Applied Microbiology and Biotechnology

, Volume 102, Issue 10, pp 4355–4370 | Cite as

Genome-guided exploration of metabolic features of Streptomyces peucetius ATCC 27952: past, current, and prospect

  • Nguyen Huy Thuan
  • Dipesh Dhakal
  • Anaya Raj Pokhrel
  • Luan Luong Chu
  • Thi Thuy Van Pham
  • Anil Shrestha
  • Jae Kyung Sohng


Streptomyces peucetius ATCC 27952 produces two major anthracyclines, doxorubicin (DXR) and daunorubicin (DNR), which are potent chemotherapeutic agents for the treatment of several cancers. In order to gain detailed insight on genetics and biochemistry of the strain, the complete genome was determined and analyzed. The result showed that its complete sequence contains 7187 protein coding genes in a total of 8,023,114 bp, whereas 87% of the genome contributed to the protein coding region. The genomic sequence included 18 rRNA, 66 tRNAs, and 3 non-coding RNAs. In silico studies predicted ~ 68 biosynthetic gene clusters (BCGs) encoding diverse classes of secondary metabolites, including non-ribosomal polyketide synthase (NRPS), polyketide synthase (PKS I, II, and III), terpenes, and others. Detailed analysis of the genome sequence revealed versatile biocatalytic enzymes such as cytochrome P450 (CYP), electron transfer systems (ETS) genes, methyltransferase (MT), glycosyltransferase (GT). In addition, numerous functional genes (transporter gene, SOD, etc.) and regulatory genes (afsR-sp, metK-sp, etc.) involved in the regulation of secondary metabolites were found. This minireview summarizes the genome-based genome mining (GM) of diverse BCGs and genome exploration (GE) of versatile biocatalytic enzymes, and other enzymes involved in maintenance and regulation of metabolism of S. peucetius. The detailed analysis of genome sequence provides critically important knowledge useful in the bioengineering of the strain or harboring catalytically efficient enzymes for biotechnological applications.


Streptomyces peucetius ATCC 27952 Genome mining Genome exploration Cytochrome P450 Methyltransferase Regulatory genes 



This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (NRF-2017R1A2A2A05000939 and NRF-2017R1D1A1B03036273).

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Ajithkumar V, Prasad R (2010a) Modulation of dnrN expression by intracellular levels of DnrO and daunorubicin in Streptomyces peucetius. FEMS Microbiol Lett 306(2):160–167CrossRefPubMedGoogle Scholar
  2. Ajithkumar V, Prasad R (2010b) The activator/repressor protein DnrO of Streptomyces peucetius binds to DNA without changing its topology. Int J Biol Macromol 46(3):380–384CrossRefPubMedGoogle Scholar
  3. Arcamone F, Cassinelli G, Fantini G, Grein A, Orezzi P, Pol C, Spalla C (1969) Adriamycin, 14-hydroxydaimomycin, a new antitumor antibiotic from S. peucetius var. caesius. Biotechnol Bioeng 11(6):1101–1110CrossRefPubMedGoogle Scholar
  4. Arcamone F, Animati F, Capranico G, Lombardi P, Pratesi G, Manzini S, Supino R, Zunino F (1997) New developments in antitumor anthracyclines. Pharmacol Ther 76(1–3):117–124CrossRefPubMedGoogle Scholar
  5. Arnold RD, Slack JE, Straubinger RM (2004) Quantification of doxorubicin and metabolites in rat plasma and small volume tissue samples by liquid chromatography/electrospray tandem mass spectroscopy. J Chromatogr B Anal Technol Biomed Life Sci 808(2):141–152CrossRefGoogle Scholar
  6. Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Klenk HP, Clément C, Ouhdouch Y, van Wezel GP (2016) Taxonomy, physiology, and natural products of Actinobacteria. Microbiol Mol Biol Rev 80(1):1–43CrossRefPubMedGoogle Scholar
  7. Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58(1):1–26CrossRefPubMedGoogle Scholar
  8. Bhattarai S, Niraula NP, Sohng JK, Oh TJ (2012) In silico and in vitro based studies of Streptomyces peucetius CYP107N3 for oleic acidepoxidation. BMB Rep 45(12):736–741CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bhattarai S, Liou K, Oh TJ (2013) Hydroxylation of long chain fatty acids by CYP147F1, a new cytochrome P450 subfamily protein from Streptomyces peucetius. Arch Biochem Biophys 539(1):63–69CrossRefPubMedGoogle Scholar
  10. Brown K, Li W, Kaur P (2017) Role of aromatic and negatively charged residues of DrrB in multisubstrate specificity conferred by the DrrAB system of Streptomyces peucetius. Biochemistry 56(13):1921–1931CrossRefPubMedGoogle Scholar
  11. Chater KF (2006) Streptomyces inside-out: a new perspective on the bacteria that provide us with antibiotics. Philos Trans R Soc Lond Ser B Biol Sci 361(1469):761–768CrossRefGoogle Scholar
  12. Chater KF, Chandra G (2008) The use of the rare UUA codon to define “expression space” for genes involved in secondary metabolism, development and environmental adaptation in Streptomyces. J Microbiol 46(1):1–11CrossRefPubMedGoogle Scholar
  13. Chaudhary AK, Dhakal D, Sohng JK (2013) An insight into the “-omics” based engineering of Streptomycetes for secondary metabolite over-production. Biomed Res Int 2013:968518CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chaudhary AK, Singh B, Maharjan S, Jha AK, Kim BG, Sohng JK (2014) Switching antibiotics production on and off in actinomycetes by an IclR family transcriptional regulator from Streptomyces peucetius ATCC 27952. J Microbiol Biotechnol 24(8):1065–1072CrossRefPubMedGoogle Scholar
  15. Chen Z, Zeng AP (2016) Protein engineering approaches to chemical biotechnology. Curr Opin Biotechnol 42:198–205CrossRefPubMedGoogle Scholar
  16. Chiang CM, Ding HY, Tsai YT, Chang TS (2015) Production of two novel methoxy-isoflavones from biotransformation of 8-hydroxydaidzein by recombinant Escherichia coli expressing O-methyltransferase SpOMT2884 from Streptomyces peucetius. Int J Mol Sci 16(11):27816–27823CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chiang CM, Chang YJ, Wu JY, Chang TS (2017) Production and anti-melanoma activity of methoxyisoflavones from the biotransformation of genistein by two recombinant Escherichia coli strains. Molecules 22(1):87CrossRefGoogle Scholar
  18. Čihák M, Kameník Z, Šmídová K, Bergman N, Bobek J (2017) Secondary metabolites produced during the germination of Streptomyces coelicolor. Front Microbiol 8:2495CrossRefPubMedPubMedCentralGoogle Scholar
  19. Cobb RE, Wang Y, Zhao H (2014) High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol 4(6):723–728CrossRefPubMedPubMedCentralGoogle Scholar
  20. Collins AM, Kennedy MJ (1999) Biotransformations and bioconversions in New Zealand: past endeavours and future potential. Australas Biotechnol 9:86–94Google Scholar
  21. Darsandhari S, Dhakal D, Shrestha B, Parajuli P, Seo JH, Kim TS, Sohng JK (2018) Characterization of regioselective flavonoid O-methyltransferase from the Streptomyces sp. KCTC 0041BP. Enzym Microb Technol 113:29–36CrossRefGoogle Scholar
  22. Dhakal D, Sohng JK (2015) Commentary: toward a new focus in antibiotic and drug discovery from the Streptomyces arsenal. Front Microbiol 6:727CrossRefPubMedPubMedCentralGoogle Scholar
  23. Dhakal D, Sohng JK (2017) Coalition of biology and chemistry for ameliorating antimicrobial drug discovery. Front Microbiol 8:734CrossRefPubMedPubMedCentralGoogle Scholar
  24. Dhakal D, Chaudhary AK, Yi JS, Pokhrel AR, Shrestha B, Parajuli P, Shrestha A, Yamaguchi T, Jung HJ, Kim SY, Kim BG (2016) Enhanced production of nargenicin A1 and creation of a novel derivative using a synthetic biology platform. Appl Microbiol Biotechnol 100(23):9917–9931CrossRefPubMedGoogle Scholar
  25. Dhakal D, Dhakal Y, Sohng JK (2017a) Book review: antibody-drug conjugates: fundamentals, drug development, and clinical outcomes to target cancer. Front Pharmacol 8:771CrossRefPubMedCentralGoogle Scholar
  26. Dhakal D, Pokhrel AR, Jha AK, Thuan NH, Sohng JK (2017b) Saccharopolyspora species: laboratory maintenance and enhanced production of secondary metabolites. Curr Protoc Microbiol 44(10):1–10PubMedGoogle Scholar
  27. Dhakal D, Pokhrel AR, Shrestha B, Sohng JK (2017c) Marine rare Actinobacteria: isolation, characterization, and strategies for harnessing bioactive compounds. Front Microbiol 8:1106CrossRefPubMedPubMedCentralGoogle Scholar
  28. Dhakal D, Lim SK, Kim DH, Kim BG, Yamaguchui T, Sohng JK (2018) Complete genome sequence of Streptomyces peucetius ATCC 27952, the producer of anticancer anthracyclines and diverse secondary metabolites. J Biotechnol 267:50–54CrossRefPubMedGoogle Scholar
  29. Dickens ML, Priestley ND, Strohl WR (1997) In vivo and in vitro bioconversion of epsilon-rhodomycinone glycoside to doxorubicin: functions of DauP, DauK, and DoxA. J Bacteriol 179(8):2641–2650CrossRefPubMedPubMedCentralGoogle Scholar
  30. Erb TJ, Jones PR, Bar-Even A (2017) Synthetic metabolism: metabolic engineering meets enzyme design. Curr Opin Chem Biol 37:56–62CrossRefPubMedGoogle Scholar
  31. Gandlur SM, Wei L, Levine J, Russell J, Kaur P (2004) Membrane topology of the DrrB protein of the doxorubicin transporter of Streptomyces peucetius. J Biol Chem 279(26):27799–27806CrossRefPubMedGoogle Scholar
  32. Ghimire GP, Oh TJ, Liou K, Sohng JK (2008) Identification of a cryptic type III polyketide synthase (1,3,6,8-tetrahydroxynaphthalene synthase) from Streptomyces peucetius ATCC 27952. Mol Cells 26(4):362–367PubMedGoogle Scholar
  33. Ghimire GP, Hei CL, Jae KS (2009a) Improved squalene production via modulation of the methylerythritol 4-phosphate pathway and heterologous expression of genes from Streptomyces peucetius ATCC 27952 in Escherichia coli. Appl Environ Microbiol 75(22):7291–7293CrossRefPubMedPubMedCentralGoogle Scholar
  34. Ghimire GP, Oh TJ, Lee HC, Sohng JK (2009b) Squalene-hopene cyclase (Spterp25) from Streptomyces peucetius: sequence analysis, expression and functional characterization. Biotechnol Lett 31(4):565–569CrossRefPubMedGoogle Scholar
  35. Ghimire GP, Koirala N, Sohng JK (2015) Activation of cryptic hop genes from Streptomyces peucetius ATCC 27952 involved in hopanoid biosynthesis. J Microbiol Biotechnol 25(5):658–661CrossRefPubMedGoogle Scholar
  36. Grein A (1987) Antitumor anthracyclines produced by Streptomyces peucetius. Adv Appl Microbiol 32:203–214CrossRefPubMedGoogle Scholar
  37. Grimm A, Madduri K, Ali A, Hutchinson CR (1994) Characterization of the Streptomyces peucetius ATCC 29050 genes encoding doxorubicin polyketide synthase. Gene 151(1–2):1–10CrossRefPubMedGoogle Scholar
  38. Guzmán S, Ramos I, Moreno E, Ruiz B, Rodríguez-Sanoja R, Escalante L, Langley E, Sanchez S (2005) Sugar uptake and sensitivity to carbon catabolite regulation in Streptomyces peucetius var. caesius. Appl Microbiol Biotechnol 69(2):200–206CrossRefPubMedGoogle Scholar
  39. Han AR, Park JW, Lee MK, Ban YH, Yoo YJ, Kim EJ, Kim E, Kim BG, Sohng JK, Yoon YJ (2011) Development of a Streptomyces venezuelae-based combinatorial biosynthetic system for the production of glycosylated derivatives of doxorubicin and its biosynthetic intermediates. Appl Environ Microbiol 77(14):4912–4923CrossRefPubMedPubMedCentralGoogle Scholar
  40. Hegazy MEF, Mohamed TA, ElShamy AI, Abou-El-Hamd HM, Mahalel UA, Reda EH, Shaheen AM, Tawfik WA, Shahat AA, Shams KA, Abdel-Azim NS (2015) Microbial biotransformation as a tool for drug development based on natural products from mevalonic acid pathway: a review. J Adv Res 6(1):17–33CrossRefPubMedGoogle Scholar
  41. Hopwood DA (2007) Streptomyces in nature and medicine : the antibiotic makers. Oxford University Press, New YorkGoogle Scholar
  42. Hwang KS, Kim HU, Charusanti P, Palsson BØ, Lee SY (2014) Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites. Biotechnol Adv 32(2):255–268CrossRefPubMedGoogle Scholar
  43. Ikeda H, Nonomiya T, Usami M, Ohta T, Omura S (1999) Organization of the biosynthetic gene cluster for the polyketide anthelmintic macrolide avermectin in Streptomyces avermitilis. Proc Natl Acad Sci U S A 96(17):9509–9514CrossRefPubMedPubMedCentralGoogle Scholar
  44. Jha AK, Dhakal D, Van PT, Pokhrel AR, Yamaguchi T, Jung HJ, Yoon YJ, Sohng JK (2015) Structural modification of herboxidiene by substrate-flexible cytochrome P450 and glycosyltransferase. Appl Microbiol Biotechnol 99(8):3421–3431CrossRefPubMedGoogle Scholar
  45. Jiang H, Hutchinson CR (2006) Feedback regulation of doxorubicin biosynthesis in Streptomyces peucetius. Res Microbiol 157(7):666–674CrossRefPubMedGoogle Scholar
  46. Kanth BK, Jnawali HN, Niraula NP, Sohng JK (2011) Superoxide dismutase (SOD) genes in Streptomyces peucetius: effects of SODs on secondary metabolites production. Microbiol Res 166(5):391–402CrossRefPubMedGoogle Scholar
  47. Karuppasamy K, Srinivasan P, Ashokkumar B, Tiwari R, Kanagarajadurai K, Prasad R (2015) Partial loss of self-resistance to daunorubicin in drrD mutant of Streptomyces peucetius. Biochem Eng J 102:98–107CrossRefGoogle Scholar
  48. Kaur P, Rao DK, Gandlur SM (2005) Biochemical characterization of domains in the membrane subunit DrrB that interact with the ABC subunit DrrA: identification of a conserved motif. Biochemistry 44(7):2661–2670CrossRefPubMedGoogle Scholar
  49. Kim NY, Kim JH, Lee YH, Lee EJ, Kim J, Lim Y, Chong Y, Ahn JH (2007) O-methylation of flavonoids using DnrK based on molecular docking. J Microbiol Biotechnol 17(12):1991–1995PubMedGoogle Scholar
  50. Kim E, Song MC, Kim MS, Beom JY, Jung JA, Cho HS, Yoon YJ (2017) One-pot combinatorial biosynthesis of glycosylated anthracyclines by cocultivation of Streptomyces strains producing aglycones and nucleotide deoxysugars. ACS Comb Sci 19(4):262–270CrossRefPubMedGoogle Scholar
  51. Kodani S, Komaki H, Suzuki M, Kobayakawa F, Hemmi H (2015) Structure determination of a siderophore peucechelin from Streptomyces peucetius. Biometals 28(5):791–801CrossRefPubMedGoogle Scholar
  52. Koirala N, Pandey RP, Parajuli P, Jung HJ, Sohng JK (2014a) Methylation and subsequent glycosylation of 7,8-dihydroxyflavone. J Biotechnol 184:128–137CrossRefPubMedGoogle Scholar
  53. Koirala N, Pandey RP, Thang DV, Jung HJ, Sohng JK (2014b) Glycosylation and subsequent malonylation of isoflavonoids in E. coli: strain development, production and insights into future metabolic perspectives. J Ind Microbiol Biotechnol 41(11):1647–1658CrossRefPubMedGoogle Scholar
  54. Lee NR, Rimal H, Lee JH, Oh TJ (2014) Characterization of dephosphocoenzyme a kinase from Streptomyces peucetius ATCC27952, and its application for doxorubicin overproduction. J Microbiol Biotechnol 24:1238–1244CrossRefPubMedGoogle Scholar
  55. Lee CW, Lee JH, Rimal H, Park H, Lee JH, Oh TJ (2016) Crystal structure of cytochrome P450 (CYP105P2) from Streptomyces peucetius and its conformational changes in response to substrate binding. Int J Mol Sci 17(6):813CrossRefPubMedCentralGoogle Scholar
  56. Li W, Sharma M, Kaur P (2014) The DrrAB efflux system of Streptomyces peucetius is a multidrug transporter of broad substrate specificity. J Biol Chem 289(18):12633–12646CrossRefPubMedPubMedCentralGoogle Scholar
  57. Liu JH, Yu BY (2010) Biotransformation of bioactive natural products for pharmaceutical lead compounds. Curr Org Chem 14(14):1400–1406CrossRefGoogle Scholar
  58. Luo Y, Enghiad B, Zhao H (2016) New tools for reconstruction and heterologous expression of natural product biosynthetic gene clusters. Nat Prod Rep 33(2):174–182CrossRefPubMedPubMedCentralGoogle Scholar
  59. Madduri K, Torti F, Colombo AL, Hutchinson CR (1993) Cloning and sequencing of a gene encoding carminomycin 4-O-methyltransferase from Streptomyces peucetius and its expression in Escherichia coli. J Bacteriol 175(12):3900–3904CrossRefPubMedPubMedCentralGoogle Scholar
  60. Malla S, Niraula NP, Singh B, Liou K, Sohng JK (2010) Limitations in doxorubicin production from Streptomyces peucetius. Microbiol Res 165(5):427–435CrossRefPubMedGoogle Scholar
  61. Mandakh A, Niraula NP, Kim EP, Sohng JK (2010) Identification and characterization of a pantothenate kinase (PanK-sp) from Streptomyces peucetius ATCC 27952. J Microbiol Biotechnol 20(12):1689–1695PubMedGoogle Scholar
  62. Miyamoto Y, Ohta S, Johdo O, Nagamatsu Y, Yoshimoto A (2000) Production of a new hybrid anthracycline 4-O-methylepelmycin by heterologous expression of dnrK in epelmycin-producing Streptomyces violaceus. J Antibiot 53(8):828–836CrossRefPubMedGoogle Scholar
  63. Niraula NP, Kim SH, Sohng JK, Kim ES (2010a) Biotechnological doxorubicin production: pathway and regulation engineering of strains for enhanced production. Appl Microbiol Biotechnol 87(4):1187–1194CrossRefPubMedGoogle Scholar
  64. Niraula NP, Shrestha P, Oh TJ, Sohng JK (2010b) Identification and characterization of a NADH oxidoreductase involved in phenylacetic acid degradation pathway from Streptomyces peucetius. Microbiol Res 165(8):649–656CrossRefPubMedGoogle Scholar
  65. Niraula NP, Kanth BK, Sohng JK, Oh TJ (2011) Hydrogen peroxide-mediated dealkylation of 7-ethoxycoumarin by cytochrome P450 (CYP107AJ1) from Streptomyces peucetius ATCC27952. Enzym Microb Technol 48(2):181–186CrossRefGoogle Scholar
  66. Niraula NP, Bhattarai S, Lee NR, Sohng JK, Oh TJ (2012) Biotransformation of flavone by CYP105P2 from Streptomyces peucetius. J Microbiol Biotechnol 22(8):1059–1065CrossRefPubMedGoogle Scholar
  67. Oh TJ, Niraula NP, Liou K, Sohng JK (2010) Identification of the duplicated genes for S-adenosyl-l-methionine synthetase (metK1-sp and metK2-sp) in Streptomyces peucetius var. caesius ATCC 27952. J Appl Microbiol 109(2):398–407PubMedGoogle Scholar
  68. Paine M, Scrutton NS, Munro A, Gutierrez A, Roberts G, Wolf CR (2005) Electron transfer partners of cytochrome P450. In: Cytochrome P450: structure, mechaminism and biochemistry. Kluwer Academic/Plenum Publishers, New York, pp 115–148CrossRefGoogle Scholar
  69. Parajuli N, Basnet DB, Chan Lee H, Sohng JK, Liou K (2004) Genome analyses of Streptomyces peucetius ATCC 27952 for the identification and comparison of cytochrome P450 complement with other Streptomyces. Arch Biochem Biophys 425(2):233–241CrossRefPubMedGoogle Scholar
  70. Parajuli N, Viet HT, Ishida K, Tong HT, Lee HC, Liou K, Sohng JK (2005) Identification and characterization of the afsR homologue regulatory gene from Streptomyces peucetius ATCC 27952. Res Microbiol 156(5–6):707–712CrossRefPubMedGoogle Scholar
  71. Parajuli P, Pandey RP, Nguyen THT, Dhakal D, Sohng JK (2017) Substrate scope of O-methyltransferase from Streptomyces peucetius for biosynthesis of diverse natural products methoxides. Appl Biochem Biotechnol.
  72. Park J, Wang HH (2018) Systematic and synthetic approaches to rewire regulatory networks. Curr Opin Syst Biol 8:90–96CrossRefGoogle Scholar
  73. Park HM, Kim BG, Chang D, Malla S, Joo HS, Kim EJ, Park SJ, Sohng JK, Kim PI (2013) Genome-based cryptic gene discovery and functional identification of NRPS siderophore peptide in Streptomyces peucetius. Appl Microbiol Biotechnol 97(3):1213–1222CrossRefPubMedGoogle Scholar
  74. Phelan RM, Sachs D, Petkiewicz SJ, Barajas JF, Blake-Hedges JM, Thompson MG, Reider Apel A, Rasor BJ, Katz L, Keasling JD (2017) Development of next generation synthetic biology tools for use in Streptomyces venezuelae. ACS Synth Biol 6(1):159–166CrossRefPubMedGoogle Scholar
  75. Pokhrel AR, Dhakal D, Jha AK, Sohng JK (2015) Herboxidiene biosynthesis, production, and structural modifications: prospect for hybrids with related polyketide. Appl Microbiol Biotechnol 99(20):8351–8362CrossRefPubMedGoogle Scholar
  76. Pokhrel AR, Chaudhary AK, Nguyen HT, Dhakal D, Le TT, Shrestha A, Liou K, Sohng JK (2016) Overexpression of a pathway specific negative regulator enhances production of daunorubicin in bldA deficient Streptomyces peucetius ATCC 27952. Microbiol Res 192:96–102CrossRefPubMedGoogle Scholar
  77. Prija F, Prasad R (2017) DrrC protein of Streptomyces peucetius removes daunorubicin from intercalated dnrI promoter. Microbiol Res 202:30–35CrossRefPubMedGoogle Scholar
  78. Prija F, Srinivasan P, Das S, Kattusamy K, Prasad R (2017) DnrI of Streptomyces peucetius binds to the resistance genes, drrAB and drrC but is activated by daunorubicin. J Basic Microbiol 57(10):862–872CrossRefPubMedGoogle Scholar
  79. Pröschel M, Detsch R, Boccaccini AR, Sonnewald U (2015) Engineering of metabolic pathways by artificial enzyme channels. Front Bioeng Biotechnol 3:168CrossRefPubMedPubMedCentralGoogle Scholar
  80. Rebets YV, Ostash BO, Fukuhara M, Nakamura T, Fedorenko VO (2006) Expression of the regulatory protein LndI for landomycin E production in Streptomyces globisporus 1912 is controlled by the availability of tRNA for the rare UUA codon. FEMS Microbiol Lett 256(1):30–37CrossRefPubMedGoogle Scholar
  81. Rimal H, Lee SW, Lee JH, Oh TJ (2015a) Understanding of real alternative redox partner of Streptomyces peucetius DoxA: prediction and validation using in silico and in vitro analyses. Arch Biochem Biophys 585:64–74CrossRefPubMedGoogle Scholar
  82. Rimal H, Yu SC, Jang JH, Oh TJ (2015b) Homology modeling and in vitro analysis for characterization of Streptomyces peucetius CYP157C4. J Microbiol Biotechnol 25(9):1417–1424CrossRefPubMedGoogle Scholar
  83. Romero A, Ruiz B, Sohng JK, Koirala N, Rodríguez-Sanoja R, Sánchez S (2015) Functional analysis of the GlcP promoter in Streptomyces peucetius var. caesius. Appl Biochem Biotechnol 175(6):3207–3217CrossRefPubMedGoogle Scholar
  84. Rudolf JD, Chang CY, Ma M, Shen B (2017) Cytochromes P450 for natural product biosynthesis in Streptomyces: sequence, structure, and function. Nat Prod Rep 34(9):1141–1172CrossRefPubMedPubMedCentralGoogle Scholar
  85. Ruiz-Villafán B, Rodríguez-Sanoja R, Aguilar-Osorio G, Gosset G, Sanchez S (2014) Glucose kinases from Streptomyces peucetius var. caesius. Appl Microbiol Biotechnol 98(13):6061–6071CrossRefPubMedGoogle Scholar
  86. Shrestha P, Oh TJ, Liou K, Sohng JK (2008a) Cytochrome P450 (CYP105F2) from Streptomyces peucetius and its activity with oleandomycin. Appl Microbiol Biotechnol 79(4):555–562CrossRefPubMedGoogle Scholar
  87. Shrestha P, Oh TJ, Sohng JK (2008b) Designing a whole-cell biotransformation system in Escherichia coli using cytochrome P450 from Streptomyces peucetius. Biotechnol Lett 30(6):1101–1106CrossRefPubMedGoogle Scholar
  88. Shrestha P, Oh TJ, Niraula NP, Liou K, Yoo JC, Sohng JK (2010) Characterization of CYP166B1 and its electron transfer system in Streptomyces peucetius var. caesius ATCC 27952. Enzym Microb Technol 46(5):372–377CrossRefGoogle Scholar
  89. Singh B, Oh TJ, Sohng JK (2009) Exploration of geosmin synthase from Streptomyces peucetius ATCC 27952 by deletion of doxorubicin biosynthetic gene cluster. J Ind Microbiol Biotechnol 36(10):1257–1265CrossRefPubMedGoogle Scholar
  90. Singh B, Lee CB, Sohng JK (2010) Precursor for biosynthesis of sugar moiety of doxorubicin depends on rhamnose biosynthetic pathway in Streptomyces peucetius ATCC 27952. Appl Microbiol Biotechnol 85(5):1565–1574CrossRefPubMedGoogle Scholar
  91. Singh B, Lee CB, Park JW, Sohng JK (2012) The amino acid sequences in the C-terminal region of glucose-1-phosphate thymidylyltransferases determine their soluble expression in Escherichia coli. Protein Eng Des Sel 25(4):179–187CrossRefPubMedGoogle Scholar
  92. Singh B, Oh TJ, Sohng JK (2013) Exploration of two epimerase homologs in Streptomyces peucetius ATCC 27952. Appl Microbiol Biotechnol 97(6):2493–2502CrossRefPubMedGoogle Scholar
  93. Smanski MJ, Zhou H, Claesen J, Shen B, Fischbach MA, Voigt CA (2016) Synthetic biology to access and expand nature’s chemical diversity. Nat Rev Microbiol 14(3):135–149CrossRefPubMedPubMedCentralGoogle Scholar
  94. Song E, Malla S, Yang YH, Lee K, Kim EJ, Lee HC, Sohng JK, Oh MK, Kim BG (2011) Proteomic approach to enhance doxorubicin production in panK-integrated Streptomyces peucetius ATCC 27952. J Ind Microbiol Biotechnol 38(9):1245–1253CrossRefPubMedGoogle Scholar
  95. Thuan NH, Pandey RP, Sohng JK (2014) Recent advances in biochemistry and biotechnological synthesis of avermectins and their derivatives. Appl Microbiol Biotechnol 98(18):7747–7759CrossRefPubMedGoogle Scholar
  96. Vasanthakumar A, Kattusamy K, Prasad R (2013) Regulation of daunorubicin biosynthesis in Streptomyces peucetius—feed forward and feedback transcriptional control. J Basic Microbiol 53(8):636–644CrossRefPubMedGoogle Scholar
  97. Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D (2007) Genomics of actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 71(3):495–548CrossRefPubMedPubMedCentralGoogle Scholar
  98. Xue Y, Wilson D, Zhao L, Liu HW, Sherman DH (1998) Hydroxylation of macrolactones YC-17 and narbomycin is mediated by the pikC-encoded cytochrome P450 in Streptomyces venezuelae. Chem Biol 5(11):661–667CrossRefPubMedGoogle Scholar
  99. Zhang MM, Wang Y, Ang EL, Zhao H (2016) Engineering microbial hosts for production of bacterial natural products. Nat Prod Rep 33(8):963–987CrossRefPubMedPubMedCentralGoogle Scholar
  100. Ziemert N, Alanjary M, Weber T (2016) The evolution of genome mining in microbes—a review. Nat Prod Rep 33(8):988–1005CrossRefPubMedGoogle Scholar
  101. Zubieta C, He XZ, Dixon RA, Noel JP (2001) Structures of two natural product methyltransferases reveal the basis for substrate specificity in plant O-methyltransferases. Nat Struct Biol 8(3):271–279CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Molecular Biology, Institute of Research and DevelopmentDuy Tan UniversityDa Nang CityVietnam
  2. 2.Department of Life Science and Biochemical EngineeringSun Moon UniversityChungnamRepublic of Korea
  3. 3.Department of BT-Convergent Pharmaceutical EngineeringSun Moon UniversityChungnamRepublic of Korea

Personalised recommendations