Skip to main content
Log in

Cell permeability and nuclear DNA staining by propidium iodide in basidiomycetous yeasts

  • Methods and protocols
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Non-model yeasts within basidiomycetes have considerable importance in agriculture, industry, and environment, but they are not as well studied as ascomycetous yeasts. Serving as a basic technique, nuclear DNA staining is widely used in physiology, ecology, cell biology, and genetics. However, it is unclear whether the classical nuclear DNA staining method for ascomycetous yeasts is applicable to basidiomycetous yeasts. In this study, 5 yeasts ineffectively stained by the classical propidium iodide (PI) staining method were identified from 23 representative basidiomycetous yeasts. Pretreatment of cells using dimethyl sulfoxide (DMSO) or snailase markedly improved cell penetration to PI and thus enabled DNA content determination by flow cytometry on the recalcitrant yeasts. The pretreatments are efficient, simple, and fast, avoiding tedious mutagenesis or genetic engineering used in previous reports. The heterogeneity of cell penetration to PI among basidiomycetous yeasts was attributed to the discrepancy in cell wall polysaccharides instead of capsule or plasma membrane. This study also indicated that care must be taken in attributing PI-negative staining as viable cells when studying non-model microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Atale N, Gupta S, Yadav UC, Rani V (2014) Cell-death assessment by fluorescent and nonfluorescent cytosolic and nuclear staining techniques. J Microsc 255(1):7–19

    Article  CAS  PubMed  Google Scholar 

  • Bang KH, Lee DW, Park HM, Rhee YH (2000) Inhibition of fungal cell wall synthesizing enzymes by trans-cinnamaldehyde. Biosci Biotechnol Biochem 64(5):1061–1063

    Article  CAS  PubMed  Google Scholar 

  • Biely P, Krátký Z, Kovarík J, Bauer S (1971) Effect of 2-deoxyglucose on cell wall formation in Saccharomyces cerevisiae and its relation to cell growth inhibition. J Bacteriol 107(1):121–129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonasio R (2015) The expanding epigenetic landscape of non-model organisms. J Exp Biol 218(Pt 1):114–122

    Article  PubMed  PubMed Central  Google Scholar 

  • Borgel D, van den Berg M, Huller T, Andrea H, Liebisch G, Boles E, Schorsch C, van der Pol R, Arink A, Boogers I, van der Hoeven R, Korevaar K, Farwick M, Köhler T, Schaffer S (2012) Metabolic engineering of the non-conventional yeast Pichia ciferrii for production of rare sphingoid bases. Metab Eng 14(4):412–426

    Article  PubMed  Google Scholar 

  • Burke D, Dawson D, Stearns T (2000) Flow cytometry of yeast DNA. In: Methods in yeast genetics. A Cold Spring Harbor laboratory course manual. Laboratory Press, Cold Spring Harbor, NY, pp 155–156

    Google Scholar 

  • Carlson CR, Grallert B, Bernander R, Stokke T, Boye E (1997) Measurement of nuclear DNA content in fission yeast by flow cytometry. Yeast 13(14):1329–1335

    Article  CAS  PubMed  Google Scholar 

  • Ciani M, Morales P, Comitini F, Tronchoni J, Canonico L, Curiel JA, Oro L, Rodrigues AJ, Gonzalez R (2016) Non-conventional yeast species for lowering ethanol content of wines. Front Microbiol 7(124):642

    PubMed  PubMed Central  Google Scholar 

  • Danielsen HE, Pradhan M, Novelli M (2016) Revisiting tumour aneuploidy—the place of ploidy assessment in the molecular era. Nat Rev Clin Oncol 13(5):291–304

    Article  CAS  PubMed  Google Scholar 

  • Davey HM, Hexley P (2011) Red but not dead? Membranes of stressed Saccharomyces cerevisiae are permeable to propidium iodide. Environ Microbiol 13(1):163–171

    Article  CAS  PubMed  Google Scholar 

  • Deere D, Shen J, Vesey G, Bell P, Bissinger P, Veal D (1998) Flow cytometry and cell sorting for yeast viability assessment and cell selection. Yeast 14(2):147–160

    Article  CAS  PubMed  Google Scholar 

  • Doering TL (2009) How sweet it is! Cell wall biogenesis and polysaccharide capsule formation in Cryptococcus neoformans. Annu Rev Microbiol 63(1):223–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elsheikha HM, Mansfield LS (2004) Assessment of Sarcocystis neurona sporocyst viability and differentiation between viable and nonviable sporocysts using propidium iodide stain. J Parasitol 90(4):872–875

    Article  PubMed  Google Scholar 

  • Fernandez-Miranda E, Majada J, Casares A (2017) Efficacy of propidium iodide and FUN-1 stains for assessing viability in basidiospores of Rhizopogon roseolus. Mycologia 109:350–358

    Article  CAS  PubMed  Google Scholar 

  • Flores ML, Stortz CA, Cerezo AS (2000) Studies on the skeletal cell wall of the cystocarpic stage of the red seaweed Iridaea undulosa B. Part II Fractionation of the cell wall and methylation analysis of the inner core-fibrillar polysaccharides. Inter J Bio Macromol 27(1):21–27

    Article  CAS  Google Scholar 

  • Gh MS, Wilhelm MJ, Sheffield JB, Dai HL (2015) Living E. coli is permeable to propidium iodide: a study by time-resolved second-harmonic scattering and fluorescence microscopy. Biophys J 108(2):148a–149a

    Google Scholar 

  • Ghajar BM, Harmon SA (1968) Effect of dimethyl sulfoxide (DMSO) on permeability of Staphylococcus aureus. Biochem Biophys Res Commun 32(6):940–944

    Article  CAS  PubMed  Google Scholar 

  • Gilbert MF, McQuitty DN, Bailey JE (1978) Flow microfluorometry study of diauxic batch growth of Saccharomyces cerevisiae. Appl Environ Microbiol 36(4):615–617

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson EA (2013a) Biotechnology of non-Saccharomyces yeasts—the ascomycetes. Appl Microbiol Biotechnol 97(2):503–517

    Article  CAS  PubMed  Google Scholar 

  • Johnson EA (2013b) Biotechnology of non-Saccharomyces yeasts—the basidiomycetes. Appl Microbiol Biotechnol 97(2):7563–7577

    Article  CAS  PubMed  Google Scholar 

  • Johnson EA, Villa TG, Lewis MJ (1980) Phaffia rhodozyma as an astaxanthin source in salmonid diets. Aquaculture 20(2):123–134

    Article  Google Scholar 

  • Khan MMT, Pyle BH, Camper AK (2010) Specific and rapid enumeration of viable but nonculturable and viable-culturable gram-negative bacteria by using flow cytometry. Appl Environ Microbiol 76(15):5088–5096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kratky Z, Biely P, Bauer S (1975) Mechanism of 2-deoxy-D-glucose inhibition of cell-wall polysaccharide and glycoprotein biosyntheses in Saccharomyces cerevisiae. Eur J Biochem 54(2):459–467

    Article  CAS  PubMed  Google Scholar 

  • Kucsera J, Pfeiffer I, Ferenczy L (1998) Homothallic life cycle in the diploid red yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma). Antonie Van Leeuwenhoek 73(2):163–168

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Redden H, Alper HS (2013) Frontiers of yeast metabolic engineering: diversifying beyond ethanol and Saccharomyces. Curr Opin Biotechnol 24(6):1023–1030

    Article  CAS  PubMed  Google Scholar 

  • Liu XZ, Wang QM, Goker M, Groenewald M, Kachalkin AV, Lumbsch HT, Millanes AM, Wedin M, Yurkov AM, Boekhout T, Bai FY (2015) Towards an integrated phylogenetic classification of the Tremellomycetes. Stud Mycol 81:85–147

    Article  PubMed  Google Scholar 

  • Lopez-Amoros R, Castel S, Comas-Riu Vives-Rego J (1997) Assessment of E. coli and Salmonella viability and starvation by confocal laser microscopy and flow cytometry using rhodamine 123, DiBAC4(3), propidium iodide, and CTC. Cytometry 29(4):298–305

    Article  CAS  PubMed  Google Scholar 

  • Maekawa E (1974) Effect of dimethyl-sulfoxide as solvent of cell-wall polysaccharides. J Agr Chem Soc Jpn 48(1):75–77

    Google Scholar 

  • Masneuf-Pomarede I, Bely M, Marullo P, Albertin W (2015) The genetics of non-conventional wine yeasts: current knowledge and future challenges. Front Microbiol 6:1563

    PubMed  Google Scholar 

  • Medwid RD (1998) Phaffia rhodozyma is polyploid. J Ind Microbiol Biot 21(4–5):228–232

    Article  CAS  Google Scholar 

  • Notman R, den Otter WK, Noro MG, Brels WJ, Anwar J (2007) The permeability enhancing mechanism of DMSO in ceramide bilayers simulated by molecular dynamics. Biophys J 93(6):2056–2068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohno N, Uchiyama M, Tsuzuki A, Miura NN, Adachi Y, Aizawa MW, Tamura H, Tanaka S, Yadomae T (1999) Solubilization of yeast cell-wall β-(1, 3)-D-glucan by sodium hypochlorite oxidation and dimethyl sulfoxide extraction. Carbohydr Res 316(1–4):161–172

    Article  CAS  PubMed  Google Scholar 

  • Olaiya AF, Sogin SJ (1979) Ploidy determination of Candida albicans. J Bacteriol 140(3):1043–1049

    CAS  PubMed  PubMed Central  Google Scholar 

  • Phe MH, Dossot M, Guilloteau H, Block JC (2007) Highly chlorinated Escherichia coli cannot be stained by propidium iodide. Can J Microbiol 53(5):664–670

    Article  CAS  PubMed  Google Scholar 

  • Polak E, Hermann R, Kües U, Aebi M (1997) Asexual sporulation in Coprinus cinereus: structure and development of oidiophores and oidia in an Amut Bmut homokaryon. Fungal Genet Biol 22:112–126

    Article  CAS  PubMed  Google Scholar 

  • Rosebrock AP (2017) Analysis of the budding yeast cell cycle by flow cytometry. Cold Spring Harb Protoc 2017:pdb.prot088740. https://doi.org/10.1101/pdb.prot088740

    Article  PubMed  Google Scholar 

  • Russell JJ, Theriot JA, Sood P, Marshall WF, Landweber LF, Fritz-Laylin L, Polka JK, Oliferenko S, Gerbich T, Gladfelter A, Umen J, Bezanilla M, Lancaster MA, He S, Gibson MC, Goldstein B, Tanaka EM, Hu CK, Brunet A (2017) Non-model model organisms. BMC Biol 15(1):55

    Article  PubMed  PubMed Central  Google Scholar 

  • Schupp DG, Erlandsen SL (1987) A new method to determine Giardia cyst viability: correlation of fluorescein diacetate and propidium iodide staining with animal infectivity. Appl Environ Microbiol 53(4):704–707

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma R, Gassel S, Steiger S, Xia X, Bauer R, Sandmann G, Thines M (2015) The genome of the basal agaricomycete Xanthophyllomyces dendrorhous provides insights into the organization of its acetyl-CoA derived pathways and the evolution of Agaricomycotina. BMC Genomics 16(1):233

    Article  PubMed  PubMed Central  Google Scholar 

  • Shreaz S, Wani WA, Behbehani JM, Raja V, Irshad M, Karched M, Ali I, Siddiqi WA, Hun LT (2016) Cinnamaldehyde and its derivatives, a novel class of antifungal agents. Fitoterapia 112:116–131

    Article  CAS  PubMed  Google Scholar 

  • Takeo K, Tanaka R, Miyaji M, Nishimura K (1995) Unbudded G2 as well as G1 arrest in the stationary phase of the basidiomycetous yeast Cryptococcus neoformans. FEMS Microbiol Lett 129:231–235

    CAS  PubMed  Google Scholar 

  • Tibayrenc P, Ghommidh C, Preziosi-Belloy L (2011) Determination of yeast viability during a stress-model alcoholic fermentation using reagent-free microscopy image analysis. Biotechnol Prog 27(2):539–546

    Article  CAS  PubMed  Google Scholar 

  • Wagner JM, Alper HS (2016) Synthetic biology and molecular genetics in non-conventional yeasts: current tools and future advances. Fungal Genet Biol 89:126–136

    Article  CAS  PubMed  Google Scholar 

  • Wang ZG, Akiyama T, Yokoyama T, Matsumoto Y (2013) Fractionation and characterization of wood cell wall components of Fagus crenata Blume using LiCl/DMSO solvent system. J Wood Chem Technol 33(3):188–196

    Article  CAS  Google Scholar 

  • Wang QM, Begerow D, Groenewald M, Liu XZ, Theelen B, Bai FY, Boekhout T (2015a) Multigene phylogeny and taxonomic revision of yeasts and related fungi in the Ustilaginomycotina. Stud Mycol 81:55–83

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang QM, Yurkov AM, Goker M, Lumbsch HT, Leavitt SD, Groenewald M, Theelen B, Liu XZ, Boekhout T, Bai FY (2015b) Phylogenetic classification of yeasts and related taxa within Pucciniomycotina. Stud Mycol 81:149–189

    Article  PubMed  Google Scholar 

  • Wery J, Verdoes JC, van Ooyen AJJ (1998) Efficient transformation of the astaxanthin-producing yeast Phaffia rhodozyma. Biotechnol Tech 12(5):399–405

    Article  CAS  Google Scholar 

  • Williams AC, Barry BW (2004) Penetration enhancers. Adv Drug Deliv Rev 56(5):603–618

    Article  CAS  PubMed  Google Scholar 

  • Williams AC, Barry BW (2012) Penetration enhancers. Adv Drug Deliv Rev 64:128–137

    Article  Google Scholar 

  • Williams SC, Hong Y, Danavall DCA, Howard-Jones MH, Gibson D, Frischer ME, Verity PG (1998) Distinguishing between living and nonliving bacteria: evaluation of the vital stain propidium iodide and its combined use with molecular probes in aquatic samples. J Microbiol Meth 32(3):225–236

    Article  CAS  Google Scholar 

  • Wright R (2000) Transmission electron microscopy of yeast. Microsc Res Techniq 51(6):496–510

    Article  CAS  Google Scholar 

  • Zaragoza O, Casadevall A (2004) Experimental modulation of capsule size in Cryptococcus neoformans. Biol Proced Online 6(1):10–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng FY, Gong XY, Hamid MI, Fu YP, Xie JT, Cheng JS, Li GQ, Jiang DH (2012) A fungal cell wall integrity-associated MAP kinase cascade in Coniothyrium minitans is required for conidiation and mycoparasitism. Fungal Genet Biol 49:347–357

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Natural Science Foundation of China and the Chinese Academy of Sciences for financial support.

Funding

This study was funded by the Natural Science Foundation of China (No. 31670054, No. 51561145015, and No. 21676159) and Youth Innovation Promotion Association (2013137), Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi’an Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 553 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Fan, Y., Li, C. et al. Cell permeability and nuclear DNA staining by propidium iodide in basidiomycetous yeasts. Appl Microbiol Biotechnol 102, 4183–4191 (2018). https://doi.org/10.1007/s00253-018-8906-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-8906-8

Keywords

Navigation