Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 10, pp 4511–4522 | Cite as

Metabolic engineering of Clostridium tyrobutyricum for enhanced butyric acid production with high butyrate/acetate ratio

  • Yukai Suo
  • Mengmeng Ren
  • Xitong Yang
  • Zhengping Liao
  • Hongxin Fu
  • Jufang Wang
Bioenergy and biofuels
  • 383 Downloads

Abstract

Butyric acid fermentation by Clostridium couples with the synthesis of acetic acid. But the presence of acetic acid reduces butyric acid yield and increases separation and purification costs of butyric acid. Hence, enhancing the butyrate/acetate ratio is important for economical butyric acid production. This study indicated that enhancing the acetyl-CoA to butyrate flux by overexpression of both the butyryl-CoA/acetate CoA transferase (cat1) and crotonase (crt) genes in C. tyrobutyricum could significantly reduce acetic acid concentration. Fed-batch fermentation of ATCC 25755/cat1 + crt resulted in increased butyrate/acetate ratio of 15.76 g/g, which was 2.24-fold higher than that of the wild-type strain. Furthermore, in order to simultaneously increase the butyrate/acetate ratio, butyric acid concentration and productivity, the recombinant strain ATCC 25755/ppcc (co-expression of 6-phosphofructokinase (pfkA) gene, pyruvate kinase (pykA) gene, cat1, and crt) was constructed. Consequently, ATCC 25755/ppcc produced more butyric acid (46.8 vs. 35.0 g/L) with a higher productivity (0.83 vs. 0.49 g/L·h) and butyrate/acetate ratio (13.22 vs. 7.22 g/g) as compared with the wild-type strain in batch fermentation using high glucose concentration (120 g/L). This study demonstrates that enhancing the acetyl-CoA to butyrate flux is an effective way to reduce acetic acid production and increase butyrate/acetate ratio.

Keywords

Metabolic engineering Butyric acid Clostridium tyrobutyricum Butyrate/acetate ratio Butyryl-CoA/acetate CoA transferase Crotonase 

Notes

Funding

This work was funded by the National Natural Science Foundation of China (21676098), the State Key Laboratory of Pulp and Paper Engineering (2017C03), the China Postdoctoral Science Foundation Funded Project (2017M612667), and the Fundamental Research Funds for the Central Universities (2017BQ084).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Baek JM, Mazumdar S, Lee SW, Jung MY, Lim JH, Seo SW, Jung GY, Oh MK (2013) Butyrate production in engineered Escherichia coli with synthetic scaffolds. Biotechnol Bioeng 110(10):2790–2794.  https://doi.org/10.1002/bit.24925 CrossRefPubMedGoogle Scholar
  2. Blank-Porat D, Gruss-Fischer T, Tarasenko N, Malik Z, Nudelman A, Rephaeli A (2007) The anticancer prodrugs of butyric acid AN-7 and AN-9, possess antiangiogenic properties. Cancer Lett 256(1):39–48.  https://doi.org/10.1016/j.canlet.2007.05.011 CrossRefPubMedGoogle Scholar
  3. Choi O, Um Y, Sang BI (2012) Butyrate production enhancement by Clostridium tyrobutyricum using electron mediators and a cathodic electron donor. Biotechnol Bioeng 109(10):2494–2502.  https://doi.org/10.1002/bit.24520 CrossRefPubMedGoogle Scholar
  4. Dwidar M, Park JY, Mitchell RJ, Sang BI (2012) The future of butyric acid in industry. Sci World J 2012:471417–471410.  https://doi.org/10.1100/2012/471417 CrossRefGoogle Scholar
  5. Fu HX, Wang XD, Sun YQ, Yan L, Shen JT, Wang JF, Yang ST, Xiu ZL (2017a) Effects of salting-out and salting-out extraction on the separation of butyric acid. Sep Purif Technol 180(8):44–50.  https://doi.org/10.1016/j.seppur.2017.02.042 CrossRefGoogle Scholar
  6. Fu HX, Yu L, Lin M, Wang JF, Xiu ZL, Yang ST (2017b) Metabolic engineering of Clostridium tyrobutyricum for enhanced butyric acid production from glucose and xylose. Metab Eng 40:50–58.  https://doi.org/10.1016/j.ymben.2016.12.014 CrossRefPubMedGoogle Scholar
  7. Hartmanis MG, Gatenbeck S (1984) Intermediary metabolism in Clostridium acetobutylicum: levels of enzymes involved in the formation of acetate and butyrate. Appl Environ Microbiol 47(6):1277–1283PubMedPubMedCentralGoogle Scholar
  8. Heap JT, Pennington OJ, Cartman ST, Minton NP (2009) A modular system for Clostridium shuttle plasmids. J Microbiol Methods 78(1):79–85.  https://doi.org/10.1016/j.mimet.2009.05.004 CrossRefPubMedGoogle Scholar
  9. Inui M, Suda M, Kimura S, Yasuda K, Suzuki H, Toda H, Yamamoto S, Okino S, Suzuki N, Yukawa H (2008) Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl Microbiol Biotechnol 77(6):1305–1316.  https://doi.org/10.1007/s00253-007-1257-5 CrossRefPubMedGoogle Scholar
  10. Jang YS, Lee JY, Lee J, Park JH, Im JA, Eom MH, Lee J, Lee SH, Song H, Cho JH (2012) Enhanced Butanol production obtained by reinforcing the direct Butanol-forming route in Clostridium acetobutylicum. mBio 3(5):e00314–e00312.  https://doi.org/10.1128/mBio.00314-12 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Jang YS, Woo HM, Im JA, Kim IH, Lee SY (2013) Metabolic engineering of Clostridium acetobutylicum for enhanced production of butyric acid. Appl Microbiol Biotechnol 97(21):9355–9363.  https://doi.org/10.1007/s00253-013-5161-x CrossRefPubMedGoogle Scholar
  12. Jang YS, Im JA, Choi SY, Lee JI, Lee SY (2014) Metabolic engineering of Clostridium acetobutylicum for butyric acid production with high butyric acid selectivity. Metab Eng 23:165–174.  https://doi.org/10.1016/j.ymben.2014.03.004 CrossRefPubMedGoogle Scholar
  13. Jiang L, Wang JF, Liang SZ, Wang XN, Cen PL, Xu ZN (2009) Butyric acid fermentation in a fibrous bed bioreactor with immobilized Clostridium tyrobutyricum from cane molasses. Bioresour Technol 100(13):3403–3409.  https://doi.org/10.1016/j.biortech.2009.02.032 CrossRefPubMedGoogle Scholar
  14. Jiang L, Wang JF, Liang SZ, Wang XN, Cen PL, Xu ZN (2010a) Production of butyric acid from glucose and xylose with immobilized cells of Clostridium tyrobutyricum in a fibrous-bed bioreactor. Appl Biochem Biotechnol 160(2):350–359.  https://doi.org/10.1007/s12010-008-8305-1 CrossRefPubMedGoogle Scholar
  15. Jiang L, Cai J, Wang JF, Liang SZ, Xu ZN, Yang ST (2010b) Phosphoenolpyruvate-dependent phosphorylation of sucrose by Clostridium tyrobutyricum ZJU 8235: evidence for the phosphotransferase transport system. Bioresour Technol 101(1):304–309.  https://doi.org/10.1016/j.biortech.2009.08.024 PubMedCrossRefGoogle Scholar
  16. Jiang L, Wang JF, Liang SZ, Cai J, Xu ZN (2011a) Control and optimization of Clostridium tyrobutyricum ATCC 25755 adhesion into fibrous matrix in a fibrous bed bioreactor. Appl Biochem Biotechnol 165(1):98–108.  https://doi.org/10.1007/s12010-011-9236-9 CrossRefPubMedGoogle Scholar
  17. Jiang L, Wang JF, Liang SZ, Cai J, Xu ZN, Cen PL, Yang ST, Li S (2011b) Enhanced butyric acid tolerance and bioproduction by Clostridium tyrobutyricum immobilized in a fibrous bed bioreactor. Biotechnol Bioeng 108(1):31–40.  https://doi.org/10.1002/bit.22927 CrossRefPubMedGoogle Scholar
  18. Jiang L, Li S, Hu Y, Xu Q, Huang H (2012) Adaptive evolution for fast growth on glucose and the effects on the regulation of glucose transport system in Clostridium tyrobutyricum. Biotechnol Bioeng 109(3):708–718.  https://doi.org/10.1002/bit.23346 CrossRefPubMedGoogle Scholar
  19. Jiang L, Zhu LY, Xu X, Li YP, Li S, Huang H (2013) Genome sequence of Clostridium tyrobutyricum ATCC 25755, a butyric acid-overproducing strain. Genome Announc 1(3):e00308–e00313.  https://doi.org/10.1128/genomeA.00308-13 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kataoka N, Vangnai AS, Pongtharangkul T, Yakushi T, Matsushita K (2017) Butyrate production under aerobic growth conditions by engineered Escherichia coli. J Biosci Bioeng 123(5):562–568.  https://doi.org/10.1016/j.jbiosc.2016.12.008 CrossRefPubMedGoogle Scholar
  21. Lara AR, Galindo E, Ramírez OT, Palomares LA (2006) Living with heterogeneities in bioreactors: understanding the effects of environmental gradients on cells. Mol Biotechnol 34(3):355–381.  https://doi.org/10.1385/MB:34:3:355 CrossRefPubMedGoogle Scholar
  22. Lee J, Jang YS, Han MJ, Kim JY, Lee SY (2016) Deciphering Clostridium tyrobutyricum metabolism based on the whole-genome sequence and proteome analyses. mBio 7(3):e00743–e00716.  https://doi.org/10.1128/mBio.00743-16 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Liu XG, Zhu Y, Yang ST (2006) Construction and characterization of ack deleted mutant of Clostridium tyrobutyricum for enhanced butyric acid and hydrogen production. Biotechnol Prog 22(5):1265–1275.  https://doi.org/10.1021/bp060082g CrossRefPubMedGoogle Scholar
  24. Malaviya A, Jang YS, Lee SY (2012) Continuous butanol production with reduced byproducts formation from glycerol by a hyper producing mutant of Clostridium pasteurianum. Appl Microbiol Biotechnol 93(4):1485–1494.  https://doi.org/10.1007/s00253-011-3629-0 CrossRefPubMedGoogle Scholar
  25. Mann MS, Lutke-Eversloh T (2013) Thiolase engineering for enhanced butanol production in Clostridium acetobutylicum. Biotechnol Bioeng 110(3):887–897.  https://doi.org/10.1002/bit.24758 CrossRefPubMedGoogle Scholar
  26. Michel-Savin D, Marchal R, Vandecasteele JP (1990a) Butyrate production in continuous culture of Clostridium tyrobutyricum: effect of end-product inhibition. Appl Microbiol Biotechnol 33(2):127–131CrossRefGoogle Scholar
  27. Michel-Savin D, Marchal R, Vandecasteele JP (1990b) Control of the selectivity of butyric acid production and improvement of fermentation performance with Clostridium tyrobutyricum. Appl Microbiol Biotechnol 32(4):387–392CrossRefGoogle Scholar
  28. Polansky O, Sekelova Z, Faldynova M, Sebkova A, Sisak F, Rychlik I (2016) Important metabolic pathways and biological processes expressed by chicken cecal microbiota. Appl Environ Microbiol 82(5):1569–1576.  https://doi.org/10.1128/aem.03473-15 CrossRefPubMedCentralGoogle Scholar
  29. Rephaeli A, Zhuk R, Nudelman A (2000) Prodrugs of butyric acid from bench to bedside: synthetic design, mechanisms of action, and clinical applications. Drug Develop Res 50(3-4):379–391. https://doi.org/10.1002/1098-2299(200007/08)50:3/4<379::AID-DDR20>3.0.CO;2-8Google Scholar
  30. Saini M, Wang ZW, Chiang CJ, Chao YP (2014) Metabolic engineering of Escherichia coli for production of butyric acid. J Agric Food Chem 62(19):4342–4348.  https://doi.org/10.1021/jf500355p CrossRefPubMedGoogle Scholar
  31. Sillers R, Al-Hinai MA, Papoutsakis ET (2009) Aldehyde-alcohol dehydrogenase and/or thiolase overexpression coupled with CoA transferase downregulation lead to higher alcohol titers and selectivity in Clostridium acetobutylicum fermentations. Biotechnol Bioeng 102(1):38–49.  https://doi.org/10.1002/bit.22058 CrossRefPubMedGoogle Scholar
  32. Suo YK, Luo S, Zhang YN, Liao ZP, Wang JF (2017) Enhanced butyric acid tolerance and production by class I heat shock protein-overproducing Clostridium tyrobutyricum ATCC 25755. J Ind Microbiol Biotechnol 44(8):1145–1156.  https://doi.org/10.1007/s10295-017-1939-7 CrossRefPubMedGoogle Scholar
  33. Suo YK, Fu HX, Ren MM, Liao ZP, Ma Y, Wang JF (2018) Enhanced butyric acid production in Clostridium tyrobutyricum by overexpression of rate-limiting enzymes in the Embden-Meyerhof-Parnas pathway. J Biotechnol 272-273:14–21.  https://doi.org/10.1016/j.jbiotec.2018.02.012 CrossRefPubMedGoogle Scholar
  34. Tummala SB, Welker NE, Papoutsakis ET (1999) Development and characterization of a gene expression reporter system for Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 65(9):3793–3799PubMedPubMedCentralGoogle Scholar
  35. Volker AR, Gogerty DS, Bartholomay C, Hennen-Bierwagen T, Zhu HL, Bobik TA (2014) Fermentative production of short-chain fatty acids in Escherichia coli. Microbiology 160:1513–1522.  https://doi.org/10.1099/mic.0.078329-0 CrossRefPubMedGoogle Scholar
  36. Wang Y, Li XZ, Milne CB, Janssen H, Lin WY, Phan G, Hu HY, Jin YS, Price ND, Blaschek HP (2013) Development of a gene knockout system using mobile group II introns (Targetron) and genetic disruption of acid production pathways in Clostridium beijerinckii. Appl Environ Microbiol 79(19):5853–5863.  https://doi.org/10.1128/aem.00971-13 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Wang SH, Dong S, Wang PX, Tao Y, Wang Y (2017) Genome editing in Clostridium saccharoperbutylacetonicum N1-4 with the CRISPR-Cas9 system. Appl Environ Microbiol 83(10):e00233–e00217.  https://doi.org/10.1128/aem.00233-17 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Wiesenborn DP, Rudolph FB, Papoutsakis ET (1988) Thiolase from Clostridium acetobutylicum ATCC 824 and its role in the synthesis of acids and solvents. Appl Environ Microbiol 54(11):2717–2722PubMedPubMedCentralGoogle Scholar
  39. Williams DR, Young DI, Young M (1990) Conjugative plasmid transfer from Escherichia coli to Clostridium acetobutylicum. J Gen Microbiol 136(5):819–826.  https://doi.org/10.1099/00221287-136-5-819 CrossRefPubMedGoogle Scholar
  40. Yu MR, Zhang YL, Tang IC, Yang ST (2011) Metabolic engineering of Clostridium tyrobutyricum for n-butanol production. Metab Eng 13(4):373–382.  https://doi.org/10.1016/j.ymben.2011.04.002 CrossRefPubMedGoogle Scholar
  41. Yu MR, Du YM, Jiang WY, Chang WL, Yang ST, Tang IC (2012) Effects of different replicons in conjugative plasmids on transformation efficiency, plasmid stability, gene expression and n-butanol biosynthesis in Clostridium tyrobutyricum. Appl Microbiol Biotechnol 93(2):881–889.  https://doi.org/10.1007/s00253-011-3736-y CrossRefPubMedGoogle Scholar
  42. Yu L, Xu MM, Tang IC, Yang ST (2015a) Metabolic engineering of Clostridium tyrobutyricum for n-butanol production through co-utilization of glucose and xylose. Biotechnol Bioeng 112(10):2134–2141.  https://doi.org/10.1002/bit.25613 CrossRefPubMedGoogle Scholar
  43. Yu L, Xu MM, Tang IC, Yang ST (2015b) Metabolic engineering of Clostridium tyrobutyricum for n-butanol production from maltose and soluble starch by overexpressing α-glucosidase. Appl Microbiol Biotechnol 99(14):6155–6165.  https://doi.org/10.1007/s00253-015-6680-4 CrossRefPubMedGoogle Scholar
  44. Zhang CH, Yang H, Yang FX, Ma YJ (2009) Current progress on butyric acid production by fermentation. Curr Microbiol 59(6):656–663.  https://doi.org/10.1007/s00284-009-9491-y CrossRefPubMedGoogle Scholar
  45. Zhang YL, Yu MR, Yang ST (2012) Effects of ptb knockout on butyric acid fermentation by Clostridium tyrobutyricum. Biotechnol Prog 28(1):52–59.  https://doi.org/10.1002/btpr.730 CrossRefPubMedGoogle Scholar
  46. Zhang JZ, Yu L, Xu MM, Yang ST, Yan QJ, Lin M, Tang IC (2017) Metabolic engineering of Clostridium tyrobutyricum for n-butanol production from sugarcane juice. Appl Microbiol Biotechnol 101(10):4327–4337.  https://doi.org/10.1007/s00253-017-8200-1 CrossRefPubMedGoogle Scholar
  47. Zhao Y, Tomas CA, Rudolph FB, Papoutsakis ET, Bennett GN (2005) Intracellular Butyryl phosphate and acetyl phosphate concentrations in Clostridium acetobutylicum and their implications for solvent formation. Appl Environ Microbiol 71(1):530–537.  https://doi.org/10.1128/AEM.71.1.530-537.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Zheng YN, Li LZ, Xian M, Ma YJ, Yang JM, Xu X, He DZ (2009) Problems with the microbial production of butanol. J Ind Microbiol Biotechnol 36(9):1127–1138.  https://doi.org/10.1007/s10295-009-0609-9 CrossRefPubMedGoogle Scholar
  49. Zhou X, Lu XH, Li XH, Xin ZJ, Xie JR, Zhao MR, Wang L, Du WY, Liang JP (2014) Radiation induces acid tolerance of Clostridium tyrobutyricum and enhances bioproduction of butyric acid through a metabolic switch. Biotechnol Biofuels 7:22.  https://doi.org/10.1186/1754-6834-7-22 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Zhu Y, Yang ST (2004) Effect of pH on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricum. J Biotechnol 110(2):143–157.  https://doi.org/10.1016/j.jbiotec.2004.02.006 CrossRefPubMedGoogle Scholar
  51. Zhu Y, Liu XG, Yang ST (2005) Construction and characterization of pta gene-deleted mutant of Clostridium tyrobutyricum for enhanced butyric acid fermentation. Biotechnol Bioeng 90(2):154–166.  https://doi.org/10.1002/bit.20354 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
  2. 2.State Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations