Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 10, pp 4563–4575 | Cite as

Involvement of organic acids and amino acids in ameliorating Ni(II) toxicity induced cell cycle dysregulation in Caulobacter crescentus: a metabolomics analysis

  • Abhishek Jain
  • Wei Ning Chen
Applied microbial and cell physiology

Abstract

Nickel (Ni(II)) toxicity is addressed by many different bacteria, but bacterial responses to nickel stress are still unclear. Therefore, we studied the effect of Ni(II) toxicity on cell proliferation of α-proteobacterium Caulobacter crescentus. Next, we showed the mechanism that allows C. crescentus to survive in Ni(II) stress condition. Our results revealed that the growth of C. crescentus is severely affected when the bacterium was exposed to different Ni(II) concentrations, 0.003 mM slightly affected the growth, 0.008 mM reduced the growth by 50%, and growth was completely inhibited at 0.015 mM. It was further shown that Ni(II) toxicity induced mislocalization of major regulatory proteins such as MipZ, FtsZ, ParB, and MreB, resulting in dysregulation of the cell cycle. GC-MS metabolomics analysis of Ni(II) stressed C. crescentus showed an increased level of nine important metabolites including TCA cycle intermediates and amino acids. This indicates that changes in central carbon metabolism and nitrogen metabolism are linked with the disruption of cell division process. Addition of malic acid, citric acid, alanine, proline, and glutamine to 0.015 mM Ni(II)-treated C. crescentus restored its growth. Thus, the present work shows a protective effect of these organic acids and amino acids on Ni(II) toxicity. Metabolic stimulation through the PutA/GlnA pathway, accelerated degradation of CtrA, and Ni-chelation by organic acids or amino acids are some of the possible mechanisms suggested to be involved in enhancing C. crescentus’s tolerance. Our results shed light on the mechanism of increased Ni(II) tolerance in C. crescentus which may be useful in bioremediation strategies and synthetic biology applications such as the development of whole cell biosensor.

Keywords

Caulobacter crescentus Nickel stress Metabolomics Amino acids Organic acids Cell cycle 

Notes

Acknowledgements

The authors would like to thank the Nanyang Environment and Water Research Institute (NEWRI), Singapore, and the Interdisciplinary Graduate School (IGS), Nanyang Technological University, Singapore, for the award of research scholarship to Abhishek Jain and the support for this research. We would also like to thank Asst. Prof. M.H. Tan (Nanyang Technological University) for supplying us strains.

Compliance with ethical standards

Competing interests

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2018_8938_MOESM1_ESM.pdf (610 kb)
ESM 1 (PDF 610 kb)

References

  1. Beaufay F, Coppine J, Mayard A, Laloux G, De Bolle X, Hallez R (2015) A NAD-dependent glutamate dehydrogenase coordinates metabolism with cell division in Caulobacter crescentus. EMBO J 34(13):1786–1800.  https://doi.org/10.15252/embj.201490730 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bhatia NP, Walsh KB, Baker AJ (2005) Detection and quantification of ligands involved in nickel detoxificationn in a herbaceous Ni hyperaccumulator Stackhousia tryonii Bailey. J Exp Bot 56(415):1343–1349CrossRefPubMedGoogle Scholar
  3. Bongaerts G, Uitzetter J, Brouns R, Vogels G (1978) Uricase of Bacillus fastidiosus properties and regulation of synthesis. Biochim Biophys Acta 527(2):348–358CrossRefPubMedGoogle Scholar
  4. Booth SC, Weljie AM, Turner RJ (2015) Metabolomics reveals differences of metal toxicity in cultures of Pseudomonas pseudoalcaligenes KF707 grown on different carbon sources. Front Microbiol 6(827).  https://doi.org/10.3389/fmicb.2015.00827
  5. Boutte CC, Henry JT, Crosson S (2012) ppGpp and polyphosphate modulate cell cycle progression in Caulobacter crescentus. J Bacteriol 194(1):28–35.  https://doi.org/10.1128/JB.05932-11 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Britos L, Abeliuk E, Taverner T, Lipton M, McAdams H, Shapiro L (2011) Regulatory response to carbon starvation in Caulobacter crescentus. PLoS One 6(4):e18179.  https://doi.org/10.1371/journal.pone.0018179 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Carballido-López R (2006) The bacterial actin-like cytoskeleton. Microbiol Mol Biol Rev 70(4):888–909.  https://doi.org/10.1128/MMBR.00014-06 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cheng Z, Lin M, Rikihisa Y (2014) Ehrlichia chaffeensis proliferation begins with NtrY/NtrX and PutA/GlnA upregulation and CtrA degradation induced by proline and glutamine uptake. mBio 5(6):e02141-14.  https://doi.org/10.1128/mBio.02141-14 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Copley SD, Frank E, Kirsch WM, Koch TH (1992) Detection and possible origins of aminomalonic acid in protein hydrolysates. Anal Biochem 201(1):152–157.  https://doi.org/10.1016/0003-2697(92)90188-D CrossRefPubMedGoogle Scholar
  10. Csonka LN (1989) Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev 53(1):121–147PubMedPubMedCentralGoogle Scholar
  11. Curtis PD, Brun YV (2010) Getting in the loop: regulation of development in Caulobacter crescentus. Microbiol Mol Biol Rev 74(1):13–41.  https://doi.org/10.1128/MMBR.00040-09 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Das KK, Das SN, Dhundasi SA (2008) Nickel, its adverse health effects & oxidative stress. Indian J Med Res 128(4):412–425PubMedGoogle Scholar
  13. Debussche L, Couder M, Thibaut D, Cameron B, Crouzet J, Blanche F (1992) Assay, purification, and characterization of cobaltochelatase, a unique complex enzyme catalyzing cobalt insertion in hydrogenobyrinic acid a,c-diamide during coenzyme B12 biosynthesis in Pseudomonas denitrificans. J Bacteriol 174(22):7445–7451CrossRefPubMedPubMedCentralGoogle Scholar
  14. Denkhaus E, Salnikow K (2002) Nickel essentiality, toxicity, and carcinogenicity. Crit Rev Oncol Hematol 42(1):35–56CrossRefPubMedGoogle Scholar
  15. Figge RM, Easter J, Gober JW (2003) Productive interaction between the chromosome partitioning proteins, ParA and ParB, is required for the progression of the cell cycle in Caulobacter crescentus. Mol Microbiol 47(5):1225–1237.  https://doi.org/10.1046/j.1365-2958.2003.03367.x CrossRefPubMedGoogle Scholar
  16. Figge RM, Divakaruni AV, Gober JW (2004) MreB, the cell shape-determining bacterial actin homologue, co-ordinates cell wall morphogenesis in Caulobacter crescentus. Mol Microbiol 51(5):1321–1332.  https://doi.org/10.1111/j.1365-2958.2003.03936.x CrossRefPubMedGoogle Scholar
  17. Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16(8):2176–2191.  https://doi.org/10.1105/tpc.104.023036 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gitai Z, Dye N, Shapiro L (2004) An actin-like gene can determine cell polarity in bacteria. Proc Natl Acad Sci U S A 101(23):8643–8648.  https://doi.org/10.1073/pnas.0402638101 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Goley ED, Yeh YC, Hong SH, Fero MJ, Abeliuk E, McAdams HH, Shapiro L (2011) Assembly of the Caulobacter cell division machine. Mol Microbiol 80(6):1680–1698.  https://doi.org/10.1111/j.1365-2958.2011.07677.x CrossRefPubMedPubMedCentralGoogle Scholar
  20. Harth G, Maslesa-Galic S, Tullius MV, Horwitz MA (2005) All four Mycobacterium tuberculosis glnA genes encode glutamine synthetase activities but only GlnA1 is abundantly expressed and essential for bacterial homeostasis. Mol Microbiol 58(4):1157–1172.  https://doi.org/10.1111/j.1365-2958.2005.04899.x
  21. He ZL, Yang XE, Stoffella PJ (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 19(2–3):125–140.  https://doi.org/10.1016/j.jtemb.2005.02.010 CrossRefPubMedGoogle Scholar
  22. Heinrich K, Sobetzko P, Jonas K (2016) A kinase-phosphatase switch transduces environmental information into a bacterial cell cycle circuit. PLoS Genet 12(12):e1006522.  https://doi.org/10.1371/journal.pgen.1006522 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Herawati N, Suzuki S, Hayashi K, Rivai IF, Koyama H (2000) Cadmium, copper and zinc levels in rice and soil of Japan, Indonesia and China by soil type. Bull Environ Contam Toxicol 64(1):33–39.  https://doi.org/10.1007/s001289910006 CrossRefPubMedGoogle Scholar
  24. Hillson NJ, Hu P, Andersen GL, Shapiro L (2007) Caulobacter crescentus as a whole-cell uranium biosensor. Appl Environ Microbiol 73(23):7615–7621.  https://doi.org/10.1128/AEM.01566-07
  25. Homer FA, Reeves R, Brooks RR (1995) The possible involvement of amino acids in nickel chelation in some nickel accumulating plants. Curr Top Phytochem 14:31–33Google Scholar
  26. Hoque MA, Banu MN, Nakamura Y, Shimoishi Y, Murata Y (2008) Proline and glycinebetaine enhance antioxidant defense and methylglyoxal detoxification systems and reduce NaCl-induced damage in cultured tobacco cells. J Plant Physiol 165(8):813–824.  https://doi.org/10.1016/j.jplph.2007.07.013 CrossRefPubMedGoogle Scholar
  27. Hu P, Brodie EL, Suzuki Y, McAdams HH, Andersen GL (2005) Whole-genome transcriptional analysis of heavy metal stresses in Caulobacter crescentus. J Bacteriol 187(24):8437–8449.  https://doi.org/10.1128/JB.187.24.8437-8449.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hughes V, Jiang C, Brun Y (2012) Caulobacter crescentus. Curr Biol 22(13):507–509Google Scholar
  29. Jensen RB, Wang SC, Shapiro L (2002) Dynamic localization of proteins and DNA during a bacterial cell cycle. Nat Rev Mol Cell Biol 3(3):167–176.  https://doi.org/10.1038/nrm758 CrossRefPubMedGoogle Scholar
  30. Jespersen D, Yu J, Huang B (2017) Metabolic effects of acibenzolar-S-methyl for improving heat or drought stress in creeping bentgrass. Front Plant Sci 8(1224).  https://doi.org/10.3389/fpls.2017.01224
  31. Jonas K, Liu J, Chien P, Laub MT (2013) Proteotoxic stress induces a cell cycle arrest by stimulating Lon to degrade the replication initiator DnaA. Cell 154(3):623–636.  https://doi.org/10.1016/j.cell.2013.06.034 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kalliri E, Grzyska PK, Hausinger RP (2005) Kinetic and spectroscopic investigation of CoII, NiII, and N-oxalylglycine inhibition of the FeII/alpha-ketoglutarate dioxygenase, TauD. Biochem Biophys Res Commun 338(1):191–197.  https://doi.org/10.1016/j.bbrc.2005.08.223 CrossRefPubMedGoogle Scholar
  33. Kawahara Y, Ohsumi T, Yoshihara Y, Ikeda S (1989) Proline in the osmoregulation of Brevibacterium lactofermentum. Agric Biol Chem 53(9):2475–2479Google Scholar
  34. Kersten WJ, Brooks RR, Reeves RD, Jaffré A (1980) Nature of nickel complexes in Psychotria douarrei and other nickel-accumulating plants. Phytochemistry 19(9):1963–1965.  https://doi.org/10.1016/0031-9422(80)83013-5 CrossRefGoogle Scholar
  35. Kroeger KM, Hashimoto M, Kow YW, Greenberg MM (2003) Cross-linking of 2-deoxyribonolactone and its beta-elimination product by base excision repair enzymes. Biochemistry 42(8):2449–2455.  https://doi.org/10.1021/bi027168c CrossRefPubMedGoogle Scholar
  36. Lam H, Schofield WB, Jacobs-Wagner C (2005) A landmark protein essential for establishing and perpetuating the polarity of a bacterial cell. Cell 124(5):1011–1023.  https://doi.org/10.1016/j.cell.2005.12.040 CrossRefGoogle Scholar
  37. Lee J, Reeves RD, Brooks RR, Jaffré T (1978) The relation between nickel and citric acid in some nickel-accumulating plants. Phytochemistry 17(6):1033–1035.  https://doi.org/10.1016/S0031-9422(00)94274-2 CrossRefGoogle Scholar
  38. Leslie DJ, Heinen C, Schramm FD, Thüring M, Aakre CD, Murray SM, Laub MT, Jonas K (2015) Nutritional control of DNA replication initiation through the proteolysis and regulated translation of DnaA. PLoS Genet 11(7):e1005342.  https://doi.org/10.1371/journal.pgen.100534 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Liang X, Zhang L, Natarajan SK, Becker DF (2013) Proline mechanisms of stress survival. Antioxid Redox Signal 19(9):998–1011.  https://doi.org/10.1089/ars.2012.5074 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Louwrier A, Knowles CJ (1996) The purification and characterization of a novel D-specific carbamoylase enzyme from an Agrobacterium sp. Enzym Microb Technol 19(8):562–571.  https://doi.org/10.1016/0141-0229(95)00044-5 CrossRefGoogle Scholar
  41. Macomber L, Hausinger RP (2011) Mechanisms of nickel toxicity in microorganisms. Metallomics 3(11):1153–1162.  https://doi.org/10.1039/c1mt00063b CrossRefPubMedPubMedCentralGoogle Scholar
  42. Mohapatra SS, Fioravanti A, Biondi EG (2014) DNA methylation in Caulobacter and other Alphaproteobacteria during cell cycle progression. Trends Microbiol 22(9):528–535.  https://doi.org/10.1016/j.tim.2014.05.003
  43. Mohl DA, Easter J, Gober JW (2001) The chromosome partitioning protein, ParB, is required for cytokinesis in Caulobacter crescentus. Mol Microbiol 42(3):741–755.  https://doi.org/10.1046/j.1365-2958.2001.02643.x CrossRefPubMedGoogle Scholar
  44. Monahan LG, Hajduk IV, Blaber SP, Charles IG, Harry EJ (2014) Coordinating bacterial cell division with nutrient availability: a role for glycolysis. mBio 5(3):e00935-14.  https://doi.org/10.1128/mBio.00935-14 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Montargès-Pelletier E, Chardot V, Echevarria G, Michot LJ, Bauer A, Morel JL (2008) Identification of nickel chelators in three hyperaccumulating plants: an X-ray spectroscopic study. Phytochemistry 69(8):1695–1709.  https://doi.org/10.1016/j.phytochem.2008.02.009 CrossRefPubMedGoogle Scholar
  46. Mulrooney SB, Hausinger RP (2003) Nickel uptake and utilization by microorganisms. FEMS Microbiol Rev 27(2–3):239–261.  https://doi.org/10.1016/S0168-6445(03)00042-1 CrossRefPubMedGoogle Scholar
  47. Navarro C, Wu LF, Mandrand-Berthelot MA (1993) The nik operon of Escherichia coli encodes a periplasmic binding-protein-dependent transport system for nickel. Mol Microbiol 9(6):1181–1191.  https://doi.org/10.1111/j.1365-2958.1993.tb01247.x CrossRefPubMedGoogle Scholar
  48. Niemirowicz G, Parussini F, Agüero F, Cazzulo JJ (2007) Two metallocarboxypeptidases from the protozoan Trypanosoma cruzi belong to the M32 family, found so far only in prokaryotes. Biochem J 401(2):399–410.  https://doi.org/10.1042/BJ20060973 CrossRefPubMedGoogle Scholar
  49. Patel J, Zhang Q, McKay RM, Vincent R, Xu Z (2010) Genetic engineering of Caulobacter crescentus for removal of cadmium from water. Appl Biochem Biotechnol 160(1):232–243.  https://doi.org/10.1007/s12010-009-8540 CrossRefPubMedGoogle Scholar
  50. Reisenauer A, Shapiro L (2002) DNA methylation affects the cell cycle transcription of the CtrA global regulator in Caulobacter. EMBO J 21(18):4969–4977.  https://doi.org/10.1093/emboj/cdf490 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Rodrigue A, Effantin G, Mandrand-Berthelot MA (2005) Identification of rcnA (yohM), a nickel and cobalt resistance gene in Escherichia coli. J Bacteriol 187(8):2912–2916.  https://doi.org/10.1128/JB.187.8.2912-2916.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Ron E, Grossman N, Helmstetter CE (1977) Control of cell division in Escherichia coli: effect of amino acid starvation. J Bacteriol 129(2):569–573Google Scholar
  53. Sato K, Okubo A, Yamazaki S (1998) Characterization of a multi-copper enzyme, nitrous oxide reductase, from Rhodobacter sphaeroides f. sp. denitrificans. J Biochem 124(1):51–54.  https://doi.org/10.1093/oxfordjournals.jbchem.a022096 CrossRefPubMedGoogle Scholar
  54. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682.  https://doi.org/10.1038/nmeth.2019 CrossRefPubMedGoogle Scholar
  55. Sharma SS, Dietz KJ (2005) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57(4):711–726.  https://doi.org/10.1093/jxb/erj073 CrossRefGoogle Scholar
  56. Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14(1):43–50.  https://doi.org/10.1016/j.tplants.2008.10.007 CrossRefPubMedGoogle Scholar
  57. Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2016) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6(1143).  https://doi.org/10.3389/fpls.2015.01143
  58. Siripornadulsil S, Traina S, Verma DP, Sayre RT (2002) Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell 14(11):2837–2847.  https://doi.org/10.1105/tpc.004853 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Stähler FN, Odenbreit S, Haas R, Wilrich J, Van Vliet AH, Kusters JG, Kist M, Bereswill S (2006) The novel Helicobacter pylori CznABC metal efflux pump is required for cadmium, zinc, and nickel resistance, urease modulation, and gastric colonization. Infect Immun 74(7):3845–3852.  https://doi.org/10.1128/IAI.02025-05 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Talanova V, Titov A, Boeva N (2000) Effect of increasing concentration of lead and cadmium on cucumber seedlings. Biol Plant 43(3):441–444.  https://doi.org/10.1023/A:1026735603890 CrossRefGoogle Scholar
  61. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metals toxicity and the environment. EXS 101:133–164.  https://doi.org/10.1007/978-3-7643-8340-4_6 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Thanbichler M, Shapiro L (2006) MipZ, a spatial regulator coordinating chromosome segregation with cell division in Caulobacter. Cell 126(1):147–162.  https://doi.org/10.1016/j.cell.2006.05.038
  63. Viollier PH, Thanbichler M, McGrath PT, West L, Meewan M, McAdams HH, Shapiro L (2004) Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. Proc Natl Acad Sci U S A 101(25):9257–9262CrossRefPubMedPubMedCentralGoogle Scholar
  64. Wang M, Bai J, Chen WN, Ching CB (2010) Metabolomic profiling of cellular responses to carvedilol enantiomers in vascular smooth muscle cells. PLoS One 5(11):e15441.  https://doi.org/10.1371/journal.pone.0015441 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Xia J, Sinelnikov IV, Han B, Wishart DS (2015) MetaboAnalyst 3.0—making metabolomics more meaningful. Nucleic Acids Res 43(W1):W251–W257.  https://doi.org/10.1093/nar/gkv380 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Yusuf M, Fariduddin Q, Ahmad A (2002) 24-Epibrassinolide modulates growth, nodulation, antioxidant system, and osmolyte in tolerant and sensitive varieties of Vigna radiata under different levels of nickel: a shotgun approach. Plant Physiol Biochem 57:143–153.  https://doi.org/10.1016/j.plaphy.2012.05.004 CrossRefGoogle Scholar
  67. Yusuf M, Fariduddun Q, Hayat S, Ahmad A (2011) Nickel: an overview of uptake, essentiality and toxicity in plants. Bull Environ Contam Toxicol 86(1):1–17.  https://doi.org/10.1007/s00128-010-0171-1 CrossRefPubMedGoogle Scholar
  68. Zhou Y, Larson JD, Bottoms CA, Arturo EC, Henzl MT, Jenkins JL, Nix JC, Becker DF, Tanner JJ (2008) Structural basis of the transcriptional regulation of the proline utilization regulon by multifunctional PutA. J Mol Biol 381(1):174–188.  https://doi.org/10.1016/j.jmb.2008.05.084 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Interdisciplinary Graduate SchoolNanyang Technological UniversitySingaporeSingapore
  2. 2.Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research InstituteNanyang Technological UniversitySingaporeSingapore
  3. 3.School of Chemical and Biomedical EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations