Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 10, pp 4331–4338 | Cite as

Drivers of microbial community structure in forest soils

  • Salvador Lladó
  • Rubén López-Mondéjar
  • Petr Baldrian
Mini-Review
  • 482 Downloads

Abstract

Forests are essential biomes for global biogeochemical cycles, and belowground microorganisms have a key role in providing relevant ecosystem services. To predict the effects of environmental changes on these ecosystem services requires a comprehensive understanding of how biotic and abiotic factors drive the composition of microbial communities in soil. However, microorganisms are not homogeneously distributed in complex environments such as soil, with different features affecting microbes at different extent depending on the niche they occupy. Indeed, this spatial heterogeneity hampers the extrapolation of microbial diversity study results from particular habitats to the ecosystem level, even if the resolution of the more recent studies has increased significantly after the standardization of high-throughput sequencing techniques. The present work intends to give a comprehensive view of the knowledge accumulated until date defining the more important drivers determining the structure of forest soil microbial communities from fine to continental scales.

Keywords

Forest Soil Microbial diversity Drivers Community structure 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Albright MBN, Martiny JBH (2017) Dispersal alters bacterial diversity and composition in a natural community. ISME J 12:296–299CrossRefPubMedGoogle Scholar
  2. Andreote FD, Pereira ESMC (2017) Microbial communities associated with plants: learning from nature to apply it in agriculture. Curr Opin Microbiol 37:29–34CrossRefPubMedGoogle Scholar
  3. Badri DV, Chaparro JM, Zhang R, Shen Q, Vivanco JM (2013) Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J Biol Chem 288:4502–4512CrossRefPubMedPubMedCentralGoogle Scholar
  4. Baldrian P (2017a) Microbial activity and the dynamics of ecosystem processes in forest soils. Curr Opin Microbiol 37:128–134CrossRefPubMedGoogle Scholar
  5. Baldrian P (2017b) Forest microbiome: diversity, complexity and dynamics. FEMS Microbiol Rev 40-41:109–130Google Scholar
  6. Baldrian P, López-Mondéjar R (2014) Microbial genomics, transcriptomics and proteomics: new discoveries in decomposition research using complementary methods. Appl Microbiol Biotechnol 98:1531–1537CrossRefPubMedGoogle Scholar
  7. Baldrian P, Kolařík M, Štursová M, Kopecký J, Valášková V, Větrovský T, Zifčáková L, Šnajdr J, Rídl J, Vlček C, Vořišková J (2012) Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J 6:248–258CrossRefPubMedGoogle Scholar
  8. Bardgett RD, Mommer L, De Vries FT (2014) Going underground: root traits as drivers of ecosystem processes. Trends Ecol Evol 29:692–699CrossRefPubMedGoogle Scholar
  9. Bastida F, Torres IF, Andrés-Abellán M, Baldrian P, López-Mondéjar R, Větrovský T, Richnow HH, Starke R, Ondoño S, García C, López-Serrano FR, Jehmlich N (2017) Differential sensitivity of total and active soil microbial communities to drought and forest management. Glob Chang Biol 23:4185–4203CrossRefPubMedGoogle Scholar
  10. Bell T (2010) Experimental tests of the bacterial distance-decay relationship. ISME J 4:1357–1365CrossRefPubMedGoogle Scholar
  11. Brockett BFT, Prescott CE, Grayston SJ (2012) Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biol Biochem 44:9–20CrossRefGoogle Scholar
  12. Bryant JA, Lamanna C, Morlon H, Kerkhoff AJ, Enquist BJ, Green JL (2008) Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity. Proc Natl Acad Sci U S A 105:11505–11511CrossRefPubMedPubMedCentralGoogle Scholar
  13. Buée M, de Boer W, Martin F, van Overbeek L, Jurkevitch E (2009) The rhizosphere zoo: an overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant Soil 321:189–212CrossRefGoogle Scholar
  14. Cesarz S, Fender AC, Beyer F, Valtanen K, Pfeiffer B, Gansert D, Hertel D, Polle A, Daniel R, Leuschner C, Scheu S (2013) Roots from beech (Fagus sylvatica L.) and ash (Fraxinus excelsior L.) differentially affect soil microorganisms and carbon dynamics. Soil Biol Biochem 61:23–32CrossRefGoogle Scholar
  15. Chaparro JM, Badri DV, Bakker MG, Sugiyama A, Manter DK, Vivanco JM (2013) Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS One 8:e55731CrossRefPubMedPubMedCentralGoogle Scholar
  16. Clarholm M, Skyllberg U (2013) Translocation of metals by trees and fungi regulates pH, soil organic matter turnover and nitrogen availability in acidic forest soils. Soil Biol Biochem 63:142–153CrossRefGoogle Scholar
  17. Clarholm M, Skyllberg U, Rosling A (2015) Organic acid induced release of nutrients from metal-stabilized soil organic matter—the unbutton model. Soil Biol Biochem 84:168–176CrossRefGoogle Scholar
  18. Colin Y, Nicolitch O, Van Nostrand JD, Zhou JZ, Turpault MP, Uroz S (2017) Taxonomic and functional shifts in the beech rhizosphere microbiome across a natural soil toposequence. Sci Rep 7:9604CrossRefPubMedPubMedCentralGoogle Scholar
  19. Collignon C, Calvaruso C, Turpault MP (2011) Temporal dynamics of exchangeable K, Ca and Mg in acidic bulk soil and rhizosphere under Norway spruce (Picea abies Karst.) and beech (Fagus sylvatica L.) stands. Plant Soil 349:355–366CrossRefGoogle Scholar
  20. Curiel Yuste J, Fernandez-Gonzalez AJ, Fernandez-Lopez M, Ogaya R, Penuelas J, Sardans J, Lloret F (2014) Strong functional stability of soil microbial communities under semiarid Mediterranean conditions and subjected to long-term shifts in baseline precipitation. Soil Biol Biochem 69:223–233CrossRefGoogle Scholar
  21. de Boer W, Hundscheid MP, Klein Gunnewiek PJ, de Ridder-Duine AS, Thion C, van Veen JA, van der Wal A (2015) Antifungal rhizosphere bacteria can increase as response to the presence of saprotrophic fungi. PLoS One 10:e0137988CrossRefPubMedPubMedCentralGoogle Scholar
  22. Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, Berdugo M, Campbell CD, Singh BK (2016a) Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun 7:10541CrossRefPubMedPubMedCentralGoogle Scholar
  23. Delgado-Baquerizo M, Maestre FT, Reich PB, Trivedi P, Osanal Y, Liu YR, Hamonts K, Jeffries TC, Singh BK (2016b) Carbon content and climate variability drive global soil bacterial diversity patterns. Ecol Monogr 86:373–390CrossRefGoogle Scholar
  24. Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A, Eldridge DJ, Bardgett RD, Maestre FT, Singh BK, Fierer N (2018) A global atlas of the dominant bacteria found in soil. Science 359:320–325CrossRefPubMedGoogle Scholar
  25. Ferrenberg S, O'Neill SP, Knelman JE, Todd B, Duggan S, Bradley D, Robinson T, Schmidt SK, Townsend AR, Williams MW, Cleveland CC, Melbourne BA, Jiang L, Nemergut DR (2013) Changes in assembly processes in soil bacterial communities following a wildfire disturbance. ISME J 7:1102–1111CrossRefPubMedPubMedCentralGoogle Scholar
  26. Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631CrossRefPubMedPubMedCentralGoogle Scholar
  27. Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364CrossRefPubMedGoogle Scholar
  28. Finzi AC, Abramoff RZ, Spiller KS, Brzostek ER, Darby BA, Kramer MA, Phillips RP (2015) Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles. Glob Chang Biol 21:2082–2094CrossRefPubMedGoogle Scholar
  29. Flores-Rentería D, Curiel Yuste J, Rincón A, Brearley FQ, García-Gil JC, Valladares F (2015) Habitat fragmentation can modulate drought effects on the plant-soil-microbial system in Mediterranean holm oak (Quercus ilex) forests. Microb Ecol 69:798–812CrossRefPubMedGoogle Scholar
  30. Fransson P, Andersson A, Norström S, Bylund D, Bent E (2016) Ectomycorrhizal exudates and pre-exposure to elevated CO2 affects soil bacterial growth and community structure. Fungal Ecol 20:211–224CrossRefGoogle Scholar
  31. García-Fraile P, Benada O, Cajthaml T, Baldrian P, Lladó S (2015) Terracidiphilus gabretensis gen. nov., sp. nov., an abundant and active forest soil acidobacterium important in organic matter transformation. Appl Environ Microbiol 82:560–569CrossRefPubMedGoogle Scholar
  32. Goldmann K, Schoning I, Buscot F, Wubet T (2015) Forest management type influences diversity and community composition of soil fungi across temperate forest ecosystems. Front Microbiol 6:1300CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH (2012) Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol 10:497–506CrossRefPubMedGoogle Scholar
  34. Hartmann M, Brunner I, Hagedorn F, Bardgett RD, Stierli B, Herzog C, Chen X, Zingg A, Graf-Pannatier EB, Rigling A, Frey B (2017) A decade of irrigation transforms the soil microbiome of a semi-arid pine forest. Mol Ecol 26:1190–1206CrossRefPubMedGoogle Scholar
  35. Hendershot JN, Read QD, Henning JA, Sanders NJ, Classen AT (2017) Consistenly inconsistent drivers of microbial diversity and abundance at macroecological scales. Ecology 98:1757–1763CrossRefPubMedGoogle Scholar
  36. Hogberg MN, Hogberg P, Myrold DD (2007) Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three? Oecologia 150:590–601CrossRefPubMedGoogle Scholar
  37. Hotaling S, Hood E, Hamilton TL (2017) Microbial ecology of mountain glacier ecosystems: biodiversity, ecological connections and implications of a warming climate. Environ Microbiol 19:2935–2948CrossRefPubMedGoogle Scholar
  38. Jeanbille M, Buee M, Bach C, Cebron A, Frey-Klett P, Turpault MP, Uroz S (2016) Soil parameters drive the structure, diversity and metabolic potentials of the bacterial communities across temperate beech forest soil sequences. Microb Ecol 71:482–493CrossRefPubMedGoogle Scholar
  39. Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R, Fierer N (2009) A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J 3:442–453CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kaiser K, Wemheuer B, Korolkow V, Wemheuer F, Nacke H, Schöning I, Schrumpf M, Daniel R (2016) Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests. Sci Rep 6:33696CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kluber LA, Tinnesand KM, Caldwell BA, Dunham SM, Yarwood RR, Bottomley PJ, Myrold DD (2010) Ectomycorrhizal mats alter forest soil biogeochemistry. Soil Biol Biochem 42:1607–1613CrossRefGoogle Scholar
  42. Kluber LA, Smith JE, Myrold DD (2011) Distinctive fungal and bacterial communities are associated with mats formed by ectomycorrhizal fungi. Soil Biol Biochem 43:1042–1050CrossRefGoogle Scholar
  43. Kuzyakov Y, Blagodatskaya E (2015) Microbial hotspots and hot moments in soil: concept & review. Soil Biol Biochem 83:184–199CrossRefGoogle Scholar
  44. Landesman WJ, Nelson DM, Fitzpatrick MC (2014) Soil properties and tree species drive ß-diversity of soil bacterial communities. Soil Biol Biochem 76:201–209CrossRefGoogle Scholar
  45. Langenbruch C, Helfrich M, Flessa H (2011) Effects of beech (Fagus sylvatica), ash (Fraxinus excelsior) and lime (Tilia spec.) on soil chemical properties in a mixed deciduous forest. Plant Soil 352:389–403CrossRefGoogle Scholar
  46. Lauber CL, Strickland MS, Bradford MA, Fierer N (2008) The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol Biochem 40:2407–2415CrossRefGoogle Scholar
  47. Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120CrossRefPubMedPubMedCentralGoogle Scholar
  48. Lavoie M, Mack MC, Hiers JK, Pokswinski S (2012) The effect of restoration treatments on the spatial variability of soil processes under longleaf pine trees. Forests 3:591–604CrossRefGoogle Scholar
  49. Lebeis SL (2015) Greater than the sum of their parts: characterizing plant microbiomes at the community-level. Curr Opin Plant Biol 24:82–86CrossRefPubMedGoogle Scholar
  50. Lladó S, Žifčáková L, Větrovský T, Eichlerová I, Baldrian P (2016) Functional screening of abundant bacteria from acidic forest soil indicates the metabolic potential of Acidobacteria subdivison 1 for polysaccharide decomposition. Biol Fert Soil 52:251–260CrossRefGoogle Scholar
  51. Lladó S, López-Mondéjar R, Baldrian P (2017) Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change. Microbiol Mol Biol Rev 81:e00063–e00016CrossRefPubMedPubMedCentralGoogle Scholar
  52. Loeppmann S, Blagodatskaya E, Pausch J, Kuzyakov Y (2016) Substrate quality affects kinetics and catalytic efficiency of exo-enzymes in rhizosphere and detritusphere. Soil Biol Biochem 92:111–118CrossRefGoogle Scholar
  53. López-Mondéjar R, Voříšková J, Větrovský T, Baldrian P (2015) The bacterial community inhabiting temperate deciduous forests is vertically stratified and undergoes seasonal dynamics. Soil Biol Biochem 87:43–50CrossRefGoogle Scholar
  54. Martiny JB, Eisen JA, Penn K, Allison SD, Horner-Devine MC (2011) Drivers of β-diversity depend on spatial scale. Proc Natl Acad Sci U S A 108:7850–7854CrossRefPubMedPubMedCentralGoogle Scholar
  55. Marupakula S, Mahmood S, Finlay RD (2016) Analysis of single root tip microbiomes suggests that distinctive bacterial communities are selected by Pinus sylvestris roots colonized by different ectomycorrhizal fungi. Environ Microbiol 18:1470–1483CrossRefPubMedGoogle Scholar
  56. Marupakula S, Mahmood S, Jernberg J, Nallanchakravarthula S, Fahad ZA, Finlay RD (2017) Bacterial microbiomes of individual ectomycorrhizal Pinus sylvestris roots are shaped by soil horizon and differentially sensitive to nitrogen addition. Environ Microbiol 19:4736–4753CrossRefPubMedGoogle Scholar
  57. Mendes LW, Kuramae EE, Navarrete AA, van Veen JA, Tsai SM (2014) Taxonomical and functional microbial community selection in soybean rhizosphere. ISME J 8:1577–1587CrossRefPubMedPubMedCentralGoogle Scholar
  58. Nacke H, Goldmann K, Schoning I, Pfeiffer B, Kaiser K, Castillo-Villamizar GA, Schrumpf M, Buscot F, Daniel R, Wubet T (2016) Fine spatial scale variation of soil microbial communities under European beech and Norway spruce. Front Microbiol 7:2067CrossRefPubMedPubMedCentralGoogle Scholar
  59. Nordén U (1994) Influence of tree species on acidification and mineral pools on deciduous forest soils of south Sweden. Water Air Soil Pollut 76:363–381CrossRefGoogle Scholar
  60. Norman JS, Barrett JE (2016) Substrate availability drives spatial patterns in richness of ammonia-oxidizing bacteria and archaea in temperate forest soils. Soil Biol Biochem 94:169–172CrossRefGoogle Scholar
  61. O'Brien SL, Gibbons SM, Owens SM, Hampton-Marcell J, Johnston ER, Jastrow JD, Gilbert JA, Meyer F, Antonopoulos DA (2016) Spatial scale drives patterns in soil bacterial diversity. Environ Microbiol 18:2039–2051CrossRefPubMedPubMedCentralGoogle Scholar
  62. Ohta T, Hiura T, Lupwayi N (2016) Root exudation of low-molecular-mass-organic acids by six tree species alters the dynamics of calcium and magnesium in soil. Can J Soil Sci 96:199–206CrossRefGoogle Scholar
  63. Ramirez KS, Knight CG, de Hollander M, Brearley FQ, Constantinides B, Cotton A, Creer S, Crowther TW, Davison J, Delgado-Baquerizo M, Dorrepaal E, Elliott DR, Fox G, Griffiths RI, Hale C, Hartman K, Houlden A, Jones DL, Krab EJ, Maestre FT, McGuire KL, Monteux S, Orr CH, van der Putten WH, Roberts IS, Robinson DA, Rocca JD, Rowntree J, Schlaeppi K, Shepherd M, Singh BK, Straathof AL, Bhatnagar JM, Thion C, van der Heijden MGA, de Vries FT (2018) Detecting macroecological patterns in bacterial communities across independent studies of global soils. Nat Microbiol 3:189–196CrossRefPubMedGoogle Scholar
  64. Romanowicz KJ, Freedman ZB, Upchurch RA, Argiroff WA, Zak DR (2016) Active microorganisms in forest soils differ from the total community yet are shaped by the same environmental factors: the influence of pH and soil moisture. FEMS Microbiol Ecol 92:fiw149CrossRefPubMedGoogle Scholar
  65. Scheibe A, Steffens C, Seven J, Jacob A, Hertel D, Leuschner C, Gleixner G (2015) Effects of tree identity dominate over tree diversity on the soil microbial community structure. Soil Biol Biochem 81:219–227CrossRefGoogle Scholar
  66. Serna-Chavez HM, Fierer N, van Bodegom PM (2013) Global drivers and patterns of microbial abundance in soil. Glob Ecol Biogeogr 22:1162–1172CrossRefGoogle Scholar
  67. Shen C, Xiong J, Zhang H, Feng Y, Lin X, Li X, Liang W, Chu H (2013) Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biol Biochem 57:204–211CrossRefGoogle Scholar
  68. Shi S, Nuccio E, Herman DJ, Rijkers R, Estera K, Li J, da Rocha UN, He Z, Pett-Ridge J, Brodie EL, Zhou J, Firestone M (2015) Successional trajectories of rhizosphere bacterial communities over consecutive seasons. MBio 6:e00746PubMedPubMedCentralGoogle Scholar
  69. Šnajdr J, Dobiášová P, Urbanová M, Petránková M, Cajthaml T, Frouz J, Baldrian P (2013) Dominant trees affect microbial community composition and activity in post-mining afforested soils. Soil Biol Biochem 56:105–115CrossRefGoogle Scholar
  70. Spielvogel S, Prietzel J, Kögel-Knabner I (2016) Stand scale variability of topsoil organic matter composition in a high-elevation Norway spruce forest ecosystem. Geoderma 267:112–122CrossRefGoogle Scholar
  71. Štursová M, Bárta J, Šantrůčková H, Baldrian P (2016) Small-scale spatial heterogeneity of ecosystem properties, microbial community composition and microbial activities in a temperate mountain forest soil. FEMS Microbiol Ecol 92:fiw185CrossRefPubMedGoogle Scholar
  72. Talbot JM, Bruns TD, Taylor JW, Smith DP, Branco S, Glassman SI, Erlandson S, Vilgalys R, Liao HL, Smith ME, Peay KG (2014) Endemism and functional convergence across the North American soil mycobiome. Proc Natl Acad Sci U S A 111:6341–6346CrossRefPubMedPubMedCentralGoogle Scholar
  73. Tedersoo L, Bahram M, Polme S, Koljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM, Thu PQ, Suija A, Smith ME, Sharp C, Saluveer E, Saitta A, Rosas M, Riit T, Ratkowsky D, Pritsch K, Põldmaa K, Piepenbring M, Phosri C, Peterson M, Parts K, Pärtel K, Otsing E, Nouhra E, Njouonkou AL, Nilsson RH, Morgado LN, Mayor J, May TW, Majuakim L, Lodge DJ, Lee SS, Larsson KH, Kohout P, Hosaka K, Hiiesalu I, Henkel TW, Harend H, Guo LD, Greslebin A, Grelet G, Geml J, Gates G, Dunstan W, Dunk C, Drenkhan R, Dearnaley J, De Kesel A, Dang T, Chen X, Buegger F, Brearley FQ, Bonito G, Anslan S, Abell S, Abarenkov K (2014) Global diversity and geography of soil fungi. Science 346:1078–1088CrossRefGoogle Scholar
  74. Tefs C, Gleixner G (2012) Importance of root derived carbon for soil organic matter storage in a temperate old-growth beech forest—evidence from C, N and 14C content. For Ecol Manag 263:131–137CrossRefGoogle Scholar
  75. Thoms C, Gleixner G (2013) Seasonal differences in tree species’ influence on soil microbial communities. Soil Biol Biochem 66:239–248CrossRefGoogle Scholar
  76. Thoms C, Gattinger A, Jacob M, Thomas FM, Gleixner G (2010) Direct and indirect effects of tree diversity drive soil microbial diversity in temperate deciduous forest. Soil Biol Biochem 42:1558–1565CrossRefGoogle Scholar
  77. Tsunoda T, van Dam NM (2017) Root chemical traits and their roles in belowground biotic interactions. Pedobiologia 65:58–67CrossRefGoogle Scholar
  78. Tückmantel T, Leuschner C, Preusser S, Kandeler E, Angst G, Mueller CW, Meier IC (2017) Root exudation patterns in a beech forest: dependence on soil depth, root morphology, and environment. Soil Biol Biochem 107:188–197CrossRefGoogle Scholar
  79. Urbanová M, Šnajdr J, Baldrian P (2015) Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biol Biochem 84:53–64CrossRefGoogle Scholar
  80. Uroz S, Buee M, Murat C, Frey-Klett P, Martin F (2010) Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil. Environ Microbiol Rep 2:281–288CrossRefPubMedGoogle Scholar
  81. Uroz S, Oger P, Tisserand E, Cebron A, Turpault MP, Buee M, De Boer W, Leveau JH, Frey-Klett P (2016) Specific impacts of beech and Norway spruce on the structure and diversity of the rhizosphere and soil microbial communities. Sci Rep 6:27756CrossRefPubMedPubMedCentralGoogle Scholar
  82. von Rein I, Gessler A, Premke K, Keitel C, Ulrich A, Kayler Z (2016) Forest understory plant and soil microbial response to an experimentally induced drought and heat-pulse event: the importance of maintaining the continuum. Glob Chang Biol 22:2861–2874CrossRefGoogle Scholar
  83. Waldrop MP, Holloway JM, Smith DB, Goldhaber MB, Drenovsky RE, Scow KM, Dick R, Howard D, Wylie B, Grace JB (2017) The interacting roles of climate, soils and plant production on soil microbial communities at a continental scale. Ecology 98:1957–1967CrossRefPubMedGoogle Scholar
  84. Wang X, Li H, Bezemer TM, Hao Z (2015) Drivers of bacterial beta diversity in two temperate forests. Ecol Res 31:57–64CrossRefGoogle Scholar
  85. Widder S, Allen RJ, Pfeiffer T, Curtis TP, Wiuf C, Sloan WT, Cordero OX, Brown SP, Momeni B, Shou W, Kettle H, Flint HJ, Haas AF, Laroche B, Kreft JU, Rainey PB, Freilich S, Schuster S, Milferstedt K, van der Meer JR, Groβkopf T, Huisman J, Free A, Picioreanu C, Quince C, Klapper I, Labarthe S, Smets BF, Wang H, Isaac Newton Institute Fellows, Soyer OS (2016) Challenges in microbial ecology: building predictive understanding of community function and dynamics. ISME J 10:2557–2568CrossRefPubMedPubMedCentralGoogle Scholar
  86. Wilhelm RC, Cardenas E, Maas KR, Leung H, McNeil L, Berch S, Chapman W, Hope G, Kranabetter JM, Dubé S, Busse M, Fleming R, Hazlett P, Webster KL, Morris D, Scott DA, Mohn WW (2017) Biogeography and organic matter removal shape long-term effects of timber harvesting on forest soil microbial communities. ISME J 11:2552–2568CrossRefPubMedGoogle Scholar
  87. Zhou J, Deng Y, Shen L, Wen C, Yan Q, Ning D, Qin Y, Xue K, Wu L, He Z, Voordeckers JW, Van Nostrand JD, Buzzard V, Michaletz ST, Enquist BJ, Weiser MD, Kaspari M, Waide R, Yang Y, Brown JH (2016) Temperature mediates continental-scale diversity of microbes in forest soils. Nat Commun 7:12083CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.LEITAT Technological CenterTerrassaSpain
  2. 2.Institute of Microbiology of the CASLaboratory of Environmental MicrobiologyPragueCzech Republic

Personalised recommendations