Skip to main content

Advertisement

Log in

A key residue for the substrate affinity enhancement of a thermophilic endo-polygalacturonase revealed by computational design

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Protein engineering has been a research hotspot to improve the catalytic efficiency of industrially important enzymes. In the present study, a novel computational strategy was developed to in silico screen mutants with enhanced binding interaction between enzyme and substrate as well as catalytic efficiency. Through homology modeling and molecular dynamics (MD) simulation, four key residues related to substrate binding were identified in the endo-polygalacturonase BiPG28A from Bispora sp. MEY-1. Further analyses of the conformation, hydrogen bond interactions, and binding free energy revealed that lysine at position 129 (subsite − 2) has the strongest affinity to substrate. Biochemical and calorimetry experiments confirmed the functional role of Lys129 in substrate binding through non-covalent interactions. The common role of Lys129 was also verified in another GH28 endo-polygalacturonase. Distinguished from other protein engineering strategies involving structure resolution and construction of certain enzymes, this computational strategy represents an insightful and efficient approach to develop a “designed” enzyme with significantly enhanced binding affinity and catalytic efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Berka RM, Grigoriev IV, Otillar R, Salamov A, Grimwood J, Reid I, Ishmael N, John T, Darmond C, Moisan MC, Henrissat B, Coutinho PM, Lombard V, Natvig DO, Lindquist E, Schmutz J, Lucas S, Harris P, Powlowski J, Bellemare A, Taylor D, Butler G, de Vries RP, Allijn IE, van den Brink J, Ushinsky S, Storms R, Powell AJ, Paulsen IT, Elbourne LDH, Baker SE, Magnuson J, LaBoissiere S, Clutterbuck AJ, Martinez D, Wogulis M, de Leon AL, Rey MW, Tsang A (2011) Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nat Biotechnol 29:922–927

    Article  PubMed  CAS  Google Scholar 

  • Bernardi RC, Cann I, Schulten K (2014) Molecular dynamics study of enhanced Man5B enzymatic activity. Biotechnol Biofuels 7:83

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonivento D, Pontiggia D, Matteo AD, Fernandez-Recio J, Salvi G, Tsernoglou D, Cervone F, Lorenzo GD, Federici L (2008) Crystal structure of the endopolygalacturonase from the phytopathogenic fungus Colletotrichum lupini and its interaction with polygalacturonase-inhibiting proteins. Proteins 70:294–299

    Article  PubMed  CAS  Google Scholar 

  • Cheng Z, Chen D, Lu B, Wei Y, Xian L, Li Y, Luo Z, Huang R (2016) A novel acid-stable endo-polygalacturonase from Penicillium oxalicum CZ1028: purification, characterization, and application in the beverage industry. J Microbiol Biotechnol 26:989–998

    Article  PubMed  CAS  Google Scholar 

  • Choi JM, Han SS, Kim HS (2015) Industrial applications of enzyme biocatalysis: current status and future aspects. Biotechnol Adv 33:1443–1454

    Article  PubMed  CAS  Google Scholar 

  • Comeau MA, Lafontaine DA, Abou Elela S (2016) The catalytic efficiency of yeast ribonuclease III depends on substrate specific product release rate. Nucleic Acids Res 44:7911–7921

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cui D, Zhang L, Jiang S, Yao Z, Gao B, Lin J, Yuan YA, Wei D (2015) A computational strategy for altering an enzyme in its cofactor preference to NAD(H) and/or NADP(H). FEBS J 282:2339–2351

    Article  PubMed  CAS  Google Scholar 

  • Daczkowski CM, Pegan SD, Harvey SP (2015) Engineering the organophosphorus acid anhydrolase enzyme for increased catalytic efficiency and broadened stereospecificity on Russian VX. Biochemistry 54:6423–6433

    Article  PubMed  CAS  Google Scholar 

  • Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N-log (N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  • Federici L, Caprari C, Mattei B, Savino C, Di Matteo A, De Lorenzo G, Cervone F, Tsernoglou D (2001) Structural requirements of endopolygalacturonase for the interaction with PGIP (polygalacturonase-inhibiting protein). Proc Natl Acad Sci U S A 98:13425–13430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hirose N, Kishida M, Kawasaki H, Sakai T (1999) Purification and characterization of an endo-polygalacturonase from a mutant of Saccharomyces cerevisiae. Biosci Biotechnol Biochem 63:1100–1103

    Article  PubMed  CAS  Google Scholar 

  • Kirschner KN, Yongye AB, Tschampel SM, González-Outeiriño J, Daniels CR, Foley BL, Woods RJ (2008) GLYCAM06: a generalizable biomolecular force field. Carbohydrates. J Comput Chem 29:622–655

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Korendovych IV, DeGrado WF (2014) Catalytic efficiency of designed catalytic proteins. Curr Opin Struct Biol 27:113–121

    Article  PubMed  CAS  Google Scholar 

  • Li K, Meng K, Pan X, Ma R, Yang P, Huang H, Yao B, Su X (2015) Two thermophilic fungal pectinases from Neosartorya fischeri P1: gene cloning, expression, and biochemical characterization. J Mol Catal B-Enzym 118:70–78

    Article  CAS  Google Scholar 

  • Li Y, Wang Y, Tu T, Zhang D, Ma R, You S, Wang X, Yao B, Luo H, Xu B (2017) Two acidic, thermophilic GH28 polygalacturonases from Talaromyces leycettanus JCM 12802 with application potentials for grape juice clarification. Food Chem 237:997–1003

    Article  PubMed  CAS  Google Scholar 

  • Luo H, Wang Y, Wang H, Yang J, Yang Y, Huang H, Yang P, Bai Y, Shi P, Fan Y, Yao B (2009) A novel highly acidic β-mannanase from the acidophilic fungus Bispora sp. MEY-1: gene cloning and overexpression in Pichia pastoris. Appl Microbiol Biotechnol 82:453–461

    Article  PubMed  CAS  Google Scholar 

  • Luo H, Yang J, Yang P, Li J, Huang H, Shi P, Bai Y, Wang Y, Fan Y, Yao B (2010) Gene cloning and expression of a new acidic family 7 endo-β-1,3-1,4-glucanase from the acidophilic fungus Bispora sp. MEY-1. Appl Microbiol Biotechnol 85:1015–1023

    Article  PubMed  CAS  Google Scholar 

  • Martins ES, Silva D, Leite RS, Gomes E (2007) Purification and characterization of polygalacturonase produced by thermophilic Thermoascus aurantiacus CBMAI-756 in submerged fermentation. Antonie Van Leeuwenhoek 91:291–299

    Article  PubMed  CAS  Google Scholar 

  • Mathew A, Eldo AN, Molly A (2008) Optimization of culture conditions for the production of thermostable polygalacturonase by Penicillium SPC-F 20. J Ind Microbiol Biotechnol 35:1001–1005

    Article  PubMed  CAS  Google Scholar 

  • Matsui I, Ishikawa K, Matsui E, Miyairi S, Fukui S, Honda K (1991) Subsite structure of Saccharomycopsis α-amylase secreted from Saccharomyces cerevisiae. J Biochem 109:566–569

  • Miyairi K, Matsue T, Kagawa O, Kutsuzawa T, Okuno T (1994) Purification and characterization of an endopolygalacturonase from Physalospora piricola. Biosci Biotechnol Biochem 58:1909–1910

    Article  CAS  Google Scholar 

  • Parashar D, Satyanarayana T (2016) A chimeric α-amylase engineered from Bacillus acidicola and Geobacillus thermoleovorans with improved thermostability and catalytic efficiency. J Ind Microbiol Biotechnol 43:473–484

    Article  PubMed  CAS  Google Scholar 

  • Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  • Schnitzhofer W, Weber HJ, Vršanská M, Biely P, Cavaco-Paulo A, Guebitz G (2007) Purification and mechanistic characterisation of two polygalacturonases from Sclerotium rolfsii. Enzyme Microb Tech 40:1739–1747

    Article  CAS  Google Scholar 

  • Shimizu T, Nakatsu T, Miyairi K, Okuno T, Kato H (2002) Active-site architecture of endopolygalacturonase I from Stereum purpureum revealed by crystal structures in native and ligand-bound forms at atomic resolution. Biochemistry 41:6651–6659

    Article  PubMed  CAS  Google Scholar 

  • Tinberg CE, Khare SD, Dou J, Doyle L, Nelson JW, Schena A, Jankowski W, Kalodimos CG, Johnsson K, Stoddard BL, Baker D (2013) Computational design of ligand-binding proteins with high affinity and selectivity. Nature 501:212–216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tounsia H, Sassia AH, Romdhanea ZB, Lajnefa M, Dupuyb JW, Lapaillerieb D, Lomenechb AM, Bonneub M, Gargouria A, Hadj-Taieb N (2016) Catalytic properties of a highly thermoactive polygalacturonase from the mesophilic fungus Penicillium occitanis and use in juice clarification. J Mol Catal B-Enzym 127:56–66

    Article  CAS  Google Scholar 

  • Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tu T, Meng K, Bai Y, Shi P, Luo H, Wang Y, Yang P, Zhang Y, Zhang W, Yao B (2013) High-yield production of a low-temperature-active polygalacturonase for papaya juice clarification. Food Chem 141:2974–2981

    Article  PubMed  CAS  Google Scholar 

  • Tu T, Meng K, Huang H, Luo H, Bai Y, Ma R, Su X, Shi P, Yang P, Wang Y, Yao B (2014) Molecular characterization of a thermophilic endo-polygalacturonase from Thielavia arenaria XZ7 with high catalytic efficiency and application potential in the food and feed industries. J Agric Food Chem 62:12686–12694

    Article  PubMed  CAS  Google Scholar 

  • Tu T, Meng K, Luo H, Turunen O, Zhang L, Cheng Y, Su X, Ma R, Shi P, Wang Y, Yang P, Yao B (2015) New insights into the role of T3 loop in determining catalytic efficiency of GH28 endo-polygalacturonases. PLoS One 10:e0135413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tu T, Li Y, Su X, Meng K, Ma R, Wang Y, Yao B, Lin Z, Luo H (2016a) Probing the role of cation-π interaction in the thermotolerance and catalytic performance of endo-polygalacturonases. Sci Rep 6:38413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tu T, Pan X, Meng K, Luo H, Ma R, Wang Y, Yao B (2016b) Substitution of a non-active-site residue located on the T3 loop increased the catalytic efficiency of endo-polygalacturonases. Process Biochem 51:1230–1238

    Article  CAS  Google Scholar 

  • van Santen Y, Benen JA, Schröter KH, Kalk KH, Armand S, Visser J, Dijkstra BW (1999) 1.68-Å crystal structure of endopolygalacturonase II from Aspergillus niger and identification of active site residues by site-directed mutagenesis. J Biol Chem 274:30474–30480

  • Velázquez-Campoy A, Ohtaka H, Nezami A, Muzammil S, Freire E (2004) Isothermal titration calorimetry. Curr Protoc Cell Biol 17(8):1–17.8.24

    Google Scholar 

  • Wang H, Luo H, Li J, Bai Y, Huang H, Shi P, Fan Y, Yao B (2010) An α-galactosidase from an acidophilic Bispora sp. MEY-1 strain acts synergistically with β-mannanase. Bioresour Technol 101:8376–8382

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Ye S, Li J, Zheng B, Bao M, Ning G (2011) Fusion primer and nested integrated PCR (FPNI-PCR): a new high-efficiency strategy for rapid chromosome walking or flanking sequence cloning. BMC Biotechnol 11:109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang J, Zhang Y, Qin X, Gao L, Han B, Zhang D, Li J, Huang H, Zhang W (2017) Efficient expression of an acidic endo-polygalacturonase from Aspergillus niger and its application in juice production. J Agric Food Chem 65:2730–2736

    Article  PubMed  CAS  Google Scholar 

  • Wickstrom L, Okur A, Simmerling C (2009) Evaluating the performance of the ff99SB force field based on NMR scalar coupling data. Biophys J 97:853–856

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wiseman T, Williston S, Brandts JF, Lin LN (1989) Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem 179:131–137

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Luo H, Li J, Wang K, Cheng H, Bai Y, Yuan T, Fan Y, Yao B (2011) Cloning, expression and characterization of an acidic endo-polygalacturonase from Bispora sp. MEY-1 and its potential application in juice clarification. Process Biochem 46:272–277

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (31571777), the China Modern Agriculture Research System (CARS-41), and the National Key Research and Development Program of China (2016YFD0501409-02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huiying Luo or Bin Yao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 371 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, T., Li, Y., Luo, Y. et al. A key residue for the substrate affinity enhancement of a thermophilic endo-polygalacturonase revealed by computational design. Appl Microbiol Biotechnol 102, 4457–4466 (2018). https://doi.org/10.1007/s00253-018-8948-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-8948-y

Keywords

Navigation