Skip to main content
Log in

Genome-guided exploration of metabolic features of Streptomyces peucetius ATCC 27952: past, current, and prospect

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Streptomyces peucetius ATCC 27952 produces two major anthracyclines, doxorubicin (DXR) and daunorubicin (DNR), which are potent chemotherapeutic agents for the treatment of several cancers. In order to gain detailed insight on genetics and biochemistry of the strain, the complete genome was determined and analyzed. The result showed that its complete sequence contains 7187 protein coding genes in a total of 8,023,114 bp, whereas 87% of the genome contributed to the protein coding region. The genomic sequence included 18 rRNA, 66 tRNAs, and 3 non-coding RNAs. In silico studies predicted ~ 68 biosynthetic gene clusters (BCGs) encoding diverse classes of secondary metabolites, including non-ribosomal polyketide synthase (NRPS), polyketide synthase (PKS I, II, and III), terpenes, and others. Detailed analysis of the genome sequence revealed versatile biocatalytic enzymes such as cytochrome P450 (CYP), electron transfer systems (ETS) genes, methyltransferase (MT), glycosyltransferase (GT). In addition, numerous functional genes (transporter gene, SOD, etc.) and regulatory genes (afsR-sp, metK-sp, etc.) involved in the regulation of secondary metabolites were found. This minireview summarizes the genome-based genome mining (GM) of diverse BCGs and genome exploration (GE) of versatile biocatalytic enzymes, and other enzymes involved in maintenance and regulation of metabolism of S. peucetius. The detailed analysis of genome sequence provides critically important knowledge useful in the bioengineering of the strain or harboring catalytically efficient enzymes for biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ajithkumar V, Prasad R (2010a) Modulation of dnrN expression by intracellular levels of DnrO and daunorubicin in Streptomyces peucetius. FEMS Microbiol Lett 306(2):160–167

    Article  PubMed  CAS  Google Scholar 

  • Ajithkumar V, Prasad R (2010b) The activator/repressor protein DnrO of Streptomyces peucetius binds to DNA without changing its topology. Int J Biol Macromol 46(3):380–384

    Article  PubMed  CAS  Google Scholar 

  • Arcamone F, Cassinelli G, Fantini G, Grein A, Orezzi P, Pol C, Spalla C (1969) Adriamycin, 14-hydroxydaimomycin, a new antitumor antibiotic from S. peucetius var. caesius. Biotechnol Bioeng 11(6):1101–1110

    Article  PubMed  CAS  Google Scholar 

  • Arcamone F, Animati F, Capranico G, Lombardi P, Pratesi G, Manzini S, Supino R, Zunino F (1997) New developments in antitumor anthracyclines. Pharmacol Ther 76(1–3):117–124

    Article  PubMed  CAS  Google Scholar 

  • Arnold RD, Slack JE, Straubinger RM (2004) Quantification of doxorubicin and metabolites in rat plasma and small volume tissue samples by liquid chromatography/electrospray tandem mass spectroscopy. J Chromatogr B Anal Technol Biomed Life Sci 808(2):141–152

    Article  CAS  Google Scholar 

  • Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Klenk HP, Clément C, Ouhdouch Y, van Wezel GP (2016) Taxonomy, physiology, and natural products of Actinobacteria. Microbiol Mol Biol Rev 80(1):1–43

    Article  PubMed  Google Scholar 

  • Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58(1):1–26

    Article  PubMed  Google Scholar 

  • Bhattarai S, Niraula NP, Sohng JK, Oh TJ (2012) In silico and in vitro based studies of Streptomyces peucetius CYP107N3 for oleic acidepoxidation. BMB Rep 45(12):736–741

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhattarai S, Liou K, Oh TJ (2013) Hydroxylation of long chain fatty acids by CYP147F1, a new cytochrome P450 subfamily protein from Streptomyces peucetius. Arch Biochem Biophys 539(1):63–69

    Article  PubMed  CAS  Google Scholar 

  • Brown K, Li W, Kaur P (2017) Role of aromatic and negatively charged residues of DrrB in multisubstrate specificity conferred by the DrrAB system of Streptomyces peucetius. Biochemistry 56(13):1921–1931

    Article  PubMed  CAS  Google Scholar 

  • Chater KF (2006) Streptomyces inside-out: a new perspective on the bacteria that provide us with antibiotics. Philos Trans R Soc Lond Ser B Biol Sci 361(1469):761–768

    Article  CAS  Google Scholar 

  • Chater KF, Chandra G (2008) The use of the rare UUA codon to define “expression space” for genes involved in secondary metabolism, development and environmental adaptation in Streptomyces. J Microbiol 46(1):1–11

    Article  PubMed  CAS  Google Scholar 

  • Chaudhary AK, Dhakal D, Sohng JK (2013) An insight into the “-omics” based engineering of Streptomycetes for secondary metabolite over-production. Biomed Res Int 2013:968518

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chaudhary AK, Singh B, Maharjan S, Jha AK, Kim BG, Sohng JK (2014) Switching antibiotics production on and off in actinomycetes by an IclR family transcriptional regulator from Streptomyces peucetius ATCC 27952. J Microbiol Biotechnol 24(8):1065–1072

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Zeng AP (2016) Protein engineering approaches to chemical biotechnology. Curr Opin Biotechnol 42:198–205

    Article  PubMed  CAS  Google Scholar 

  • Chiang CM, Ding HY, Tsai YT, Chang TS (2015) Production of two novel methoxy-isoflavones from biotransformation of 8-hydroxydaidzein by recombinant Escherichia coli expressing O-methyltransferase SpOMT2884 from Streptomyces peucetius. Int J Mol Sci 16(11):27816–27823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chiang CM, Chang YJ, Wu JY, Chang TS (2017) Production and anti-melanoma activity of methoxyisoflavones from the biotransformation of genistein by two recombinant Escherichia coli strains. Molecules 22(1):87

    Article  CAS  Google Scholar 

  • Čihák M, Kameník Z, Šmídová K, Bergman N, Bobek J (2017) Secondary metabolites produced during the germination of Streptomyces coelicolor. Front Microbiol 8:2495

    Article  PubMed  PubMed Central  Google Scholar 

  • Cobb RE, Wang Y, Zhao H (2014) High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol 4(6):723–728

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Collins AM, Kennedy MJ (1999) Biotransformations and bioconversions in New Zealand: past endeavours and future potential. Australas Biotechnol 9:86–94

    Google Scholar 

  • Darsandhari S, Dhakal D, Shrestha B, Parajuli P, Seo JH, Kim TS, Sohng JK (2018) Characterization of regioselective flavonoid O-methyltransferase from the Streptomyces sp. KCTC 0041BP. Enzym Microb Technol 113:29–36

    Article  CAS  Google Scholar 

  • Dhakal D, Sohng JK (2015) Commentary: toward a new focus in antibiotic and drug discovery from the Streptomyces arsenal. Front Microbiol 6:727

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhakal D, Sohng JK (2017) Coalition of biology and chemistry for ameliorating antimicrobial drug discovery. Front Microbiol 8:734

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhakal D, Chaudhary AK, Yi JS, Pokhrel AR, Shrestha B, Parajuli P, Shrestha A, Yamaguchi T, Jung HJ, Kim SY, Kim BG (2016) Enhanced production of nargenicin A1 and creation of a novel derivative using a synthetic biology platform. Appl Microbiol Biotechnol 100(23):9917–9931

    Article  PubMed  CAS  Google Scholar 

  • Dhakal D, Dhakal Y, Sohng JK (2017a) Book review: antibody-drug conjugates: fundamentals, drug development, and clinical outcomes to target cancer. Front Pharmacol 8:771

    Article  PubMed Central  Google Scholar 

  • Dhakal D, Pokhrel AR, Jha AK, Thuan NH, Sohng JK (2017b) Saccharopolyspora species: laboratory maintenance and enhanced production of secondary metabolites. Curr Protoc Microbiol 44(10):1–10

    PubMed  Google Scholar 

  • Dhakal D, Pokhrel AR, Shrestha B, Sohng JK (2017c) Marine rare Actinobacteria: isolation, characterization, and strategies for harnessing bioactive compounds. Front Microbiol 8:1106

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhakal D, Lim SK, Kim DH, Kim BG, Yamaguchui T, Sohng JK (2018) Complete genome sequence of Streptomyces peucetius ATCC 27952, the producer of anticancer anthracyclines and diverse secondary metabolites. J Biotechnol 267:50–54

    Article  PubMed  CAS  Google Scholar 

  • Dickens ML, Priestley ND, Strohl WR (1997) In vivo and in vitro bioconversion of epsilon-rhodomycinone glycoside to doxorubicin: functions of DauP, DauK, and DoxA. J Bacteriol 179(8):2641–2650

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Erb TJ, Jones PR, Bar-Even A (2017) Synthetic metabolism: metabolic engineering meets enzyme design. Curr Opin Chem Biol 37:56–62

    Article  PubMed  CAS  Google Scholar 

  • Gandlur SM, Wei L, Levine J, Russell J, Kaur P (2004) Membrane topology of the DrrB protein of the doxorubicin transporter of Streptomyces peucetius. J Biol Chem 279(26):27799–27806

    Article  PubMed  CAS  Google Scholar 

  • Ghimire GP, Oh TJ, Liou K, Sohng JK (2008) Identification of a cryptic type III polyketide synthase (1,3,6,8-tetrahydroxynaphthalene synthase) from Streptomyces peucetius ATCC 27952. Mol Cells 26(4):362–367

    PubMed  CAS  Google Scholar 

  • Ghimire GP, Hei CL, Jae KS (2009a) Improved squalene production via modulation of the methylerythritol 4-phosphate pathway and heterologous expression of genes from Streptomyces peucetius ATCC 27952 in Escherichia coli. Appl Environ Microbiol 75(22):7291–7293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghimire GP, Oh TJ, Lee HC, Sohng JK (2009b) Squalene-hopene cyclase (Spterp25) from Streptomyces peucetius: sequence analysis, expression and functional characterization. Biotechnol Lett 31(4):565–569

    Article  PubMed  CAS  Google Scholar 

  • Ghimire GP, Koirala N, Sohng JK (2015) Activation of cryptic hop genes from Streptomyces peucetius ATCC 27952 involved in hopanoid biosynthesis. J Microbiol Biotechnol 25(5):658–661

    Article  PubMed  CAS  Google Scholar 

  • Grein A (1987) Antitumor anthracyclines produced by Streptomyces peucetius. Adv Appl Microbiol 32:203–214

    Article  PubMed  CAS  Google Scholar 

  • Grimm A, Madduri K, Ali A, Hutchinson CR (1994) Characterization of the Streptomyces peucetius ATCC 29050 genes encoding doxorubicin polyketide synthase. Gene 151(1–2):1–10

    Article  PubMed  CAS  Google Scholar 

  • Guzmán S, Ramos I, Moreno E, Ruiz B, Rodríguez-Sanoja R, Escalante L, Langley E, Sanchez S (2005) Sugar uptake and sensitivity to carbon catabolite regulation in Streptomyces peucetius var. caesius. Appl Microbiol Biotechnol 69(2):200–206

    Article  PubMed  CAS  Google Scholar 

  • Han AR, Park JW, Lee MK, Ban YH, Yoo YJ, Kim EJ, Kim E, Kim BG, Sohng JK, Yoon YJ (2011) Development of a Streptomyces venezuelae-based combinatorial biosynthetic system for the production of glycosylated derivatives of doxorubicin and its biosynthetic intermediates. Appl Environ Microbiol 77(14):4912–4923

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hegazy MEF, Mohamed TA, ElShamy AI, Abou-El-Hamd HM, Mahalel UA, Reda EH, Shaheen AM, Tawfik WA, Shahat AA, Shams KA, Abdel-Azim NS (2015) Microbial biotransformation as a tool for drug development based on natural products from mevalonic acid pathway: a review. J Adv Res 6(1):17–33

    Article  PubMed  CAS  Google Scholar 

  • Hopwood DA (2007) Streptomyces in nature and medicine : the antibiotic makers. Oxford University Press, New York

    Google Scholar 

  • Hwang KS, Kim HU, Charusanti P, Palsson BØ, Lee SY (2014) Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites. Biotechnol Adv 32(2):255–268

    Article  PubMed  CAS  Google Scholar 

  • Ikeda H, Nonomiya T, Usami M, Ohta T, Omura S (1999) Organization of the biosynthetic gene cluster for the polyketide anthelmintic macrolide avermectin in Streptomyces avermitilis. Proc Natl Acad Sci U S A 96(17):9509–9514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jha AK, Dhakal D, Van PT, Pokhrel AR, Yamaguchi T, Jung HJ, Yoon YJ, Sohng JK (2015) Structural modification of herboxidiene by substrate-flexible cytochrome P450 and glycosyltransferase. Appl Microbiol Biotechnol 99(8):3421–3431

    Article  PubMed  CAS  Google Scholar 

  • Jiang H, Hutchinson CR (2006) Feedback regulation of doxorubicin biosynthesis in Streptomyces peucetius. Res Microbiol 157(7):666–674

    Article  PubMed  CAS  Google Scholar 

  • Kanth BK, Jnawali HN, Niraula NP, Sohng JK (2011) Superoxide dismutase (SOD) genes in Streptomyces peucetius: effects of SODs on secondary metabolites production. Microbiol Res 166(5):391–402

    Article  PubMed  CAS  Google Scholar 

  • Karuppasamy K, Srinivasan P, Ashokkumar B, Tiwari R, Kanagarajadurai K, Prasad R (2015) Partial loss of self-resistance to daunorubicin in drrD mutant of Streptomyces peucetius. Biochem Eng J 102:98–107

    Article  CAS  Google Scholar 

  • Kaur P, Rao DK, Gandlur SM (2005) Biochemical characterization of domains in the membrane subunit DrrB that interact with the ABC subunit DrrA: identification of a conserved motif. Biochemistry 44(7):2661–2670

    Article  PubMed  CAS  Google Scholar 

  • Kim NY, Kim JH, Lee YH, Lee EJ, Kim J, Lim Y, Chong Y, Ahn JH (2007) O-methylation of flavonoids using DnrK based on molecular docking. J Microbiol Biotechnol 17(12):1991–1995

    PubMed  CAS  Google Scholar 

  • Kim E, Song MC, Kim MS, Beom JY, Jung JA, Cho HS, Yoon YJ (2017) One-pot combinatorial biosynthesis of glycosylated anthracyclines by cocultivation of Streptomyces strains producing aglycones and nucleotide deoxysugars. ACS Comb Sci 19(4):262–270

    Article  PubMed  CAS  Google Scholar 

  • Kodani S, Komaki H, Suzuki M, Kobayakawa F, Hemmi H (2015) Structure determination of a siderophore peucechelin from Streptomyces peucetius. Biometals 28(5):791–801

    Article  PubMed  CAS  Google Scholar 

  • Koirala N, Pandey RP, Parajuli P, Jung HJ, Sohng JK (2014a) Methylation and subsequent glycosylation of 7,8-dihydroxyflavone. J Biotechnol 184:128–137

    Article  PubMed  CAS  Google Scholar 

  • Koirala N, Pandey RP, Thang DV, Jung HJ, Sohng JK (2014b) Glycosylation and subsequent malonylation of isoflavonoids in E. coli: strain development, production and insights into future metabolic perspectives. J Ind Microbiol Biotechnol 41(11):1647–1658

    Article  PubMed  CAS  Google Scholar 

  • Lee NR, Rimal H, Lee JH, Oh TJ (2014) Characterization of dephosphocoenzyme a kinase from Streptomyces peucetius ATCC27952, and its application for doxorubicin overproduction. J Microbiol Biotechnol 24:1238–1244

    Article  PubMed  CAS  Google Scholar 

  • Lee CW, Lee JH, Rimal H, Park H, Lee JH, Oh TJ (2016) Crystal structure of cytochrome P450 (CYP105P2) from Streptomyces peucetius and its conformational changes in response to substrate binding. Int J Mol Sci 17(6):813

    Article  PubMed Central  CAS  Google Scholar 

  • Li W, Sharma M, Kaur P (2014) The DrrAB efflux system of Streptomyces peucetius is a multidrug transporter of broad substrate specificity. J Biol Chem 289(18):12633–12646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu JH, Yu BY (2010) Biotransformation of bioactive natural products for pharmaceutical lead compounds. Curr Org Chem 14(14):1400–1406

    Article  CAS  Google Scholar 

  • Luo Y, Enghiad B, Zhao H (2016) New tools for reconstruction and heterologous expression of natural product biosynthetic gene clusters. Nat Prod Rep 33(2):174–182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Madduri K, Torti F, Colombo AL, Hutchinson CR (1993) Cloning and sequencing of a gene encoding carminomycin 4-O-methyltransferase from Streptomyces peucetius and its expression in Escherichia coli. J Bacteriol 175(12):3900–3904

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malla S, Niraula NP, Singh B, Liou K, Sohng JK (2010) Limitations in doxorubicin production from Streptomyces peucetius. Microbiol Res 165(5):427–435

    Article  PubMed  CAS  Google Scholar 

  • Mandakh A, Niraula NP, Kim EP, Sohng JK (2010) Identification and characterization of a pantothenate kinase (PanK-sp) from Streptomyces peucetius ATCC 27952. J Microbiol Biotechnol 20(12):1689–1695

    PubMed  CAS  Google Scholar 

  • Miyamoto Y, Ohta S, Johdo O, Nagamatsu Y, Yoshimoto A (2000) Production of a new hybrid anthracycline 4-O-methylepelmycin by heterologous expression of dnrK in epelmycin-producing Streptomyces violaceus. J Antibiot 53(8):828–836

    Article  PubMed  CAS  Google Scholar 

  • Niraula NP, Kim SH, Sohng JK, Kim ES (2010a) Biotechnological doxorubicin production: pathway and regulation engineering of strains for enhanced production. Appl Microbiol Biotechnol 87(4):1187–1194

    Article  PubMed  CAS  Google Scholar 

  • Niraula NP, Shrestha P, Oh TJ, Sohng JK (2010b) Identification and characterization of a NADH oxidoreductase involved in phenylacetic acid degradation pathway from Streptomyces peucetius. Microbiol Res 165(8):649–656

    Article  PubMed  CAS  Google Scholar 

  • Niraula NP, Kanth BK, Sohng JK, Oh TJ (2011) Hydrogen peroxide-mediated dealkylation of 7-ethoxycoumarin by cytochrome P450 (CYP107AJ1) from Streptomyces peucetius ATCC27952. Enzym Microb Technol 48(2):181–186

    Article  CAS  Google Scholar 

  • Niraula NP, Bhattarai S, Lee NR, Sohng JK, Oh TJ (2012) Biotransformation of flavone by CYP105P2 from Streptomyces peucetius. J Microbiol Biotechnol 22(8):1059–1065

    Article  PubMed  CAS  Google Scholar 

  • Oh TJ, Niraula NP, Liou K, Sohng JK (2010) Identification of the duplicated genes for S-adenosyl-l-methionine synthetase (metK1-sp and metK2-sp) in Streptomyces peucetius var. caesius ATCC 27952. J Appl Microbiol 109(2):398–407

    PubMed  CAS  Google Scholar 

  • Paine M, Scrutton NS, Munro A, Gutierrez A, Roberts G, Wolf CR (2005) Electron transfer partners of cytochrome P450. In: Cytochrome P450: structure, mechaminism and biochemistry. Kluwer Academic/Plenum Publishers, New York, pp 115–148

    Chapter  Google Scholar 

  • Parajuli N, Basnet DB, Chan Lee H, Sohng JK, Liou K (2004) Genome analyses of Streptomyces peucetius ATCC 27952 for the identification and comparison of cytochrome P450 complement with other Streptomyces. Arch Biochem Biophys 425(2):233–241

    Article  PubMed  CAS  Google Scholar 

  • Parajuli N, Viet HT, Ishida K, Tong HT, Lee HC, Liou K, Sohng JK (2005) Identification and characterization of the afsR homologue regulatory gene from Streptomyces peucetius ATCC 27952. Res Microbiol 156(5–6):707–712

    Article  PubMed  CAS  Google Scholar 

  • Parajuli P, Pandey RP, Nguyen THT, Dhakal D, Sohng JK (2017) Substrate scope of O-methyltransferase from Streptomyces peucetius for biosynthesis of diverse natural products methoxides. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-017-2603-4

  • Park J, Wang HH (2018) Systematic and synthetic approaches to rewire regulatory networks. Curr Opin Syst Biol 8:90–96

    Article  Google Scholar 

  • Park HM, Kim BG, Chang D, Malla S, Joo HS, Kim EJ, Park SJ, Sohng JK, Kim PI (2013) Genome-based cryptic gene discovery and functional identification of NRPS siderophore peptide in Streptomyces peucetius. Appl Microbiol Biotechnol 97(3):1213–1222

    Article  PubMed  CAS  Google Scholar 

  • Phelan RM, Sachs D, Petkiewicz SJ, Barajas JF, Blake-Hedges JM, Thompson MG, Reider Apel A, Rasor BJ, Katz L, Keasling JD (2017) Development of next generation synthetic biology tools for use in Streptomyces venezuelae. ACS Synth Biol 6(1):159–166

    Article  PubMed  CAS  Google Scholar 

  • Pokhrel AR, Dhakal D, Jha AK, Sohng JK (2015) Herboxidiene biosynthesis, production, and structural modifications: prospect for hybrids with related polyketide. Appl Microbiol Biotechnol 99(20):8351–8362

    Article  PubMed  CAS  Google Scholar 

  • Pokhrel AR, Chaudhary AK, Nguyen HT, Dhakal D, Le TT, Shrestha A, Liou K, Sohng JK (2016) Overexpression of a pathway specific negative regulator enhances production of daunorubicin in bldA deficient Streptomyces peucetius ATCC 27952. Microbiol Res 192:96–102

    Article  PubMed  CAS  Google Scholar 

  • Prija F, Prasad R (2017) DrrC protein of Streptomyces peucetius removes daunorubicin from intercalated dnrI promoter. Microbiol Res 202:30–35

    Article  PubMed  CAS  Google Scholar 

  • Prija F, Srinivasan P, Das S, Kattusamy K, Prasad R (2017) DnrI of Streptomyces peucetius binds to the resistance genes, drrAB and drrC but is activated by daunorubicin. J Basic Microbiol 57(10):862–872

    Article  PubMed  CAS  Google Scholar 

  • Pröschel M, Detsch R, Boccaccini AR, Sonnewald U (2015) Engineering of metabolic pathways by artificial enzyme channels. Front Bioeng Biotechnol 3:168

    Article  PubMed  PubMed Central  Google Scholar 

  • Rebets YV, Ostash BO, Fukuhara M, Nakamura T, Fedorenko VO (2006) Expression of the regulatory protein LndI for landomycin E production in Streptomyces globisporus 1912 is controlled by the availability of tRNA for the rare UUA codon. FEMS Microbiol Lett 256(1):30–37

    Article  PubMed  CAS  Google Scholar 

  • Rimal H, Lee SW, Lee JH, Oh TJ (2015a) Understanding of real alternative redox partner of Streptomyces peucetius DoxA: prediction and validation using in silico and in vitro analyses. Arch Biochem Biophys 585:64–74

    Article  PubMed  CAS  Google Scholar 

  • Rimal H, Yu SC, Jang JH, Oh TJ (2015b) Homology modeling and in vitro analysis for characterization of Streptomyces peucetius CYP157C4. J Microbiol Biotechnol 25(9):1417–1424

    Article  PubMed  CAS  Google Scholar 

  • Romero A, Ruiz B, Sohng JK, Koirala N, Rodríguez-Sanoja R, Sánchez S (2015) Functional analysis of the GlcP promoter in Streptomyces peucetius var. caesius. Appl Biochem Biotechnol 175(6):3207–3217

    Article  PubMed  CAS  Google Scholar 

  • Rudolf JD, Chang CY, Ma M, Shen B (2017) Cytochromes P450 for natural product biosynthesis in Streptomyces: sequence, structure, and function. Nat Prod Rep 34(9):1141–1172

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ruiz-Villafán B, Rodríguez-Sanoja R, Aguilar-Osorio G, Gosset G, Sanchez S (2014) Glucose kinases from Streptomyces peucetius var. caesius. Appl Microbiol Biotechnol 98(13):6061–6071

    Article  PubMed  CAS  Google Scholar 

  • Shrestha P, Oh TJ, Liou K, Sohng JK (2008a) Cytochrome P450 (CYP105F2) from Streptomyces peucetius and its activity with oleandomycin. Appl Microbiol Biotechnol 79(4):555–562

    Article  PubMed  CAS  Google Scholar 

  • Shrestha P, Oh TJ, Sohng JK (2008b) Designing a whole-cell biotransformation system in Escherichia coli using cytochrome P450 from Streptomyces peucetius. Biotechnol Lett 30(6):1101–1106

    Article  PubMed  CAS  Google Scholar 

  • Shrestha P, Oh TJ, Niraula NP, Liou K, Yoo JC, Sohng JK (2010) Characterization of CYP166B1 and its electron transfer system in Streptomyces peucetius var. caesius ATCC 27952. Enzym Microb Technol 46(5):372–377

    Article  CAS  Google Scholar 

  • Singh B, Oh TJ, Sohng JK (2009) Exploration of geosmin synthase from Streptomyces peucetius ATCC 27952 by deletion of doxorubicin biosynthetic gene cluster. J Ind Microbiol Biotechnol 36(10):1257–1265

    Article  PubMed  CAS  Google Scholar 

  • Singh B, Lee CB, Sohng JK (2010) Precursor for biosynthesis of sugar moiety of doxorubicin depends on rhamnose biosynthetic pathway in Streptomyces peucetius ATCC 27952. Appl Microbiol Biotechnol 85(5):1565–1574

    Article  PubMed  CAS  Google Scholar 

  • Singh B, Lee CB, Park JW, Sohng JK (2012) The amino acid sequences in the C-terminal region of glucose-1-phosphate thymidylyltransferases determine their soluble expression in Escherichia coli. Protein Eng Des Sel 25(4):179–187

    Article  PubMed  CAS  Google Scholar 

  • Singh B, Oh TJ, Sohng JK (2013) Exploration of two epimerase homologs in Streptomyces peucetius ATCC 27952. Appl Microbiol Biotechnol 97(6):2493–2502

    Article  PubMed  CAS  Google Scholar 

  • Smanski MJ, Zhou H, Claesen J, Shen B, Fischbach MA, Voigt CA (2016) Synthetic biology to access and expand nature’s chemical diversity. Nat Rev Microbiol 14(3):135–149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song E, Malla S, Yang YH, Lee K, Kim EJ, Lee HC, Sohng JK, Oh MK, Kim BG (2011) Proteomic approach to enhance doxorubicin production in panK-integrated Streptomyces peucetius ATCC 27952. J Ind Microbiol Biotechnol 38(9):1245–1253

    Article  PubMed  CAS  Google Scholar 

  • Thuan NH, Pandey RP, Sohng JK (2014) Recent advances in biochemistry and biotechnological synthesis of avermectins and their derivatives. Appl Microbiol Biotechnol 98(18):7747–7759

    Article  PubMed  CAS  Google Scholar 

  • Vasanthakumar A, Kattusamy K, Prasad R (2013) Regulation of daunorubicin biosynthesis in Streptomyces peucetius—feed forward and feedback transcriptional control. J Basic Microbiol 53(8):636–644

    Article  PubMed  CAS  Google Scholar 

  • Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D (2007) Genomics of actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 71(3):495–548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xue Y, Wilson D, Zhao L, Liu HW, Sherman DH (1998) Hydroxylation of macrolactones YC-17 and narbomycin is mediated by the pikC-encoded cytochrome P450 in Streptomyces venezuelae. Chem Biol 5(11):661–667

    Article  PubMed  CAS  Google Scholar 

  • Zhang MM, Wang Y, Ang EL, Zhao H (2016) Engineering microbial hosts for production of bacterial natural products. Nat Prod Rep 33(8):963–987

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ziemert N, Alanjary M, Weber T (2016) The evolution of genome mining in microbes—a review. Nat Prod Rep 33(8):988–1005

    Article  PubMed  CAS  Google Scholar 

  • Zubieta C, He XZ, Dixon RA, Noel JP (2001) Structures of two natural product methyltransferases reveal the basis for substrate specificity in plant O-methyltransferases. Nat Struct Biol 8(3):271–279

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (NRF-2017R1A2A2A05000939 and NRF-2017R1D1A1B03036273).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Kyung Sohng.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thuan, N.H., Dhakal, D., Pokhrel, A.R. et al. Genome-guided exploration of metabolic features of Streptomyces peucetius ATCC 27952: past, current, and prospect. Appl Microbiol Biotechnol 102, 4355–4370 (2018). https://doi.org/10.1007/s00253-018-8957-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-8957-x

Keywords

Navigation