, Eguchi T, Kakinuma K (2005) Extended sequence and functional analysis of the butirosin biosynthetic gene cluster in Bacillus circulans SANK 72073. J Antibiot 58:373–379CrossRefPubMedGoogle Scholar
  19. Kuno S, Takahashi A, Ogawa S (2011) Transformation of quercitols into 4-methylenecyclohex-5-ene-1,2,3-triol derivatives, precursors for the chemical chaperones N-octyl-4-epi-β-valienamine (NOEV) and N-octyl-β-valienamine (NOV). Bioorg Med Chem Lett 21:7185–7188CrossRefGoogle Scholar
  20. Lee D, Lee WS, Lim S, Kim YK, Jung HY, Das S, Lee J, Luo W, Kim KT, Chung SK (2017) A guanidine-appended scyllo-inositol derivative AAD-66 enhances brain delivery and ameliorates Alzheimer’s phenotypes. Sci Rep https://www.ncbi.nlm.nih.gov/pubmed/2907487 7(14125)
  21. Loewus FA, Murthy PPN (2000) myo-Inositol metabolism in plants. Plant Sci 150:1–19CrossRefGoogle Scholar
  22. Ma K, Thomason LA, McLaurin J (2012) scyllo-Inositol, preclinical, and clinical data for Alzheimer’s disease. Adv Pharmacol 64:177–212CrossRefPubMedGoogle Scholar
  23. Majumder AL, Johnson MD, Henry SA (1997) 1l-myo-Inositol-1-phosphate synthase. Biochim Biophys Acta 1348:245–256CrossRefPubMedGoogle Scholar
  24. Morinaga T, Ashida H, Yoshida K (2010) Identification of two scyllo-inositol dehydrogenases in Bacillus subtilis. Microbiol 156:1538–1546CrossRefGoogle Scholar
  25. Miyazawa D, Matsumoto K (2015) Method for producing 2-deoxy-scyllo-inosose. Patent application WO2015005451 A1 (PCT/JP2014/068497).Google Scholar
  26. Ogawa S, Kanto M (2007) Synthesis of valiolamine and some precursors for bioactive carbaglycosylamines from (−)-vibo-quercitol produced by biogenesis of myo-inositol. J Nat Prod 70:493–497CrossRefPubMedGoogle Scholar
  27. Ogawa S, Uetsuki S, Tezuka Y, Morikawa T, Takahashi A, Sato K (1999) Synthesis and evaluation of glucocerebrosidase inhibitory activity of anhydro deoxyinositols from (+)-epi- and (−)-vibo-quercitols. Bioorg Med Chem Lett 9:1493–1498CrossRefPubMedGoogle Scholar
  28. Ota Y, Tamegai H, Kudo F, Kuriki H, Koike-Takeshita A, Eguchi T, Kakinuma K (2000) Butirosin-biosynthetic gene cluster from Bacillus circulans. J Antibiot 53:1158–1167CrossRefPubMedGoogle Scholar
  29. Potawale SE, Shinde VM, Anandi L, Borade S, Dhalawat H, Deshmukh RS (2008) Gymnema sylvestre: a comprehensive review. Pharmacol Online 2:144–157Google Scholar
  30. Ramaley R, Fujita Y, Freese E (1979) Purification and properties of Bacillus subtilis inositol dehydrogenase. J Biol Chem 254:7684–7690PubMedGoogle Scholar
  31. Roscales S, and Plumet J (2016) Biosynthesis and biological activity of carbasugars. Int J Carbohydr Chem ID4760548Google Scholar
  32. Sanz ML, Sanz J, Martínez-Castro I (2004) Presence of some cyclitols in honey. Food Chem 84:133–135CrossRefGoogle Scholar
  33. Schlemmer U, Frølich W, Prieto RM, Grases F (2009) Phytate in foods and significance for humans: food sources, intake, processing, bioavailability, protective role and analysis. Mol Nutr Food Res 53:S330–S375CrossRefPubMedGoogle Scholar
  34. Serit M, Okubo T, Su RH, Hagiwara N, Kim M, Iwagata T, Yamamoto T (1991) Antibacterial compounds from oak, Quercus acuta Thunb. Agric Biol Chem 55:19–23CrossRefGoogle Scholar
  35. Stein AJ, Geiger JH (2002) The crystal structure and mechanism of 1-l-myo-inositol-1-phosphate synthase. J Biol Chem 277:9484–9491CrossRefPubMedGoogle Scholar
  36. Takahashi A, Kanbe K, Tamamura T, Sato K (1999) Bioconversion of myo-inositol to rare cyclic sugar alcohols. Anticancer Res 19:3807Google Scholar
  37. Takeuchi M, Takai N, Asano N, Kameda Y, Matsui K (1990) Inhibitory effect of validamine, valienamine and valiolamine on activities of carbohydrases in rat small intestinal brush border membranes. Chem Pharm Bull (Tokyo) 38:1970–1972CrossRefGoogle Scholar
  38. Walker JB (1975) myo-Inositol: NAD+ 2-oxidoreductase. In: Hash JH (ed) Methods in enzymology, vol 43. Academic Press, London, pp 433–439Google Scholar
  39. Wacharasindhu S, Worawalai W, Rungprom W, Phuwapraisirisan P (2009) (+)-proto-Quercitol, a natural versatile chiral building block for the synthesis of the α-glucosidase inhibitors, 5-amino-1,2,3,4-cyclohexanetetrols. Tetrahedron Lett 50:2189–2192CrossRefGoogle Scholar
  40. Yamaoka M, Osawa S, Morinaga T, Takenaka S, Yoshida K (2011) A cell factory of Bacillus subtilis engineered for the simple bioconversion of myo-inositol to scyllo-inositol, a potential therapeutic agent for Alzheimer’s disease. Microb Cell Factories 10:69CrossRefGoogle Scholar
  41. Yamauchi N, Kakinuma K (1995) Enzymic carbocycle formation in microbial secondary metabolism. The mechanism of the 2-deoxy-scyllo-inosose synthase reaction as a crucial step in the 2-deoxystreptamine biosynthesis in Streptomyces fradiae. J Org Chem 60:5614–5619CrossRefGoogle Scholar
  42. Yebra MJ, Zúniga M, Beaufils S, Perez-Martínez G, Deutscher J, Monedero V (2007) Identification of a gene cluster enabling Lactobacillus casei BL23 to utilize myo-inositol. Appl Environ Microbiol 73:3850–3858CrossRefPubMedPubMedCentralGoogle Scholar
  43. Yoshida K, Yamaguchi M, Morinaga T, Kinehara M, Ikeuchi M, Kinehara M, Ashida H (2006) Genetic modification of Bacillus subtilis for production of d-chiro-inositol, an investigational drug candidate for treatment of type 2 diabetes and polycystic ovary syndrome. Appl Environ Microbiol 72:1310–1315CrossRefPubMedPubMedCentralGoogle Scholar
  44. Yoshida K, Yamaguchi M, Morinaga T, Kinehara M, Ikeuchi M, Ashida H, Fujita Y (2008) myo-Inositol catabolism in Bacillus subtilis. J Biol Chem 283:10415–10424CrossRefPubMedGoogle Scholar
  45. Yoshida K, Sanbongi A, Murakami A, Suzuki H, Takenaka S, Takami H (2012) Three inositol dehydrogenases involved in utilization and interconversion of inositol stereoisomers in a thermophile, Geobacillus kaustophilus HTA426. Microbiology 158:1942–1952CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Biotechnology Research Center and Department of BiotechnologyToyama Prefectural UniversityImizuJapan

Personalised recommendations