Production of l-valine from metabolically engineered Corynebacterium glutamicum

Mini-Review

Abstract

l-Valine is one of the three branched-chain amino acids (valine, leucine, and isoleucine) essential for animal health and important in metabolism; therefore, it is widely added in the products of food, medicine, and feed. l-Valine is predominantly produced through microbial fermentation, and the production efficiency largely depends on the quality of microorganisms. In recent years, continuing efforts have been made in revealing the mechanisms and regulation of l-valine biosynthesis in Corynebacterium glutamicum, the most utilitarian bacterium for amino acid production. Metabolic engineering based on the metabolic biosynthesis and regulation of l-valine provides an effective alternative to the traditional breeding for strain development. Industrially competitive l-valine-producing C. glutamicum strains have been constructed by genetically defined metabolic engineering. This article reviews the global metabolic and regulatory networks responsible for l-valine biosynthesis, the molecular mechanisms of regulation, and the strategies employed in C. glutamicum strain engineering.

Keywords

Corynebacterium glutamicum l-Valine Metabolic engineering Branched-chain amino acids Microbial fermentation l-Valine biosynthesis Metabolic regulation Strain development Global metabolic and regulatory networks Strain engineering 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31370131), Post-graduate Research & Practice Innovation Program of Jiangsu Province (CXZZ12-0755), and the Collaborative Innovation Center of Jiangsu Modern Industrial Fermentation.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subject.

References

  1. Abatemarco J, Hill A, Alper HS (2013) Expanding the metabolic engineering toolbox with directed evolution. Biotechnol J 8:1397–1410CrossRefPubMedGoogle Scholar
  2. Aoki R, Wada M, Takesue N, Tanaka K, Yokota A (2005) Enhanced glutamic acid production by a H+-ATPase-defective mutant of Corynebacterium glutamicum. Biosci Biotechnol Biochem 69:1466–1472CrossRefPubMedGoogle Scholar
  3. Aparicio M, Cano NJ, Cupisti A, Ecder T, Fouque D, Garneata L, Liou HH, Lin S, Schober-Halstenberg HJ, Teplan V, Zakar G (2009) Keto-acid therapy in predialysis chronic kidney disease patients: consensus statements. J Ren Nutr 19:S33–S35CrossRefPubMedGoogle Scholar
  4. Bailey JE (1991) Towards a science of metabolic engineering. Science 252:1668–1674CrossRefPubMedGoogle Scholar
  5. Bartek T, Blombach B, Zönnchen E, Makus P, Lang S, Eikmanns BJ, Oldiges M (2010a) Importance of NADPH supply for improved L-valine formation in Corynebacterium glutamicum. Biotechnol Prog 26:361–371PubMedGoogle Scholar
  6. Bartek T, Zonnchen E, Klein B, Gerstmeir R, Makus P, Lang S, Oldiges M (2010b) Analysing overexpression of L-valine biosynthesis genes in pyruvate-dehydrogenase-deficient Corynebacterium glutmicum. J Ind Microbial Biotechnol 37:263–270CrossRefGoogle Scholar
  7. Blombach B, Schreiner ME, Holátko J, Bartek T, Oldiges M, Eikmanns BJ (2007) L-valine production with pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum. Appl Environ Microbio 73:2079–2084CrossRefGoogle Scholar
  8. Blombach B, Schreiner ME, Bartek T, Oldiges M, Eikmanns BJ (2008) Corynebacterium glutamicum tailored for high-yield L-valine production. Appl Microbiol Biotechnol 79:471–479CrossRefPubMedGoogle Scholar
  9. Blombach B, Arndt A, Auchter M, Eikmanns BJ (2009) L-valine production during growth of pyruvate dehydrogenase complex deficient Corynetacterium glutamicum in the presence of ethanol or by inactivation of the transcriptional regulator Sug R. Appl Environ Microbio 75:1197–1200CrossRefGoogle Scholar
  10. Buchholz J, Schwentner A, Brunnenkan B, Gabris C, Grimm S, Gerstmeir R, Takors R, Eikmanns BJ, Blombach B (2013) Platform engineering of Corynebacterium glutamicum with reduced pyruvate dehydrogenase complex activity for improved production of L-lysine, L-valine, and 2-ketoisovalerate. Appl Environ Microbio 79:5566–5575CrossRefGoogle Scholar
  11. Buckle-Vallant V, Krause FS, Messerschmidt S, Eikmanns BJ (2014) Metabolic engineering of Corynebacterium glutamicum for 2-ketoisocaproate production. Appl Microbiol Biotechnol 98:297–311CrossRefPubMedGoogle Scholar
  12. Chang JH, Kim DK, Park JT, Kang EW, Yoo TH, Kim BS, Choi KH, Lee HY, Han D-S, Shin SK (2009) Influence of ketoanalogs supplementation on the progression in chronic kidney disease patients who had training on low-protein diet. Nephrology 14:750–757CrossRefPubMedGoogle Scholar
  13. Chattopadhyay SP, Banerjee AK (1978) Production of valine by a Bacillus-SP. Z Allg Mikrobiol 18:243–254CrossRefPubMedGoogle Scholar
  14. Chen C, Li Y, Hu J, Dong X, Wang X (2015) Metabolic engineering of Corynebacterium glutamicum ATCC13869 for L-valine production. Metab Eng 29:66–75CrossRefPubMedGoogle Scholar
  15. Chen X, Liu S, Peng B, Li D, Cheng Z, Zhu J, Zhang S, Peng Y, Li H, Zhang T, Peng X (2017) Exogenous L-valine promotes phagocytosis to kill multidrug-resistant bacterial pathogens. Front Immunol 8:207PubMedPubMedCentralGoogle Scholar
  16. Cho JS, Choi KR, Prabowo CPS, Shin JH, Yang D, Jang J, Lee SY (2017) CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum. Metab Eng 42:157–167CrossRefPubMedGoogle Scholar
  17. Cleto S, Jensen JV, Wendisch VF, Lu TK (2016) Corynebacterium glutamicum metabolic engineering with CRISPR interference (CRISPRi). ACS Synth Biol 5:375–385CrossRefPubMedPubMedCentralGoogle Scholar
  18. Denina I, Paegle L, Prouza M, Holatko J, Patek M, Nesvera J, Ruklisha M (2010) Factors enhancing L-valine production by the growth-limited L-isoleucine auxotrophic strain Corynebacterium glutamicum Delta ilvA Delta panB ilvNM13 (pECKAilvBNC). J Ind Microbiol Biotechnol 37:689–699CrossRefPubMedGoogle Scholar
  19. Eikmanns BJ, Blombach B (2014) The pyruvate dehydrogenase complex of Corynebacterium glutamicum: an attractive target for metabolic engineering. J Biotechnol 192:339–345CrossRefPubMedGoogle Scholar
  20. Elena C, Ravasi P, Castelli ME, Peiru S, Menzella HG (2014) Expression of codon optimized genes in microbial systems: current industrial applications and perspectives. Fornt Microbiol 5:21Google Scholar
  21. Elisakova V, Patek M, Holatko J, Nesvera J, Leyval D, Goergen JL, Delaunay S (2005) Feedback-resistant acetohydroxy acid synthase increases valine production in Corynebacterium glutamicum. Appl Environ Microbiol 71:207–213CrossRefPubMedPubMedCentralGoogle Scholar
  22. Eyal AM, Bressler E (1993) Industrial separation of carboxylic and amino-acids by liquid membranes—applicability, process considerations and potential advantages. Biotechnol Bioeng 41:287–295CrossRefPubMedGoogle Scholar
  23. Gedi V, Yoon MY (2012) Bacterial acetohydroxyacid synthase and its inhibitors—a summary of their structure, biological activity and current status. FEBS J 279:946–963CrossRefPubMedGoogle Scholar
  24. Gu P, Su T, Qi Q (2016) Novel technologies provide more engineering strategies for amino acid-producing microorgansms. Appl Microbiol Biotech 100:2097–2115CrossRefGoogle Scholar
  25. Guo YF, Han M, Xu JZ, Zhang WG (2015) Analysis of acetohydroxyacid synthase variants from branched-chain amino acids-producing strains and their effects on the synthesis of branched-chain amino acids in Corynebacterium glutamicum. Protein Expr Purif 109:106–112CrossRefPubMedGoogle Scholar
  26. Hao N, Yan M, Zhou H, Liu HM, Cai P, Ouyang PK (2010) The effect of AmtR on growth and amino acids production in Corynebacterium glutamicum. Appl Biochem Microbiol 46(6):561–566CrossRefGoogle Scholar
  27. Hasegawa S, Uematsu K, Natsuma Y, Suda M, Hiraga K, Jojima T, Inui M, Yukawa H (2012) Improvement of the redox balance increases L-valine production by Corynebacterium glutamicum under oxygen deprivation. Appl Environ Microbiol 78:865–875CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hasegawa S, Suda M, Uematsu K, Natsuma Y, Hiraga K, Jojima T, Inui M, Yukawa H (2013) Engineering of Corynebacterium glutamicum for high-yield L-valine production under oxygen deprivation conditions. Appl Environ Microbiol 79:1250–1257CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hasegawa S, Tanaka Y, Suda M, Jojima T, Inui M (2017) Enhanced glucose consumption and organic acid production by engineered Corynebacterium glutamicum based on analysis of a pfkB1 deletion mutant. Appl Environ Microbiol 83:e02638–e02616CrossRefPubMedPubMedCentralGoogle Scholar
  30. Holatko J, Elisakova V, Prouza M, Sobotka M, Nesvera J, Patek M (2009) Metabolic engineering of the L-valine biosynthesis pathway in Corynebacterium glutamicum using promoter activity modulation. J Biotechnol 139:203–210CrossRefPubMedGoogle Scholar
  31. Hou X, Chen X, Zhang Y, Qian H, Zhang W (2012) L-Valine production with minimization of by-products’ synthesis in Corynebacterium glutamicum and Brevibacterium flavum. Amino Acids 43:2301–2311CrossRefPubMedGoogle Scholar
  32. Hu J, Tan Y, Li Y, Hu X, Xu D, Wang X (2013) Construction and application of an efficient multiple-gene-deletion system in Corynebacterium glutamicum. Plasmid 70:303–313CrossRefPubMedGoogle Scholar
  33. Hu J, Li Y, Zhang H, Tan Y, Wang X (2014) Construction of a novel expression system for use in Corynebacterium glutamicum. Plasmid 75:18–26CrossRefPubMedGoogle Scholar
  34. Imam S, Schaeuble S, Brooks AN, Baliga NS, Price ND (2015) Data-driven integration of genome-scale regulatory and metabolic network. Front Microbiol 6:1–10CrossRefGoogle Scholar
  35. Jojima T, Inui M (2015) Engineering the glycolytic pathway: a potential approach for improvement of biocatalyst performance. Bioengineered 6:328–334CrossRefPubMedPubMedCentralGoogle Scholar
  36. Jones CM, Hernandez LN, Pfleger BF (2015) Efflux systems in bacteria and their metabolic engineering applications. Appl Microbiol Biotechnol 99:9381–9393CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Krämer R, Linke B, McHardy AC, Meyer F, Möckel B, Pfefferle W, Pühler A, Rey DA, Rückert C, Rupp O, Sahm H, Wendisch VF, Wiegräbe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25CrossRefPubMedGoogle Scholar
  38. Karau A, Grayson I (2014) Amino acids in human and animal nutrition. Adv Biochem Eng Biotechnol 143:189–228PubMedGoogle Scholar
  39. Kass F, Prasad A, Tillack J, Moch M, Giese H, Buchs V, Wiechert W, Oldiges M (2014) Rapid assessment of oxygen transfer impact for Corynebacterium glutamicum. Bioprocess Biosyst Eng 37:2567–2577CrossRefPubMedGoogle Scholar
  40. Keilhauer C, Eggeling L, Sahm H (1993) Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon. J Bacteriol 175:5595–5603CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kennerknecht N, Sahm H, Yen MR, Pátek M, Saier MH, Eggeling L (2002) Export of L-isoleucine from Corynebacterium glutamicum: a two-gene-encoded member of a new translocator family. J Bacteriol 184:3947–3956CrossRefPubMedPubMedCentralGoogle Scholar
  42. Khachatryan AZ, Durgar'Yan SS, Martirosov SM (1986) Dependence of valine production by Serratia marcescens on the ion composition of the fermentation medium. Prikladnaya Biokhimiya i Mikrobiologiya 22:554–556Google Scholar
  43. Kondo A, Ishii J, Hara KY, Hasunuma T, Matsuda F (2013) Development of microbial cell factories for bio-refinery through synthetic bioengineering. J Biotechnol 163:204–216CrossRefPubMedGoogle Scholar
  44. Krause FS, Blombach B, Eikmanns BJ (2010) Metabolic engineering of Corynebacterium glutamicum for 2-ketoisovalerate production. Appl Environ Microbiol 76:8053–8061CrossRefPubMedPubMedCentralGoogle Scholar
  45. Lange C, Mustafi N, Frunzke J, Kennerknecht N, Wessel M, Bott M, Wendisch VF (2012) Lrp of Corynebacterium glutamicum controls expression of the brnFE operon encoding the export system for L-methionine and branched-chain amino acids. J Biotechnol 158:231–241CrossRefPubMedGoogle Scholar
  46. Leyval D, Uy D, Delaunay S, Goergen JL, Engasser JM (2003) Characterisation of the enzyme activities involved in the valine biosynthetic pathway in a valine-producing strain of Corynebacterium glutamicum. J Biotechnol 104:241–252CrossRefPubMedGoogle Scholar
  47. Liang C, Huo Y, Qi G, Wei X, Wang Q, Chen S (2015) Enhancement of L-valine production in Bacillus licheniformis by blocking three branched pathways. Biotechnol Lett 37:1243–1248CrossRefPubMedGoogle Scholar
  48. Liu Y, Li Y, Wang X (2016) Acetohydroxyacid synthases: evolution, structure, and function. Appl Microbiol Biotechnol 100:8633–8649CrossRefPubMedGoogle Scholar
  49. Liu C, Zhang B, Liu YM, Yang KQ, Liu SJ (2018) New intracellular Shikimic acid biosensor for monitoring shikimate synthesis in Corynebacterium glutamicum. ACS Synth Biol 7:591–601CrossRefPubMedGoogle Scholar
  50. Lonhienne T, Garcia MD, Guddat LW (2017) The role of a FAD cofactor in the regulation of acetohydroxyacid synthase by redox signaling molecules. J Biol Chem 292(12):5101–5109Google Scholar
  51. Mahr R, Gatgens C, Gatgens J, Polen T, Kalinowski J, Frunzke J (2015) Biosensor-driven adaptive laboratory evolution of L-valine production in Corynebacterium glutamicum. Metabol Eng 32:184–194CrossRefGoogle Scholar
  52. Marienhagen J, Eggeling L (2008) Metabolic function of Corynebacterium glutamicum aminotransferases AlaT and AvtA and impact on L-valine production. Appl Environ Microbiol 74:7457–7462CrossRefPubMedPubMedCentralGoogle Scholar
  53. Marienhagen J, Kennerknecht N, Sahm H, Eggeling L (2005) Functional analysis of all aminotransferase proteins inferred from the genome sequence of Corynebacterium glutamicum. J Bacteriol 187:7639–7646CrossRefPubMedPubMedCentralGoogle Scholar
  54. Marin M, Kramer R (2007) Amino acid transport systems in biotechnologically relevant bacteria. In: Wendisch VF (ed) Amino acid biosynthesis—pathways, Regulation and Metabolic Engineering. Springer, Heidelberg, pp 289–325CrossRefGoogle Scholar
  55. McHardy AC, Tauch A, Ruckert C, Pühler A, Kalinowski J (2003) Genome-based analysis of biosynthetic aminotransferase genes of Corynebacterium glutamicum. J Biotechnol 104:229–240CrossRefPubMedGoogle Scholar
  56. Morbach S, Junger C, Sahm H, Eggeling L (2000) Attenuation control of ilvBNC in Corynebacterium glutamicum: evidence of leader peptide formation without the presence of a ribosome binding site. J Biosci Bioeng 90:501–507CrossRefPubMedGoogle Scholar
  57. Mustafi N, Grünberger A, Kohlheyer D, Bott M, Frunzke J (2012) The development and application of a single-cell biosensor for the detection of L-methionine and branched-chain amino acids. Metab Eng 14:449–457CrossRefPubMedGoogle Scholar
  58. Mustafi N, Grünberger A, Mahr R, Helfrich S, Nöh K, Blombach B, Kohlheyer D, Frunzke J (2014) Application of a genetically encoded biosensor for live cell imaging of L-valine production in pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum strains. PLoS One 9:e85731CrossRefPubMedPubMedCentralGoogle Scholar
  59. Nielsen J (1998) Metabolic engineering: techniques for analysis of targets for genetic manipulations. Biotechnol Bioeng 58:125–132CrossRefPubMedGoogle Scholar
  60. Okibe N, Suzuki N, Inui M, Yukawa H (2011) Efficient markerless gene replacement in Corynebacterium glutamicum using a new temperature-sensitive plasmid. J Microbiol Meth 85:155–163CrossRefGoogle Scholar
  61. Oldiges M, Eikmanns BJ, Blombach B (2014) Application of metabolic engineering for the biotechnological production of L-valine. Appl Microbiol Biotechnol 98:5859–5870CrossRefPubMedGoogle Scholar
  62. Park JH, Lee KH, Kim TY, Lee SY (2007) Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci U S A 104:7797–7802CrossRefPubMedPubMedCentralGoogle Scholar
  63. Park JH, Kim TY, Lee KH (2010) Fed-batch culture of Escherichia coli for L-valine production based on in silico flux response analysis. Biotech Bioeng 108:934–946CrossRefGoogle Scholar
  64. Park Y, Park JH, Park S, Lee SY, Cho KH, Kim DD, Shim WS, Yoon IS, Cho HJ, Maeng HJ (2016) Enhanced cellular uptake and pharmacokinetic characteristics of doxorubicin-valine amide prodrug. Molecules 21:E1272CrossRefPubMedGoogle Scholar
  65. Pasupuleti V, Holmes C, Demain A (2010) Applications of protein hydrolysates in biotechnology. In: Pasupuleti VK, Demain AL (eds) Protein Hydrolysates in Biotechnology. Springer, Netherlands, pp 1–9CrossRefGoogle Scholar
  66. Peng F, Wang XY, Sun Y, Dong GB, Yang YK, Liu XX, Bai ZG (2017) Efficient gene editing in Corynebacterium glutamicum using the CRISPR/Cas9 system. Microbial cell factories 16:ARTN 20110.1186/s12934–017–0814-6CrossRefGoogle Scholar
  67. Poetsch A, Haussmann U, Burkovski A (2011) Proteomics of corynebacteria: from biotechnology workhorses to pathogens. Proteomics 11:3244–3255CrossRefPubMedGoogle Scholar
  68. Qin T, Hu X, Hu J, Wang X (2015) Metabolic engineering of Corynebacterium glutamicum strain ATCC13032 to produce L-methionine. Biotechnol Appl Biochem 62:563–573CrossRefPubMedGoogle Scholar
  69. Radmacher E, Vaitsikova A, Burger U, Krumbach K, Sahm H, Eggeling L (2002) Linking central metabolism with increased pathway flux: L-valine accumulation by Corynebacterium glutamicum. Appl Environ Microbiol 68:2246–2250CrossRefPubMedPubMedCentralGoogle Scholar
  70. Ravasi P, Peiru S, Gramajo H, Menzella HG (2012) Design and testing of a synthetic biology framework for genetic engineering of Corynebacterium glutamicum. Microb Cell Factories 11:147CrossRefGoogle Scholar
  71. Sahm H, Eggeling L (1999) D-Pantothenate synthesis in Corynebacte rium glutamicum and use of panBC and genes of L-valine synthesis for its overproduction. Appl Environ Microbiol 65:1973–1979PubMedPubMedCentralGoogle Scholar
  72. Sawada K, Kato Y, Imai K, Li L, Wada M, Matsushita K, Yokota A (2012) Mechanism of increased respiration in an H+-ATPase-defective mutant of Corynebacterium glutamicum. J Biosci Bioeng 113:467–473CrossRefPubMedGoogle Scholar
  73. Schulte J, Baumgart M, Bott M (2017) Development of a single-cell GlxR-based cAMP biosensor for Corynebacterium glutamicum. J Biotechnol 258:33–40CrossRefPubMedGoogle Scholar
  74. Schwentner A, Feith A, Munch E, Busche T, Ruckert C, Kalinowski J, Takors R, Blombach B (2018) Metabolic engineering to guide evolution—creating a novel mode for L-valine production with Corynebacterium glutamicum. Metab Eng.  https://doi.org/10.1016/j.ymben.2018.02.015
  75. Shinfuku Y, Sorpitiporn N, Sono M, Furusawa C, Hirasawa T, Shimizu H (2009) Development and experimental verification of a genome-scale metabolic model for Corynebacterium glutamicum. Microb Cell Factories 8:43CrossRefGoogle Scholar
  76. Simeonidis E, Price ND (2015) Genome-scale modeling for metabolic engineering. J Ind Microbiol Biotechnol 42:327–338CrossRefPubMedPubMedCentralGoogle Scholar
  77. Song Y, Li J, Shin HD, Liu L, Du G, Chen J (2016) Biotechnological production of alpha-keto acids: current status and perspectives. Bioresour Technol 219:716–724CrossRefPubMedGoogle Scholar
  78. Stephanopoulos G (1999) Metabolic fluxes and metabolic engineering. Metab Eng 1:1–11CrossRefPubMedGoogle Scholar
  79. Tadrowski S, Pedroso MM, Sieber V, Larrabee JA, Guddat LW, Schenk G (2016) Metal ions play an essential catalytic role in the mechanism of keto-acid reductoisomerase. Chem Eur J 22:7427–7436CrossRefPubMedGoogle Scholar
  80. Tan Y, Xu D, LiY WX (2012) Construction of a novel sacB-based system for marker-free gene deletion in Corynebacterium glutamicum. Plasmid 67:44–52CrossRefPubMedGoogle Scholar
  81. Unthan S, Baumgart M, Radek A, Herbst M, Siebert D, Brühl N, Bartsch A, Bott M, Wiechert W, Marin K, Hans S, Krämer R, Seibold G, Frunzke J, Kalinowski J, Rückert C, Wendisch VF, Noack S (2015) Chassis organism from Corynebacterium glutamicum—a top-down approach to identify and delete irrelevant gene clusters. Biotechnol J 10(2):290–301CrossRefPubMedGoogle Scholar
  82. Vogt M, Haas S, Klaffl S, Polen T, Eggeling L, van Ooyen J, Bott M (2014) Pushing product formation to its limit: metabolic engineering of Corynebacterium glutamicum for L-leucine overproduction. Metab Eng 22:40–52CrossRefPubMedGoogle Scholar
  83. Vogt M, Haas S, Polen T, van Ooyen J, Bott M (2015) Production of 2-ketoisocaproate with Corynebacterium glutamicum strains devoid of plasmids and heterologous genes. Microb Biotechnol 8:351–360CrossRefPubMedGoogle Scholar
  84. Wada M, Hijikata N, Aoki R, Takesue N, Yokota A (2008) Enhanced valine production in Corynebacterium glutamicum with defective H+-ATPase and C-terminal truncated acetohydroxyacid synthase. Biosci Biotechnol Biochem 72:2959–2965CrossRefPubMedGoogle Scholar
  85. Wang J, Wen B, Wang J, Xu QY, Zhang CL, Chen N, Xie XX (2013) Enhancing L-isoleucine production by thrABC overexpression combined with alaT deletion in Corynebacterium glutamicum. Appl Biochem Biotechnol 171:20–30CrossRefPubMedGoogle Scholar
  86. Wendisch VF (2014) Microbial production of amino acids and derived chemicals: synthetic biology approaches to strain development. Curr Opin Biotechnol 30:51–58CrossRefPubMedGoogle Scholar
  87. Wendisch VF, de Graaf AA, Sahm H, Eikmanns BJ (2000) Quantitative determination of metabolic fluxes during coutilization of two carbon sources: comparative analyses with Corynebacterium glutamicum during growth on acetate and/or glucose. J Bacteriol 182:3088–3096CrossRefPubMedPubMedCentralGoogle Scholar
  88. Wieschalka S, Blombach B, Bott M, Eikmanns BJ (2013) Bio-based production of organic acids with Corynebacterium glutamicum. Microb Biotechnol 6:87–102CrossRefPubMedGoogle Scholar
  89. Xu D, Tan Y, Huan X, Hu X, Wang X (2010a) Construction of a novel shuttle vector for use in Brevibacterium flavum, an industrial amino acid producer. J Microbiol Meth 80:86–92CrossRefGoogle Scholar
  90. Xu D, Tan Y, Shi F, Wang X (2010b) An improved shuttle vector constructed for metabolic engineering research in Corynebacterium glutamicum. Plasmid 64:85–91CrossRefPubMedGoogle Scholar
  91. Xu D, Tan Y, Li Y, Wang X (2011) Construction of a novel promoter-probe vector and its application for screening strong promoter for Brevibacterium flavum metabolic engineering. World J Microbiol Biotechnol 27:961–968CrossRefGoogle Scholar
  92. Xu JZ, Han M, Zhang VY, Guo F, Qian H, Zhang WG (2014) Improvement of L-lysine production combines with minimization of by-products synthesis in Corynebacterium glutamicum. J Chem Technol Biotechnol 89:1924–1933CrossRefGoogle Scholar
  93. Yamamoto K, Tsuchisaka A, Yukawa H (2017) Branched-chain amino acids. Adv Biochem Eng Biotechnol 159:103–128PubMedGoogle Scholar
  94. Yin L, Hu X, Xu D, Ning J, Chen J, Wang X (2012) Co-expression of feedback-resistant threonine dehydratase and acetohydroxy acid synthase increase L-isoleucine production in Corynebacterium glutamicum. Metab Eng 14:542–550CrossRefPubMedGoogle Scholar
  95. Yin L, Shi F, Hu X, Chen C, Wang X (2013) Increasing L-isoleucine production in Corynebacterium glutamicum by overexpressing global regulator Lrp and two-component export system BrnFE. J Appl Microbiol 114:1369–1377CrossRefPubMedGoogle Scholar
  96. Yu X, Li Y, Wang X (2013) Molecular evolution of threonine dehydratase in bacteria. PLoS One 8:e80750CrossRefPubMedPubMedCentralGoogle Scholar
  97. Yukawa H, Omumasaba CA, Nonaka H, Kós P, Okai N, Suzuki N, Suda M, Tsuge Y, Watanabe J, Ikeda Y, Vertès AA, Inui M (2007) Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology 153:1042–1058CrossRefPubMedGoogle Scholar
  98. Zhang H, Li Y, Wang C, Wang X (2018) Understanding the high L-valine production in Corynebacterium glutamicum VWB-1 using transcriptomics and proteomics. Sci Rep 8:3632CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
  2. 2.Key Laboratory of Industrial Biotechnology, Ministry of Education, School of BiotechnologyJiangnan UniversityWuxiChina
  3. 3.Department of BiochemistryKing’s College LondonLondonUK

Personalised recommendations