Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 9, pp 3939–3949 | Cite as

Predator-prey interactions of nematode-trapping fungi and nematodes: both sides of the coin

  • Guillermo Vidal-Diez de Ulzurrun
  • Yen-Ping Hsueh
Mini-Review

Abstract

Nematode-trapping fungi develop complex trapping devices to capture and consume nematodes. The dynamics of these organisms is especially important given the pathogenicity of nematodes and, consequently, the potential application of nematode-trapping fungi as biocontrol agents. Furthermore, both the nematodes and nematode-trapping fungi can be easily grown in laboratories, making them a unique manipulatable predator-prey system to study their coevolution. Several different aspects of these fungi have been studied, such as their genetics and the different factors triggering trap formation. In this review, we use the nematode-trapping fungus Arthrobotrys oligospora (which forms adhesive nets) as a model to describe the trapping process. We divide this process into several stages; namely attraction, recognition, trap formation, adhesion, penetration, and digestion. We summarize the latest findings in the field and current knowledge on the interactions between nematodes and nematode-trapping fungi, representing both sides of the predator-prey interaction.

Keywords

Nematode-trapping fungi Arthrobotrys oligospora C. elegans 

Notes

Acknowledgements

We thank Tsong-Yu Huang for his original drawing in the figure and John Wang and Ting-Fan Wang for giving comments on the manuscript.

Funding

This research was funded by the Ministry of Science and Technology of Taiwan (grant number 106-2311-B-001-039-MY3).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Åhman J, Johansson T, Olsson M, Punt PJ, Van den Hondel CAMJJ, Tunlid A (2002) Improving the pathogenicity of a nematode-trapping fungus by genetic engineering of a subtilisin with nematotoxic activity. Appl Environ Microbiol 68(7):3408–3415.  https://doi.org/10.1128/AEM.68.7.3408-3415.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ahrén D, Tholander M, Fekete C, Rajashekar B, Friman E, Johansson T, Tunlid A (2005) Comparison of gene expression in trap cells and vegetative hyphae of the nematophagous fungus Monacrosporium haptotylum. Microbiol-Uk 151(3):789–803.  https://doi.org/10.1099/mic.0.27485-0 CrossRefGoogle Scholar
  3. Ahrén D, Tunlid A (2003) Evolution of parasitism in nematode-trapping fungi. J Nematol 35(2):194–197PubMedPubMedCentralGoogle Scholar
  4. Ahrén D, Ursing BM, Tunlid A (1998) Phylogeny of nematode-trapping fungi based on 18S rDNA sequences. FEMS Microbiol Lett 158(2):179–184.  https://doi.org/10.1016/S0378-1097(97)00519-3 CrossRefPubMedGoogle Scholar
  5. Andersson K-M, Kumar D, Bentzer J, Friman E, Ahrén D, Tunlid A (2014) Interspecific and host-related gene expression patterns in nematode-trapping fungi. BMC Genomics 15:968.  https://doi.org/10.1186/1471-2164-15-968 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Back MA, Haydock PPJ, Jenkinson P (2002) Disease complexes involving plant parasitic nematodes and soilborne pathogens. Plant Pathol 51:683–697.  https://doi.org/10.1046/j.1365-3059.2002.00785.x CrossRefGoogle Scholar
  7. Balan J, Križková L, Nemec P, Vollek V (1974) Production of nematode-attracting and nematicidal substances by predacious fungi. Folia Microbiol 19(6):512–519.  https://doi.org/10.1007/BF02872918 CrossRefGoogle Scholar
  8. Balogh J, Tunlid A, Rosén S (2003) Deletion of a lectin gene does not affect the phenotype of the nematode-trapping fungus Arthrobotrys oligospora. Fungal Genet Biol 39(2):128–135.  https://doi.org/10.1016/s1087-1845(03)00023-9 CrossRefPubMedGoogle Scholar
  9. Barron GL (2003) Predatory fungi, wood decay, and the carbon cycle. Biodiversity 4(1):3–9.  https://doi.org/10.1080/14888386.2003.9712621 CrossRefGoogle Scholar
  10. Bartnicki-Garcia S, Eren J, Pramer D (1964) Carbon dioxide-dependent morphogenesis in Arthrobotrys conoides. Nature 204(4960):804–804.  https://doi.org/10.1038/204804a0 CrossRefGoogle Scholar
  11. Baynes MA, Russell DM, Newcombe G, Carta LK, Rossman AY, Ismaiel A (2012) A mutualistic interaction between a fungivorous nematode and a fungus within the endophytic community of Bromus tectorum. Fungal Ecol 5(5):610–623.  https://doi.org/10.1016/j.funeco.2012.03.004 CrossRefGoogle Scholar
  12. Berg M, Stenuit B, Ho J, Wang A, Parke C, Knight M, Alvarez-Cohen L, Shapira M (2016) Assembly of the Caenorhabditis elegans gut microbiota from diverse soil microbial environments. Isme J 10(8):1998–2009.  https://doi.org/10.1038/ismej.2015.253 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Blaxter ML, Page AP, Rudin W, Maizels RM (1992) Nematode surface coats: actively evading immunity. Parasitol Today 8(7):243–247.  https://doi.org/10.1016/0169-4758(92)90126-M CrossRefPubMedGoogle Scholar
  14. Boddy L (1999) Saprotrophic cord-forming fungi: meeting the challenge of heterogeneous environments. Mycologia 91(1):13–32.  https://doi.org/10.2307/3761190 CrossRefGoogle Scholar
  15. Bongers T, Ferris H (1999) Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol Evol 14(6):224–228.  https://doi.org/10.1016/s0169-5347(98)01583-3 CrossRefPubMedGoogle Scholar
  16. Butcher RA, Fujita M, Schroeder FC, Clardy J (2007) Small-molecule pheromones that control dauer development in Caenorhabditis elegans. Nat Chem Biol 3(7):420–422.  https://doi.org/10.1038/nchembio.2007.3 CrossRefPubMedGoogle Scholar
  17. Choe A, von Reuss SH, Kogan D, Gasser RB, Platzer EG, Schroeder FC, Sternberg PW (2012) Ascaroside signaling is widely conserved among nematodes. Curr Biol 22(9):772–780.  https://doi.org/10.1016/j.cub.2012.03.024 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Cox GN, Kusch M, Edgar RS (1981) Cuticle of Caenorhabditis elegans: its isolation and partial characterization. J Cell Biol 90(1):7–17.  https://doi.org/10.1083/jcb.90.1.7 CrossRefPubMedGoogle Scholar
  19. Dirksen P, Marsh SA, Braker I, Heitland N, Wagner S, Nakad R, Mader S, Petersen C, Kowallik V, Rosenstiel P, Felix MA, Schulenburg H (2016) The native microbiome of the nematode Caenorhabditis elegans: gateway to a new host-microbiome model. BMC Biol 14:38.  https://doi.org/10.1186/s12915-016-0258-1 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ewbank JJ, Pujol N (2016) Local and long-range activation of innate immunity by infection and damage in C. elegans. Curr Opin Immunol 38:1–7.  https://doi.org/10.1016/j.coi.2015.09.005 CrossRefPubMedGoogle Scholar
  21. Field JI, Webster J (1977) Traps of predacious fungi attract nematodes. T Brit Mycol Soc 68(Jun):467–469CrossRefGoogle Scholar
  22. Friman E, Olsson S, Nordbring-Hertz B (1985) Heavy trap formation by Arthrobotrys oligospora in liquid culture. FEMS Microbiol Ecol 31(1):17–21.  https://doi.org/10.1016/0378-1097(85)90042-4 CrossRefGoogle Scholar
  23. Giannakis N, Sanders FE (1990) Interactions between mycophagous nematodes, mycorrhizal and other soil fungi. Agric Ecosyst Environ 29:163–167.  https://doi.org/10.1016/0167-8809(90)90270-N CrossRefGoogle Scholar
  24. Gray NF (1983) Ecology of nematophagous fungi: distribution and habitat. Ann Appl Biol 102(3):501–509.  https://doi.org/10.1111/j.1744-7348.1983.tb02721.x CrossRefGoogle Scholar
  25. Grønvold J, Wolstrup J, Nansen P, Henriksen SA, Larsen M, Bresciani J (1993) Biological control of nematode parasites in cattle with nematode-trapping fungi: a survey of Danish studies. Vet Parasitol 48:311–325.  https://doi.org/10.1016/0304-4017(93)90165-J CrossRefPubMedGoogle Scholar
  26. Hasna MK, Insunza V, Lagerlöf J, Rämert B (2007) Food attraction and population growth of fungivorous nematodes with different fungi. Ann Appl Biol 151(2):175–182.  https://doi.org/10.1111/j.1744-7348.2007.00163.x CrossRefGoogle Scholar
  27. Herrera-Estrella A, Casas-Flores S, Kubicek CP (2016) Nematophagous fungi. In: Kubicek C, Druzhinina I (eds) Environmental and microbial relationships the Mycota, vol 4. Springer, Berlin, Heidelberg, pp 247–267Google Scholar
  28. Hsueh YP, Gronquist MR, Schwarz EM, Nath RD, Lee CH, Gharib S, Schroeder FC, Sternberg PW (2017) Nematophagous fungus Arthrobotrys oligospora mimics olfactory cues of sex and food to lure its nematode prey. elife 6.  https://doi.org/10.7554/eLife.20023
  29. Hsueh YP, Mahanti P, Schroeder FC, Sternberg PW (2013) Nematode-trapping fungi eavesdrop on nematode pheromones. Curr Biol 23(1):83–86.  https://doi.org/10.1016/j.cub.2012.11.035 CrossRefPubMedGoogle Scholar
  30. Idnurm A, Bailey AM, Cairns TC, Elliott CE, Foster GD, Ianiri G, Jeon J (2017) A silver bullet in a golden age of functional genomics: the impact of agrobacterium-mediated transformation of fungi. Fungal Biol Biotechnol 4:6.  https://doi.org/10.1186/s40694-017-0035-0 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jaffee BA (2003) Correlations between most probable number and activity of nematode-trapping fungi. Phytopathology 93(12):1599–1605CrossRefPubMedGoogle Scholar
  32. Jansson HB (1982) Predacity by nematophagous fungi and its relation to the attraction of nematodes. Microb Ecol 8(3):233–240.  https://doi.org/10.1007/BF02011427 CrossRefPubMedGoogle Scholar
  33. Jiang D, Zhou J, Bai G, Xing X, Tang L, Yang X, Li J, Zhang KQ, Yang J (2017a) Random mutagenesis analysis and identification of a novel C2H2-type transcription factor from the nematode-trapping fungus Arthrobotrys oligospora. Sci Rep 7(1):5640.  https://doi.org/10.1038/s41598-017-06075-5 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Jiang X, Xiang M, Liu X (2017b) Nematode-trapping fungi. Microbiol Spectr 5(1):1–12.  https://doi.org/10.1128/microbiolspec.FUNK-0022-2016 Google Scholar
  35. Jones JT, Haegeman A, Danchin EG, Gaur HS, Helder J, Jones MG, Kikuchi T, Manzanilla-Lopez R, Palomares-Rius JE, Wesemael WM, Perry RN (2013) Top 10 plant-parasitic nematodes in molecular plant pathology. Mol Plant Pathol 14(9):946–961.  https://doi.org/10.1111/mpp.12057 CrossRefPubMedGoogle Scholar
  36. Kim DH, Ewbank JJ (2015) Signaling in the innate immune response. WormBook:1–51 doi: https://doi.org/10.1895/wormbook.1.83.2
  37. Kim DH, Feinbaum R, Alloing G, Emerson FE, Garsin DA, Inoue H, Tanaka-Hino M, Hisamoto N, Matsumoto K, Tan MW, Ausubel FM (2002) A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science 297(5581):623–626.  https://doi.org/10.1126/science.1073759 CrossRefPubMedGoogle Scholar
  38. Lawton (nee Ress) J.R. JR (1957) The formation of constricting rings in nematode-catching hyphomycetes grown in pure culture. J Exp Bot 8(1):50–54.  https://doi.org/10.1093/jxb/8.1.50 CrossRefGoogle Scholar
  39. Li L, Ma M, Liu Y, Zhou J, Qu Q, Lu K, Fu D, Zhang K (2011) Induction of trap formation in nematode-trapping fungi by a bacterium. FEMS Microbiol Lett 322(2):157–165.  https://doi.org/10.1111/j.1574-6968.2011.02351.x CrossRefPubMedGoogle Scholar
  40. Li L, Yang M, Luo J, Qu Q, Chen Y, Liang L, Zhang K (2016) Nematode-trapping fungi and fungus-associated bacteria interactions: the role of bacterial diketopiperazines and biofilms on Arthrobotrys oligospora surface in hyphal morphogenesis. Environ Microbiol 18(11):3827–3839.  https://doi.org/10.1111/1462-2920.13340 CrossRefPubMedGoogle Scholar
  41. Li Y, Hyde KD, Jeewon R, Cai L, Vijaykrishna D, Zhang K (2005) Phylogenetics and evolution of nematode-trapping fungi (Orbiliales) estimated from nuclear and protein coding genes. Mycologia 97(5):1034–1046.  https://doi.org/10.3852/mycologia.97.5.1034 CrossRefPubMedGoogle Scholar
  42. Liang L, Shen R, Mo Y, Yang J, Ji X, Zhang KQ (2015) A proposed adhesin AoMad1 helps nematode-trapping fungus Arthrobotrys oligospora recognizing host signals for life-style switching. Fungal Genet Biol 81:172–81.  https://doi.org/10.1016/j.fgb.2015.02.012 CrossRefPubMedGoogle Scholar
  43. Liu K, Tian J, Xiang M, Liu X (2012) How carnivorous fungi use three-celled constricting rings to trap nematodes. Protein Cell 3(5):325–328.  https://doi.org/10.1007/s13238-012-2031-8 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Liu K, Zhang W, Lai Y, Xiang M, Wang X, Zhang X, Liu X (2014) Drechslerella stenobrocha genome illustrates the mechanism of constricting rings and the origin of nematode predation in fungi. BMC Genomics 15:114.  https://doi.org/10.1186/1471-2164-15-114 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Liu X, Xiang M, Che Y (2009) The living strategy of nematophagous fungi. Mycoscience 50(1):20–25.  https://doi.org/10.1007/s10267-008-0451-3 CrossRefGoogle Scholar
  46. Lopez-Llorca LV, Maciá-Vicente JG, Jansson HB (2007) Mode of action and interactions of Nematophagous fungi. In: Ciancio A, Mukerji KG (eds) Integrated management and biocontrol of vegetable and grain crops nematodes. Integrated Management of Plant Pests and Diseases, vol 2. Springer Netherlands, Dordrecht, The Netherlands, pp 51–76Google Scholar
  47. Magan N (2007) Fungi in Extreme Environments. In: Kubicek C, Druzhinina I (eds) Environmental and microbial relationships the Mycota, vol 4. Springer, Berlin, HeidelbergGoogle Scholar
  48. Martin MJ, Riedel RM, Rowe RC (1982) Verticillium dahliae and Pratylenchus penetrans - interactions in early dying complex of potato in Ohio. Phytopathology 72(6):640–644.  https://doi.org/10.1094/Phyto-77-640 CrossRefGoogle Scholar
  49. McSorley R (2003) Adaptations of nematodes to environmental extremes. Fla Entomol 86(2):138–142. https://doi.org/10.1653/0015-4040(2003)086[0138:aontee]2.0.co;2Google Scholar
  50. Meerupati T, Andersson KM, Friman E, Kumar D, Tunlid A, Ahrén D (2013) Genomic mechanisms accounting for the adaptation to parasitism in nematode-trapping fungi. PLoS Genet 9(11):e1003909.  https://doi.org/10.1371/journal.pgen.1003909 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Nicholas HR, Hodgkin J (2004) The ERK MAP kinase cascade mediates tail swelling and a to rectal infection protective response in C. elegans. Curr Biol 14(14):1256–1261.  https://doi.org/10.1016/j.cub.2004.07.022 CrossRefPubMedGoogle Scholar
  52. Niu X-M, Zhang K-Q (2011) Arthrobotrys oligospora: a model organism for understanding the interaction between fungi and nematodes. Mycology 2(2):59–78.  https://doi.org/10.1080/21501203.2011.562559 CrossRefGoogle Scholar
  53. Nordbring-Hertz B (1973) Peptide-induced morphogenesis in the nematode-trapping fungus Arthrobotrys oligospora. Physiol Plant 29(2):223–233.  https://doi.org/10.1111/j.1399-3054.1973.tb03097.x CrossRefGoogle Scholar
  54. Nordbring-Hertz B (2004) Morphogenesis in the nematode-trapping fungus Arthrobotrys oligospora—an extensive plasticity of infection structures. Mycologist 18(3):125–133.  https://doi.org/10.1017/S0269915X04003052 CrossRefGoogle Scholar
  55. Nordbring-Hertz B, Friman E, Veenhuis M (1989) Hyphal fusion during initial stages of trap formation in Arthrobotrys oligospora. A Van Leeuw J Microb 55(3):237–244CrossRefGoogle Scholar
  56. Nordbring-Hertz B, Jansson H-B, Tunlid A (2011) Nematophagous fungi eLS. John Wiley & Sons, Ltd, Chichester, pp 1–13Google Scholar
  57. Nordbring-Hertz B, Mattiasson B (1979) Action of a nematode-trapping fungus shows lectin-mediated host–microorganism interaction. Nature 281(5731):477–479.  https://doi.org/10.1038/281477a0 CrossRefGoogle Scholar
  58. Nordbring-Hertz B, Veenhuis M, Harder W (1984) Dialysis membrane technique for ultrastructural studies of microbial interactions. Appl Environ Microbiol 47(1):195–197PubMedPubMedCentralGoogle Scholar
  59. Page AP, Johnstone IL (2007) The cuticle. WormBook:1–15 doi: https://doi.org/10.1895/wormbook.1.138.1
  60. Perry RN, Moens M (2011) Survival of parasitic nematodes outside the host. In: Perry RN, Wharton DA (eds) Molecular and physiological basis of nematode survival. CABI, Wallingford, pp 1–27Google Scholar
  61. Persmark L, Nordbring-Hertz B (2006) Conidial trap formation of nematode-trapping fungi in soil and soil extracts. FEMS Microbiol Ecol 22(4):313–323.  https://doi.org/10.1111/j.1574-6941.1997.tb00383.x CrossRefGoogle Scholar
  62. Platt HM, Shaw KM, Lambshead PJD (1984) Nematode species abundance patterns and their use in the detection of environmental perturbations. Hydrobiologia 118:59–66.  https://doi.org/10.1007/BF00031788 CrossRefGoogle Scholar
  63. Pramer D, Stoll NR (1959) Nemin: a morphogenic substance causing trap formation by predaceous fungi. Science 129(3354):966–967CrossRefPubMedGoogle Scholar
  64. Pujol N, Zugasti O, Wong D, Couillault C, Kurz CL, Schulenburg H, Ewbank JJ (2008) Anti-fungal innate immunity in C. elegans is enhanced by evolutionary diversification of antimicrobial peptides. PLoS Pathog 4(7):e1000105.  https://doi.org/10.1371/journal.ppat.1000105 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Rosen S, Sjollema K, Veenhuis M, Tunlid A (1997) A cytoplasmic lectin produced by the fungus Arthrobotrys oligospora functions as a storage protein during saprophytic and parasitic growth. Microbiol-Uk 143:2593–2604.  https://doi.org/10.1099/00221287-143-8-2593 CrossRefGoogle Scholar
  66. Saxena G, Dayal R, Mukerji KG (1987) Interaction of nematodes with nematophagus fungi: induction of trap formation, attraction and detection of attractants. FEMS Microbiol Lett 45(6):319–327.  https://doi.org/10.1016/0378-1097(87)90018-8 CrossRefGoogle Scholar
  67. Schenck NC, Graham SO, Green NE (1975) Temperature and light effect on contamination and spore germination of vesicular-arbuscular mycorrhizal fungi. Mycologia 67(6):1189–1192CrossRefPubMedGoogle Scholar
  68. Scholler M, Rubner A (1994) Predacious activity of the nematode-destroying fungus Arthrobotrys oligospora in dependence of the medium composition. Microbiol Res 149(2):145–149.  https://doi.org/10.1016/S0944-5013(11)80110-2 CrossRefPubMedGoogle Scholar
  69. Shi TQ, Liu GN, Ji RY, Shi K, Song P, Ren LJ, Huang H, Ji XJ (2017) CRISPR/Cas9-based genome editing of the filamentous fungi: the state of the art. Appl Microbiol Biotechnol 101(20):7435–7443.  https://doi.org/10.1007/s00253-017-8497-9 CrossRefPubMedGoogle Scholar
  70. Smith ML, Bruhn JN, Anderson JB (1992) The fungus Armillaria bulbosa is among the largest and oldest living organisms. Nature 356:428–431.  https://doi.org/10.1038/356428a0 CrossRefGoogle Scholar
  71. Song TY, Xu ZF, Chen YH, Ding QY, Sun YR, Miao Y, Zhang KQ, Niu XM (2017) Potent nematicidal activity and new hybrid metabolite production by disruption of a cytochrome P450 gene involved in the biosynthesis of morphological regulatory Arthrosporols in nematode-trapping fungus Arthrobotrys oligospora. J Agric Food Chem 65(20):4111–4120.  https://doi.org/10.1021/acs.jafc.7b01290 CrossRefPubMedGoogle Scholar
  72. Srinivasan J, Kaplan F, Ajredini R, Zachariah C, Alborn HT, Teal PEA, Malik RU, Edison AS, Sternberg PW, Schroeder FC (2008) A blend of small molecules regulates both mating and development in Caenorhabditis elegans. Nature 454(7208):1115–1U46CrossRefPubMedPubMedCentralGoogle Scholar
  73. Sternberg PW (2017) In retrospect: forty years of cellular clues from worms. Nature 543(7647):628–630.  https://doi.org/10.1038/543628a CrossRefPubMedGoogle Scholar
  74. Su H, Zhao Y, Zhou J, Feng H, Jiang D, Zhang KQ, Yang J (2017) Trapping devices of nematode-trapping fungi: formation, evolution, and genomic perspectives. Biol Rev Camb Philos Soc 92(1):357–368.  https://doi.org/10.1111/brv.12233 CrossRefPubMedGoogle Scholar
  75. Tan MW, Ausubel FM (2000) Caenorhabditis elegans: a model genetic host to study Pseudomonas aeruginosa pathogenesis. Curr Opin Microbiol 3(1):29–34.  https://doi.org/10.1016/S1369-5274(99)00047-8 CrossRefPubMedGoogle Scholar
  76. Tan MW, Rahme LG, Sternberg JA, Tompkins RG, Ausubel FM (1999) Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. P Natl Acad Sci USA 96(5):2408–2413.  https://doi.org/10.1073/pnas.96.5.2408 CrossRefGoogle Scholar
  77. Tosi S, Annovazzi L, Tosi I, Iadarola P, Caretta G (2002) Collagenase production in an antarctic strain of Arthrobotrys tortor Jarowaja. Mycopathologia 153(3):157–162.  https://doi.org/10.1023/A:1014511105803 CrossRefPubMedGoogle Scholar
  78. Tunlid A, Jansson HB, Nordbring-Hertz B (1992) Fungal attachment to nematodes. Mycol Res 96(6):401–412.  https://doi.org/10.1016/S0953-7562(09)81082-4 CrossRefGoogle Scholar
  79. Tunlid A, Johansson T, Nordbring-Hertz B (1991) Surface polymers of the nematode-trapping fungus Arthrobotrys oligospora. J Gen Microbiol 137(6):1231–1240.  https://doi.org/10.1099/00221287-137-6-1231 CrossRefPubMedGoogle Scholar
  80. Tunlid A, Rosén S, Ek B, Rask L (1994) Purification and characterization of an extracellular serine protease from the nematode-trapping fungus Arhtrobotrys oligospora. Microbiol-Uk 140:1687–1695.  https://doi.org/10.1099/13500872-140-7-1687 CrossRefGoogle Scholar
  81. van der Putten WH, Cook R, Costa S, Davies KG, Fargette M, Freitas H, Hol WHG, Kerry BR, Maher N, Mateille T, Moens M, de la Peña E, Piśkiewicz AM, Raeymaekers ADW, Rodríguez-Echeverría S, van der Wurff AWG (2006) Nematode interactions in nature: models for sustainable control of nematode pests of crop plants? Adv Agron 89:227–260.  https://doi.org/10.1016/S0065-2113(05)89005-4 CrossRefGoogle Scholar
  82. Van Gundy SD, Kirkpatrick JD, Golden J (1977) The nature and role of metabolic leakage from root-knot nematode galls and infection by Rhizoctonia solani. J Nematol 9(2):113–121PubMedPubMedCentralGoogle Scholar
  83. Veenhuis M, Nordbring-Hertz B, Harder W (1985a) Development and fate of electron-dense microbodies in trap cells of the nematophagous fungus Arthrobotrys oligospora. A Van Leeuw J Microb 51(4):399–407.  https://doi.org/10.1007/BF02275044 CrossRefGoogle Scholar
  84. Veenhuis M, Nordbring-Hertz B, Harder W (1985b) An electron-microscopical analysis of capture and initial stages of penetration of nematodes by Arthrobotrys oligospora. A Van Leeuw J Microb 51(4):385–398CrossRefGoogle Scholar
  85. Veenhuis M, Van Wijk C, Wyss U, Nordbring-Hertz B, Harder W (1989) Significance of electron dense microbodies in trap cells of the nematophagous fungus Arthrobotrys oligospora. A Van Leeuw J Microb 56(3):251–261CrossRefGoogle Scholar
  86. Vidal-Diez de Ulzurrun G, Baetens JM, Van den Bulcke J, Lopez-Molina C, De Windt I, De Baets B (2015) Automated image-based analysis of spatio-temporal fungal dynamics. Fungal Genet Biol 84:12–25.  https://doi.org/10.1016/j.fgb.2015.09.004 CrossRefPubMedGoogle Scholar
  87. Walker NR, Kirkpatrick TL, Rothrock CS (1998) Interaction between Meloidogyne incognita and Thielaviopsis basicola on cotton (Gossypium hirsutum). J Nematol 30(4):415–422PubMedPubMedCentralGoogle Scholar
  88. Waller PJ, Larsen M (1993) The role of nematophagous fungi in the biological control of nematode parasites of livestock. Int J Parasitol 23(4):539–546.  https://doi.org/10.1016/0020-7519(93)90044-Y CrossRefPubMedGoogle Scholar
  89. Wang R, Wang J, Yang X (2015) The extracellular bioactive substances of Arthrobotrys oligospora during the nematode-trapping process. Biol Control 86:60–65.  https://doi.org/10.1016/j.biocontrol.2015.04.003 CrossRefGoogle Scholar
  90. Wang RB, Yang JK, Lin C, Zhang Y, Zhang KQ (2006) Purification and characterization of an extracellular serine protease from the nematode-trapping fungus Dactylella shizishanna. Lett Appl Microbiol 42(6):589–594.  https://doi.org/10.1111/j.1472-765X.2006.01908.x PubMedGoogle Scholar
  91. Wang X, Li G-H, Zou C-G, Ji X-L, Liu T, Zhao P-J, Liang L-M, Xu J-P, An Z-Q, Zheng X, Qin Y-K, Tian M-Q, Xu Y-Y, Ma Y-C, Yu Z-F, Huang X-W, Liu S-Q, Niu X-M, Yang J-K, Huang Y, Zhang K-Q (2014) Bacteria can mobilize nematode-trapping fungi to kill nematodes. Nat Commun 5:5776.  https://doi.org/10.1038/ncomms6776 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Warcup JH (1957) Studies on the occurrence and activity of fungi in a wheat-field soil. T Brit Mycol Soc 40(2):237–259.  https://doi.org/10.1016/S0007-1536(57)80010-2 CrossRefGoogle Scholar
  93. Xie H, Aminuzzaman FM, Xu L, Lai Y, Li F, Liu X (2010) Trap induction and trapping in eight nematode-trapping fungi (Orbiliaceae) as affected by juvenile stage of Caenorhabditis elegans. Mycopathologia 169(6):467–473.  https://doi.org/10.1007/s11046-010-9279-4 CrossRefPubMedGoogle Scholar
  94. Xu LL, Lai YL, Wang L, Liu XZ (2011) Effects of abscisic acid and nitric oxide on trap formation and trapping of nematodes by the fungus Drechslerella stenobrocha AS6.1. Fungal Biol 115(2):97–101.  https://doi.org/10.1016/j.funbio.2010.10.006 CrossRefPubMedGoogle Scholar
  95. Xu ZF, Wang BL, Sun HK, Yan N, Zeng ZJ, Zhang KQ, Niu XM (2015) High trap formation and low metabolite production by disruption of the polyketide synthase gene involved in the biosynthesis of Arthrosporols from nematode-trapping fungus Arthrobotrys oligospora. J Agric Food Chem 63(41):9076–82.  https://doi.org/10.1021/acs.jafc.5b04244 CrossRefPubMedGoogle Scholar
  96. Yang E, Xu L, Yang Y, Zhang X, Xiang M, Wang C, An Z, Liu X (2012) Origin and evolution of carnivorism in the Ascomycota (fungi). P Natl Acad Sci USA 109(27):10960–10965.  https://doi.org/10.1073/pnas.1120915109 CrossRefGoogle Scholar
  97. Yang J, Tian B, Liang L, Zhang KQ (2007a) Extracellular enzymes and the pathogenesis of nematophagous fungi. Appl Microbiol Biotechnol 75(1):21–31.  https://doi.org/10.1007/s00253-007-0881-4 CrossRefPubMedGoogle Scholar
  98. Yang J, Wang L, Ji X, Feng Y, Li X, Zou C, Xu J, Ren Y, Mi Q, Wu J, Liu S, Liu Y, Huang X, Wang H, Niu X, Li J, Liang L, Luo Y, Ji K, Zhou W, Yu Z, Li G, Liu Y, Li L, Qiao M, Feng L, Zhang KQ (2011) Genomic and proteomic analyses of the fungus Arthrobotrys oligospora provide insights into nematode-trap formation. PLoS Pathog 7(9):1–12.  https://doi.org/10.1371/journal.ppat.1002179 CrossRefGoogle Scholar
  99. Yang Y, Yang E, An Z, Liu X (2007b) Evolution of nematode-trapping cells of predatory fungi of the Orbiliaceae based on evidence from rRNA-encoding DNA and multiprotein sequences. P Natl Acad Sci USA 104(20):8379–8384.  https://doi.org/10.1073/pnas.0702770104 CrossRefGoogle Scholar
  100. Zhao X, Wang Y, Zhao Y, Huang Y, Zhang KQ, Yang J (2014) Malate synthase gene AoMls in the nematode-trapping fungus Arthrobotrys oligospora contributes to conidiation, trap formation, and pathogenicity. App Microbiol Biotechnol 98(6):2555–2563CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Molecular Biology, Academia SinicaTaipeiTaiwan

Personalised recommendations