Skip to main content
Log in

Heat and light stresses affect metabolite production in the fruit body of the medicinal mushroom Cordyceps militaris

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Cordyceps militaris is a highly valued edible and medicinal fungus due to its production of various metabolites, including adenosine, cordycepin, N6-(2-hydroxyethyl)-adenosine, and carotenoids. The contents of these metabolites are indicative of the quality of commercially available fruit body of this fungus. In this work, the effects of environmental abiotic factors, including heat and light stresses, on the fruit body growth and metabolite production in C. militaris were evaluated during the late growth stage. The optimal growth temperature of C. militaris was 20 °C. It was found that a heat stress of 25 °C for 5–20 days during the late growth stage significantly promoted cordycepin and carotenoid production without affecting the biological efficiency. Light stress at 6000 lx for 5–20 days during the late growth stage significantly promoted cordycepin production but decreased the carotenoid content. Both heat and light stresses promoted N6-(2-hydroxyethyl)-adenosine production. In addition, gene expression analysis showed that there were simultaneous increases in the expression of genes encoding a metal-dependent phosphohydrolase (CCM_04437) and ATP phosphoribosyltransferase (CCM_04438) that are involved in the cordycepin biosynthesis pathway, which was consistent with the accumulation of cordycepin during heat stress for 5–20 days. A positive weak correlation between the cordycepin and adenosine contents was observed with a Pearson correlation coefficient of 0.338 (P < 0.05). The results presented herein provide a new strategy for the production of a superior quality fruit body of C. militaris and contribute to further elucidation of the effects of abiotic stress on metabolite accumulation in fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahn YJ, Park SJ, Lee SG, Shin SC, Cho DH (2000) Cordycepin: selective growth inhibitor derived from liquid culture of Cordyceps militaris against Clostridium spp. J Agric Food Chem 48(7):2744–2748

    Article  PubMed  CAS  Google Scholar 

  • Calvo AM, Wilson RA, Bok JW, Keller NP (2002) Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev 66(3):447–459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chai YQ, Wei ZM, Chen ZA, Li XL, Liu YG, Wang GE (2004) N6-(2-hydroxyethyl)-adenosine’ application in the preparation of analgesic drugs. China, ZL200410094511.0. (in Chinese)

  • Chang ST, Miles PG (2004) Mushrooms: cultivation, nutritional value, medicinal effect and environmental impact. CRC Press LLC 38(4):688–692

    Google Scholar 

  • Chen C, Bau T, Bao HY (2013) Chemical composition analysis of cultured Cordyceps militaris. Food Sci 34(11):36–40 (in Chinese)

    Google Scholar 

  • Chen AH, Wang YL, Shao Y, Huang B (2017) A novel technique for rejuvenation of degenerated caterpillar medicinal mushroom, Cordyceps militaris (Ascomycetes), a valued traditional Chinese medicine. Int J Med Mushrooms 19(1):87–91

    Article  PubMed  Google Scholar 

  • Cunningham KG, Manson W, Spring FS, Hutchinson SA (1950) Cordycepin, a metabolic product from cultures of Cordyceps militaris (Linn.) Link. Nature 166(4231):949

    Article  PubMed  CAS  Google Scholar 

  • Das SK, Masuda M, Hatashita M, Sakurai A, Sakakibara M (2008) A new approach for improving cordycepin productivity in surface liquid culture of Cordyceps militaris using high-energy ion beam irradiation. Lett Appl Microbiol 47(6):534–538

    Article  PubMed  CAS  Google Scholar 

  • Das SK, Masuda M, Sakurai A, Sakakibara M (2010) Medicinal uses of the mushroom Cordyceps militaris: current state and prospects. Fitoterapia 81(8):961–968

    Article  PubMed  Google Scholar 

  • Del Campo JA, Moreno J, Rodriguez H, Vargas MA, Rivas J, Guerrero MG (1999) Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). J Biotechnol 76(1):51–59

    Article  Google Scholar 

  • Dong CH, Yao YJ (2011) On the reliability of fungal materials used in studies on Ophiocordyceps sinensis. J Ind Microbiol Biotechnol 38(8):1027–1035

    Article  PubMed  CAS  Google Scholar 

  • Dong JZ, Wang SH, Ai XR, Yao L, Sun ZW, Lei C, Wang Y, Wang Q (2013) Composition and characterization of cordyxanthins from Cordyceps militaris fruit bodies. J Func Foods 5(3):1450–1455

    Article  CAS  Google Scholar 

  • Fang M, Chai YQ, Chen GJ, Wang HD, Huang B (2016) N6-(2-hydroxyethyl)-adenosine exhibits insecticidal activity against Plutella xylostella via adenosine receptors. PLoS One 11(9):e0162859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fu MJ, Wang XJ (2005) Accumulation of carotenoid in Colletotrichum gloeosporioides induced by blue light. Acta Microbiol Sin 45(5):795–797

    CAS  Google Scholar 

  • Furuya T, Hirotani M, Matsuzawa M (1983) N6-(2-hydroxyethyl)-adenosine, a biologically active compound from cultured mycelia of Cordyceps and Isaria species. Phytochemistry 22(11):2509–2512

    Article  CAS  Google Scholar 

  • Gomes CV, Kaster MP, Tomé AR, Agostinho PM, Cunha RA (2011) Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. Biochim Biophys Acta 1808(5):1380–1399

    Article  PubMed  CAS  Google Scholar 

  • Guo MM, Guo SP, Yang HJ, Bu N, Dong CH (2016) Comparison of major bioactive compounds of the caterpillar medicinal mushroom, Cordyceps militaris (Ascomycetes), fruiting bodies cultured on wheat substrate and pupae. Int J Med Mushrooms 18(4):327–336

    Article  PubMed  Google Scholar 

  • Huang SJ, Lin CP, Mau JL, Li YS, Tsai SY (2015) Effect of UV-B irradiation on physiologically active substance content and antioxidant properties of the medicinal caterpillar fungus Cordyceps militaris (Ascomycetes). J Med Mushrooms 17(3):241–253

    Article  Google Scholar 

  • OncoVista Inc. (2008) A phase I/II study of cordycepin plus pentostatin in patients with refractory TdT-positive leukemia. Clinical Trials. https://clinicaltrials.gov/show/NCT00709215. Accessed 2 Jan 2018

  • Kang N, Lee HH, Park I, Seo YS (2017) Development of high cordycepin-producing Cordyceps militaris strains. Mycobiology 45(1):31–38

    Article  PubMed  PubMed Central  Google Scholar 

  • Kitakaze M, Hori M (2000) Adenosine therapy: a new approach to chronic heart failure. Expert Opin Investig Drugs 9(11):2519–2535

    Article  PubMed  CAS  Google Scholar 

  • Kojima M, Kimura N, Miura R (2015) Regulation of primary metabolic pathways in oyster mushroom mycelia induced by blue light stimulation: accumulation of shikimic acid. Sci Rep 5:8630. https://doi.org/10.1038/srep08630

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kornerup A, Wanscher JH (1978) Methuen handbook of colour. EyreMethuen, London

    Google Scholar 

  • Krupodorova TA, Barshteyn VY (2015) Alternative substrates for higher mushrooms mycelia cultivation. J Biosci Bioeng 4(3):339–347

    Google Scholar 

  • Lee HH, Kang N, Park I, Park J, Kim I, Kim J, Kim N, Lee JY, Seo YS (2017) Characterization of newly bred Cordyceps militaris strains for higher production of cordycepin through HPLC and URP-PCR analysis. J Microbiol Biotechnol 27(7):1223–1232

    Article  PubMed  Google Scholar 

  • Leonardi P, Iotti M, Zeppa SD, Lancellotti E, Amicucc A, Zambonelli A (2017) Morphological and functional changes in mycelium and mycorrhizas of Tuber borchii due to heat stress. Fungal Ecol 29:20–29

    Article  Google Scholar 

  • Li SP, Yang FQ, Tsim KW (2006) Quality control of Cordyceps sinensis, a valued traditional Chinese medicine. J Pharm Biomed Anal 41(5):1571–1584

    Article  PubMed  CAS  Google Scholar 

  • Lian TT, Dong CH, Yang T, Sun JD (2014) Three types of geranylgeranyl diphosphate synthases from the medicinal caterpillar fungus, Cordyceps militaris (Ascomycetes). Int J Med Mushrooms 16(2):115–124

    Article  PubMed  CAS  Google Scholar 

  • Lim LT, Lee CY, Chang ET (2012) Optimization of solid state culture conditions for the production of adenosine, cordycepin, and D-mannitol in fruiting bodies of medicinal caterpillar fungus Cordyceps militaris (L.:Fr.) Link (Ascomycetes). Int J Med Mushrooms 14(2):181–187

    Article  PubMed  CAS  Google Scholar 

  • Lin S, Liu ZQ, Xue YP, Baker PJ, Wu H, Xu F, Teng Y, Brathwaite ME, Zheng YG (2016) Biosynthetic pathway analysis for improving the cordycepin and cordycepic acid production in Hirsutella sinensis. Appl Biochem Biotechnol 179(4):633–649

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and 2-∆∆C(T) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lu ZL, Kong XX, Lu ZM, Xiao MX, Chen MY, Zhu L, Shen YM, Hu XY, Song SY (2014) Para-aminobenzoic acid (PABA) synthase enhances thermotolerance of mushroom Agaricus bisporus. PLoS One 9(3):e91298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu MY, Chen CC, Lee LY, Lin TW, Kuo CF (2015) N6-(2-hydroxyethyl)-adenosine in the medicinal mushroom Cordyceps cicadae attenuates lipopolysaccharide-stimulated pro-inflammatory responses by suppressing TLR4-mediated NF-kB signaling pathways. J Nat Prod 78(10):2452–2460

    Article  PubMed  CAS  Google Scholar 

  • Mao XB, Zhong JJ (2004) Hyperproduction of cordycepin by two-stage dissolved oxygen control in submerged cultivation of medicinal mushroom Cordyceps militaris in bioreactors. Biotechnol Prog 20(5):1408–1413

    Article  PubMed  CAS  Google Scholar 

  • Masuda M, Urabe E, Honda H, Sakurai A, Sakakibara M (2007) Enhanced production of cordycepin by surface culture using the medicinal mushroom Cordyceps militaris. Enzym Microb Technol 40:1199–1205

    Article  CAS  Google Scholar 

  • Milani A, Basirnejad M, Shahbazi S, Bolhassani A (2017) Carotenoids: biochemistry, pharmacology and treatment. Br J Pharmacol 174(11):1290–1324

    Article  PubMed  CAS  Google Scholar 

  • Oh TJ, Hyun SH, Lee SG, Chun YJ, Sung GH, Choi HK (2014) NMR and GC-MS based metabolic profiling and free-radical scavenging activities of Cordyceps pruinosa mycelia cultivated under different media and light conditions. PLoS One 9(6):e90823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Razavi SH, Marc I (2006) Effect of temperature and pH on the growth kinetics and carotenoid production by Sporobolomyces ruberrimus H110 using technical glycerol as carbon source. Iran J Chem Chem Eng 23(3):59–64

    Google Scholar 

  • Shrestha B, Han SK, Lee WH, Choi SK, Lee JO, Sung JM (2005a) Distribution and in vitro fruiting of Cordyceps militaris in Korea. Mycobiology 33(4):178–181

    Article  PubMed  PubMed Central  Google Scholar 

  • Shrestha B, Han SK, Yoon KS, Sung JM (2005b) Morphological characteristics of conidiogenesis in Cordyceps militaris. Mycobiology 33(2):69–76

    Article  PubMed  PubMed Central  Google Scholar 

  • Shrestha B, Han SK, Sung JM, Sung GH (2012a) Fruiting body formation of Cordyceps militaris from multi-ascospore isolates and their single ascospore progeny strains. Mycobiology 40(2):100–106

    Article  PubMed  PubMed Central  Google Scholar 

  • Shrestha B, Zhang WM, Zhang YJ, Liu XZ (2012b) The medicinal fungus Cordyceps militaris: research and development. Mycol Prog 11(3):599–614

    Article  Google Scholar 

  • Song C, Chen Q, Wu XL, Zhang JX, Huang CY (2014) Heat stress induces apoptotic-like cell death in two Pleurotus species. Curr Microbiol 69(5):611–616

    Article  PubMed  CAS  Google Scholar 

  • Sung JM, Park YJ, Lee JO, Han SK, Lee WH, Choi SK, Shrestha B (2006) Selection of superior strains of Cordyceps militaris with enhanced fruiting body productivity. Mycobiology 34(3):131–137

    Article  PubMed  PubMed Central  Google Scholar 

  • Tuli HS, Sharma AK, Sandhu SS, Kashyap D (2013) Cordycepin: a bioactive metabolite with therapeutic potential. Life Sci 93(23):863–869

    Article  PubMed  CAS  Google Scholar 

  • Wu CY, Liang ZC, Tseng CY, Hu SH (2016) Effects of illumination pattern during cultivation of fruiting body and bioactive compound production by the caterpillar medicinal mushroom, Cordyceps militaris (Ascomycetes). Int J Med Mushrooms 18(7):589–597

    Article  PubMed  Google Scholar 

  • Xia YL, Luo FF, Shang YF, Chen PL, Lu YZ, Wang CS (2017) Fungal cordycepin biosynthesis is coupled with the production of the safeguard molecule pentostatin. Cell Chem Biol 24:1–11

    Article  CAS  Google Scholar 

  • Xiao JH, Chen DX, Liu JW, Liu ZL, Wan WH, Fang N, Xiao Y, Qi Y, Liang ZQ (2004) Optimization of submerged culture requirements for the production of mycelial growth and exopolysaccharide by Cordyceps jiangxiensis JXPJ 0109. J Appl Microbiol 96(5):1105–1116

    Article  PubMed  CAS  Google Scholar 

  • Xie CY, Gu ZX, Fan GJ, Gu FR, Han YB, Chen ZG (2009) Production of cordycepin and mycelia by submerged fermentation of Cordyceps militaris in mixture natural culture. Appl Biochem Biotechnol 158(2):483–492

    Article  PubMed  CAS  Google Scholar 

  • Xu CP, Kim SW, Hwang HJ, Choi JW, Yun JW (2003) Optimization of submerged culture conditions for mycelia growth and exo-biopolymer production by Paecilomyces tenuipes C240. Process Biochem 38(7):1025–1030

    Article  CAS  Google Scholar 

  • Yan XT, Bao HY, Bau T (2010) Isolation and identification of one natural pigment from cultured Cordyceps militaris. Mycosystema 29(5):777–781

    CAS  Google Scholar 

  • Yang T, Dong CH (2014) Photo morphogenesis and photo response of the blue-light receptor gene Cmwc-1 in different strains of Cordyceps militaris. FEMS Microbiol Lett 352(2):190–197

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Sun JD, Lian TT, Wang WZ, Dong CH (2014) Process optimization for extraction of carotenoids from medicinal caterpillar fungus, Cordyceps militaris. Int J Med Mushrooms 16(2):125–135

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Guo MM, Yang HJ, Guo SP, Dong CH (2016) The blue-light receptor CmWC-1 mediates fruit body development and secondary metabolism in Cordyceps militaris. Appl Microbiol Biotechnol 100(2):743–755

    Article  PubMed  CAS  Google Scholar 

  • Yu L, Zhao J, Li SP, Fan H, Hong M, Wang YT, Zhu Q (2006) Quality evaluation of Cordyceps through simultaneous determination of eleven nucleosides and bases by RP-HPLC. J Sep Sci 29(7):953–958

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Tang YJ (2008) A novel three-stage light irradiation strategy in the submerged fermentation of medicinal mushroom Ganoderma lucidum for the efficient production of ganoderic acid and Ganoderma polysaccharides. Biotechnol Prog 24(6):1249–1261

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Ren A, Li MJ, Cao PF, Chen TX, Zhang G, Shi L, Jang AL, Zhao MW (2016) Heat stress modulates mycelium growth, heat shock protein expression, ganoderic acid biosynthesis and hyphal branching of Ganoderma lucidum via cytosolic Ca2+. Appl Environ Microbiol 82(14):4112–4125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zheng P, Xia YL, Xiao GH, Xiong CH, Hu X, Zhang SW, Zheng HJ, Huang Y, Zhou Y, Wang SY, Zhao GP, Liu XZ, Leger R, Wang CS (2011) Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biol 12:R116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (31572179, 31600054), the Coal-based Key Scientific and Technological Project from Shanxi Province (FT2014-03-01), and the Key Research and Development Program from Guangxi Province (2016AB05317).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wang Fen or Dong Caihong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 171 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiaojiao, Z., Fen, W., Kuanbo, L. et al. Heat and light stresses affect metabolite production in the fruit body of the medicinal mushroom Cordyceps militaris. Appl Microbiol Biotechnol 102, 4523–4533 (2018). https://doi.org/10.1007/s00253-018-8899-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-8899-3

Keywords

Navigation