Applied Microbiology and Biotechnology

, Volume 102, Issue 9, pp 3849–3863 | Cite as

Light-regulated promoters for tunable, temporal, and affordable control of fungal gene expression

  • Kevin K. Fuller
  • Jay C. Dunlap
  • Jennifer J. Loros


Regulatable promoters are important genetic tools, particularly for assigning function to essential and redundant genes. They can also be used to control the expression of enzymes that influence metabolic flux or protein secretion, thereby optimizing product yield in bioindustry. This review will focus on regulatable systems for use in filamentous fungi, an important group of organisms whose members include key research models, devastating pathogens of plants and animals, and exploitable cell factories. Though we will begin by cataloging those promoters that are controlled by nutritional or chemical means, our primary focus will rest on those who can be controlled by a literal flip-of-the-switch: promoters of light-regulated genes. The vvd promoter of Neurospora will first serve as a paradigm for how light-driven systems can provide tight, robust, tunable, and temporal control of either autologous or heterologous fungal proteins. We will then discuss a theoretical approach to, and practical considerations for, the development of such promoters in other species. To this end, we have compiled genes from six previously published light-regulated transcriptomic studies to guide the search for suitable photoregulatable promoters in your fungus of interest.


Regulatable promoters Photobiology Fungal genetics Functional genomics 



We thank Dr. Monika Schmoll (Austrian Institute of Technology, Vienna) for her assistance with the Trichoderma reesei datasets as well as the Fungal Genetics Stock Center for its ongoing service to the fungal research community.

Compliance with ethical standards

This work was supported by grants R35GM118021 to JCD and R35GM118022 to JJL. All authors declare they have no conflict of interest. This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Alejandre-Durán E, Roldán-Arjona T, Ariza RR, Ruiz-Rubio M (2003) The photolyase gene from the plant pathogen Fusarium oxysporum f. sp. lycopersici is induced by visible light and alpha-tomatine from tomato plant. Fungal Genet Biol 40:159–165CrossRefPubMedGoogle Scholar
  2. Amaar YG, Moore MM (1998) Mapping of the nitrate-assimilation gene cluster (crnA-niiA-niaD) and characterization of the nitrite reductase gene (niiA) in the opportunistic fungal pathogen Aspergillus fumigatus. Curr Genet 33(3):206–215CrossRefPubMedGoogle Scholar
  3. Antunes MS, Hodges TK, Carpita NC (2016) A benzoate-activated promoter from Aspergillus niger and regulation of its activity. Appl Microbiol Biotechnol 100:5479–5489. CrossRefPubMedGoogle Scholar
  4. Atoui A, Kastner C, Larey CM, Thokala R, Etxebeste O, Espeso EA, Fischer R, Calvo AM (2010) Cross-talk between light and glucose regulation controls toxin production and morphogenesis in Aspergillus nidulans. Fungal Genet Biol 47:962–972. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Avelar GM, Schumacher RI, Zaini PA, Leonard G, Richards TA, Gomes SL (2014) A rhodopsin-guanylyl cyclase gene fusion functions in visual perception in a fungus. Curr Biol 24:1234–1240. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Ballario P, Talora C, Galli D, Linden H, Macino G (1998) Roles in dimerization and blue light photoresponse of the PAS and LOV domains of Neurospora crassa white collar proteins. Mol Microbiol 29:719–729CrossRefPubMedGoogle Scholar
  7. Bayram O, Braus GH, Fischer R, Rodriguez-Romero J (2010) Spotlight on Aspergillus nidulans photosensory systems. Fungal Genet Biol 47:900–908. CrossRefPubMedGoogle Scholar
  8. Berrocal-Tito G, Sametz-Baron L, Eichenberg K, Horwitz BA, Herrera-Estrella A (1999) Rapid blue light regulation of a Trichoderma harzianum photolyase gene. J Biol Chem 274:14288–14294CrossRefPubMedGoogle Scholar
  9. Bottin A, Kämper J, Kahmann R (1996) Isolation of a carbon source-regulated gene from Ustilago maydis. Mol Gen Genet 253:342–352PubMedGoogle Scholar
  10. Brych A, Mascarenhas J, Jaeger E, Charkiewicz E, Pokorny R, Bölker M, Doehlemann G, Batschauer A (2016) White collar 1-induced photolyase expression contributes to UV-tolerance of Ustilago maydis. Microbiology 5:224–243. Google Scholar
  11. Canessa P, Schumacher J, Hevia MA, Tudzynski P, Larrondo LF (2013) Assessing the effects of light on differentiation and virulence of the plant pathogen Botrytis cinerea: characterization of the white collar complex. PLoS One 8:e84223. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Castellanos F, Schmoll M, Martínez P, Tisch D, Kubicek CP, Herrera-Estrella A, Esquivel-Naranjo EU (2010) Crucial factors of the light perception machinery and their impact on growth and cellulase gene transcription in Trichoderma reesei. Fungal Genet Biol 47:468–476. CrossRefPubMedGoogle Scholar
  13. Castrillo M, Avalos J (2014) Light-mediated participation of the VIVID-like protein of Fusarium fujikuroi VvdA in pigmentation and development. Fungal Genet Biol 71:9–20. CrossRefPubMedGoogle Scholar
  14. Chen CH, Ringelberg CS, Gross RH, Dunlap JC, Loros JJ (2009) Genome-wide analysis of light-inducible responses reveals hierarchical light signalling in Neurospora. EMBO J 28:1029–1042. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chen CH, DeMay BS, Gladfelter AS, Dunlap JC, Loros JJ (2010) Physical interaction between VIVID and white collar complex regulates photoadaptation in Neurospora. Proc Natl Acad Sci U S A 107:16715–16720. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cheng P, Yang Y, Gardner KH, Liu Y (2002) PAS domain-mediated WC-1/WC-2 interaction is essential for maintaining the steady-state level of WC-1 and the function of both proteins in circadian clock and light responses of Neurospora. Mol Cell Biol 22:517–524CrossRefPubMedPubMedCentralGoogle Scholar
  17. Corrochano LM, Garre V (2010) Photobiology in the Zygomycota: multiple photoreceptor genes for complex responses to light. Fungal Genet Biol 47:893–899. CrossRefPubMedGoogle Scholar
  18. Corrochano LM, Kuo A, Marcet-Houben M, Polaino S, Salamov A, Villalobos-Escobedo JM, Grimwood J, Álvarez MI, Avalos J, Bauer D, Benito EP, Benoit I, Burger G, Camino LP, Cánovas D, Cerdá-Olmedo E, Cheng JF, Domínguez A, Eliáš M, Eslava AP, Glaser F, Gutiérrez G, Heitman J, Henrissat B, Iturriaga EA, Lang BF, Lavín JL, Lee SC, Li W, Lindquist E, López-García S, Luque EM, Marcos AT, Martin J, McCluskey K, Medina HR, Miralles-Durán A, Miyazaki A, Muñoz-Torres E, Oguiza JA, Ohm RA, Olmedo M, Orejas M, Ortiz-Castellanos L, Pisabarro AG, Rodríguez-Romero J, Ruiz-Herrera J, Ruiz-Vázquez R, Sanz C, Schackwitz W, Shahriari M, Shelest E, Silva-Franco F, Soanes D, Syed K, Tagua VG, Talbot NJ, Thon MR, Tice H, de Vries RP, Wiebenga A, Yadav JS, Braun EL, Baker SE, Garre V, Schmutz J, Horwitz BA, Torres-Martínez S, Idnurm A, Herrera-Estrella A, Gabaldón T, Grigoriev IV (2016) Expansion of signal transduction pathways in fungi by extensive genome duplication. Curr Biol 26:1577–1584. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dasgupta A, Chen CH, Lee C, Gladfelter AS, Dunlap JC, Loros JJ (2015) Biological significance of photoreceptor photocycle length: VIVID photocycle governs the dynamic VIVID-white collar complex pool mediating photo-adaptation and response to changes in light intensity. PLoS Genet 11:e1005215. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Dasgupta A, Fuller KK, Dunlap JC, Loros JJ (2016) Seeing the world differently: variability in the photosensory mechanisms of two model fungi. Environ Microbiol 18:5–20. CrossRefPubMedGoogle Scholar
  21. de Graaff LH, van den Broeck HC, van Ooijen AJ, Visser J (2005) Regulation of the xylanase-encoding xlnA gene of Aspergillus tubigensis. Mol Microbiol 12:479–490CrossRefGoogle Scholar
  22. Drepper T, Krauss U (2011) Lights on and action! Controlling microbial gene expression by light. Appl Microbiol Biotechnol 90:23–40CrossRefPubMedGoogle Scholar
  23. Druzhinina IS, Kubicek CP (2017) Genetic engineering of Trichoderma reesei cellulases and their production. Microb Biotechnol 10:1485–1499. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Dunlap JC, Loros JJ (2006) How fungi keep time: circadian system in Neurospora and other fungi. Curr Opin Microbiol 9(6):579–587CrossRefPubMedGoogle Scholar
  25. Exley GE, Colandene JD, Garrett RH (1993) Molecular cloning, characterization, and nucleotide sequence of nit-6, the structural gene for nitrite reductase in Neurospora crassa. J Bacteriol 175:2379–2392CrossRefPubMedPubMedCentralGoogle Scholar
  26. Fischer R, Aguirre J, Herrera-Estrella A, Corrochano LM (2016) The complexity of fungal vision. Microbiol Spectr 4:1–22. Google Scholar
  27. Froehlich AC, Liu Y, Loros JJ, Dunlap JC (2002) White Collar-1, a circadian blue light photoreceptor, binding to the frequency promoter. Science 297:815–819CrossRefPubMedGoogle Scholar
  28. Froehlich AC, Noh B, Vierstra RD, Loros J, Dunlap JC (2005) Genetic and molecular analysis of phytochromes from the filamentous fungus Neurospora crassa. Eukaryot Cell 4:2140–2152CrossRefPubMedPubMedCentralGoogle Scholar
  29. Fuller KK, Ringelberg CS, Loros JJ, Dunlap JC (2013) The fungal pathogen Aspergillus fumigatus regulates growth, metabolism, and stress resistance in response to light. MBio ;4. pii: e00142–13. doi:
  30. Fuller KK, Loros JJ, Dunlap JC (2015) Fungal photobiology: visible light as a signal for stress, space and time. Curr Genet 61:275–288. CrossRefPubMedGoogle Scholar
  31. Fuller KK, Dunlap JC, Loros JJ (2016) Fungal light sensing at the bench and beyond. Adv Genet 96:1–51. PubMedGoogle Scholar
  32. García-Esquivel M, Esquivel-Naranjo EU, Hernández-Oñate MA, Ibarra-Laclette E, Herrera-Estrella A (2016) The Trichoderma atroviride cryptochrome/photolyase genes regulate the expression of blr1-independent genes both in red and blue light. Fungal Biol 120:500–512. CrossRefPubMedGoogle Scholar
  33. García-Martínez J, Brunk M, Avalos J, Terpitz U (2015) The CarO rhodopsin of the fungus Fusarium fujikuroi is a light-driven proton pump that retards spore germination. Sci Rep 5:7798. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Giaever G, Chu AM, Ni L, Connelly C, Riles L, Véronneau S, Dow S, Lucau-Danila A, Anderson K, André B, Arkin AP, Astromoff A, El-Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian KD, Flaherty P, Foury F, Garfinkel DJ, Gerstein M, Gotte D, Güldener U, Hegemann JH, Hempel S, Herman Z, Jaramillo DF, Kelly DE, Kelly SL, Kötter P, LaBonte D, Lamb DC, Lan N, Liang H, Liao H, Liu L, Luo C, Lussier M, Mao R, Menard P, Ooi SL, Revuelta JL, Roberts CJ, Rose M, Ross-Macdonald P, Scherens B, Schimmack G, Shafer B, Shoemaker DD, Sookhai-Mahadeo S, Storms RK, Strathern JN, Valle G, Voet M, Volckaert G, Wang CY, Ward TR, Wilhelmy J, Winzeler EA, Yang Y, Yen G, Youngman E, Yu K, Bussey H, Boeke JD, Snyder M, Philippsen P, Davis RW, Johnston M (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391. CrossRefPubMedGoogle Scholar
  35. Giles NH, Case ME, Baum J, Geever R, Huiet L, Patel V, Tyler B (1985) Gene organization and regulation in the qa (quinic acid) gene cluster of Neurospora crassa. Microbiol Rev 49:338–358PubMedPubMedCentralGoogle Scholar
  36. Hartman JL 4th, Garvik B, Hartwell L (2001) Principles for the buffering of genetic variation. Science 291:1001–1004CrossRefPubMedGoogle Scholar
  37. Hedtke M, Rauscher S, Röhrig J, Rodríguez-Romero J, Yu Z, Fischer R (2015) Light-dependent gene activation in Aspergillus nidulans is strictly dependent on phytochrome and involves the interplay of phytochrome and white collar-regulated histone H3 acetylation. Mol Microbiol 97:733–745. CrossRefPubMedGoogle Scholar
  38. Heintzen C, Loros JJ, Dunlap JC (2001) The PAS protein VIVID defines a clock-associated feedback loop that represses light input, modulates gating, and regulates clock resetting. Cell 104:453–464CrossRefPubMedGoogle Scholar
  39. Helmschrott C, Sasse A, Samantaray S, Krappmann S, Wagener J (2013) Upgrading fungal gene expression on demand: improved systems for doxycycline-dependent silencing in Aspergillus fumigatus. Appl Environ Microbiol 79:1751–1754. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Hu W, Sillaots S, Lemieux S, Davison J, Kauffman S, Breton A, Linteau A, Xin C, Bowman J, Becker J, Jiang B, Roemer T (2007) Essential gene identification and drug target prioritization in Aspergillus fumigatus. PLoS Pathog 3(3):e24CrossRefPubMedPubMedCentralGoogle Scholar
  41. Hunt SM, Thompson S, Elvin M, Heintzen C (2010) VIVID interacts with the WHITE COLLAR complex and FREQUENCY-interacting RNA helicase to alter light and clock responses in Neurospora. Proc Natl Acad Sci U S A 107:16709–16714. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Hurley JM, Chen CH, Loros JJ, Dunlap JC (2012) Light-inducible system for tunable protein expression in Neurospora crassa. G3 (Bethesda) 2:1207–1212. CrossRefGoogle Scholar
  43. Idnurm A, Heitman J (2005a) Photosensing fungi: phytochrome in the spotlight. Curr Biol 15:R829eR832CrossRefGoogle Scholar
  44. Idnurm A, Heitman J (2005b) Light controls growth and development via a conserved pathway in the fungal kingdom. PLoS Biol 3:e95CrossRefPubMedPubMedCentralGoogle Scholar
  45. Idnurm A, Heitman J (2010) Ferrochelatase is a conserved downstream target of the blue light-sensing white collar complex in fungi. Microbiology 156:2393–2407. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Idnurm A, Rodríguez-Romero J, Corrochano LM, Sanz C, Iturriaga EA, Eslava AP, Heitman J (2006) The Phycomyces madA gene encodes a blue-light photoreceptor for phototropism and other light responses. Proc Natl Acad Sci U S A 103:4546–4551CrossRefPubMedPubMedCentralGoogle Scholar
  47. Idnurm A, Verma S, Corrochano LM (2010) A glimpse into the basis of vision in the kingdom Mycota. Fungal Genet Biol 47(11):881–892. CrossRefPubMedPubMedCentralGoogle Scholar
  48. Kamada T, Sano H, Nakazawa T, Nakahori K (2010) Regulation of fruiting body photomorphogenesis in Coprinopsis cinerea. Fungal Genet Biol 47:917–921. CrossRefPubMedGoogle Scholar
  49. Lamb TM, Vickery J, Bell-Pedersen D (2013) Regulation of gene expression in Neurospora crassa with a copper responsive promoter. G3 3:2273–80. doi:
  50. Larrondo LF, Colot HV, Baker CL, Loros JJ, Dunlap JC (2009) Fungal functional genomics: tunable knockout-knock-in expression and tagging strategies. Eukaryot Cell 8:800–804. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Lee BY, Han SY, Choi HG, Kim JH, Han KH, Han DM (2005) Screening of growth- or development-related genes by using genomic library with inducible promoter in Aspergillus nidulans. J Microbiol 43:523–528PubMedGoogle Scholar
  52. Lee MK, Kwon NJ, Lee IS, Jung S, Kim SC, Yu JH (2016) Negative regulation and developmental competence in Aspergillus. Sci Rep 6:28874. CrossRefPubMedPubMedCentralGoogle Scholar
  53. Liu T, Wang T, Li X, Liu X (2008) Improved heterologous gene expression in Trichoderma reesei by cellobiohydrolase I gene (cbh1) promoter optimization. Acta Biochim Biophys Sin Shanghai 40:158–165CrossRefPubMedGoogle Scholar
  54. Losi A, Gärtner W (2011) Old chromophores, new photoactivation paradigms, trendy applications: flavins in blue light-sensing photoreceptors. Photochem Photobiol 87:491–510. CrossRefPubMedGoogle Scholar
  55. Malzahn E, Ciprianidis S, Káldi K, Schafmeier T, Brunner M (2010) Photoadaptation in Neurospora by competitive interaction of activating and inhibitory LOV domains. Cell 142:762–772. CrossRefPubMedGoogle Scholar
  56. McNally MT, Free SJ (1988) Isolation and characterization of a Neurospora glucose-repressible gene. Curr Genet 14:545–551CrossRefPubMedGoogle Scholar
  57. Mehra A, Shi M, Baker CL, Colot HV, Loros JJ, Dunlap JC (2009) A role for casein kinase 2 in the mechanism underlying circadian temperature compensation. Cell 137:749–760. CrossRefPubMedPubMedCentralGoogle Scholar
  58. Meyer V, Wanka F, van Gent J, Arentshorst M, van den Hondel CA, Ram AF (2011) Fungal gene expression on demand: an inducible, tunable, and metabolism-independent expression system for Aspergillus niger. Appl Environ Microbiol 77:2975–2983. CrossRefPubMedPubMedCentralGoogle Scholar
  59. Meyer V, Fiedler M, Nitsche B, King R (2015) The cell factory Aspergillus enters the big data era: opportunities and challenges for optimising product formation. Adv Biochem Eng Biotechnol 149:91–132. PubMedGoogle Scholar
  60. Möller M, Stukenbrock EH (2017) Evolution and genome architecture in fungal plant pathogens. Nat Rev Microbiol 15:771. CrossRefPubMedGoogle Scholar
  61. Navarro-Sampedro L, Yanofsky C, Corrochano LM (2008) A genetic selection for Neurospora crassa mutants altered in their light regulation of transcription. Genetics 178:171–183. CrossRefPubMedPubMedCentralGoogle Scholar
  62. Olmedo M, Ruger-Herreros C, Luque EM, Corrochano LM (2013) Regulation of transcription by light in Neurospora crassa: a model for fungal photobiology? Fungal Biol Rev 27:10–18CrossRefGoogle Scholar
  63. Osmani SA, Mirabito PM (2004) The early impact of genetics on our understanding of cell cycle regulation in Aspergillus nidulans. Fungal Genet Biol 41:401–410CrossRefPubMedGoogle Scholar
  64. Ouyang S, Beecher CN, Wang K, Larive CK, Borkovich KA (2015) Metabolic impacts of using nitrogen and copper-regulated promoters to regulate gene expression in Neurospora crassa. G3 5:1899–908. doi:
  65. Pachlinger R, Mitterbauer R, Adam G, Strauss J (2005) Metabolically independent and accurately adjustable Aspergillus sp. expression system. Appl Environ Microbiol 71:672–678CrossRefPubMedPubMedCentralGoogle Scholar
  66. Powers-Fletcher MV, Kendall BA, Griffin AT, Hanson KE (2016) Filamentous fungi. Microbiol Spectr 4:doi:
  67. Purschwitz J, Müller S, Kastner C, Fischer R (2006) Seeing the rainbow: light sensing in fungi. Curr Opin Microbiol 9:566–571CrossRefPubMedGoogle Scholar
  68. Purschwitz J, Müller S, Kastner C, Schöser M, Haas H, Espeso EA, Atoui A, Calvo AM, Fischer R (2008) Functional and physical interaction of blue- and red-light sensors in Aspergillus nidulans. Curr Biol 18:255–259CrossRefPubMedGoogle Scholar
  69. Purschwitz J, Müller S, Fischer R (2009) Mapping the interaction sites of Aspergillus nidulans phytochrome FphA with the global regulator VeA and the white collar protein LreB. Mol Gen Genomics 281:35–42CrossRefGoogle Scholar
  70. Robertson JB, Davis CR, Johnson CH (2013) Visible light alters yeast metabolic rhythms by inhibiting respiration. Proc Natl Acad Sci U S A 110:21130–21135. CrossRefPubMedPubMedCentralGoogle Scholar
  71. Roche CM, Loros JJ, McCluskey K, Glass NL (2014) Neurospora crassa: looking back and looking forward at a model microbe. Am J Bot 101:2022–2035. CrossRefPubMedGoogle Scholar
  72. Rodríguez-Romero J, Corrochano LM (2006) Regulation by blue light and heat shock of gene transcription in the fungus Phycomyces: proteins required for photoinduction and mechanism for adaptation to light. Mol Microbiol 61:1049–1059CrossRefPubMedGoogle Scholar
  73. Rodriguez-Romero J, Hedtke M, Kastner C, Müller S, Fischer R (2010) Fungi, hidden in soil or up in the air: light makes a difference. Annu Rev Microbiol 64:585–610. CrossRefPubMedGoogle Scholar
  74. Romero B, Turner G, Olivas I, Laborda F, De Lucas JR (2003) The Aspergillus nidulans alcA promoter drives tightly regulated conditional gene expression in Aspergillus fumigatus permitting validation of essential genes in this human pathogen. Fungal Genet Biol 40:103–114CrossRefPubMedGoogle Scholar
  75. Rørth P, Szabo K, Bailey A, Laverty T, Rehm J, Rubin GM, Weigmann K, Milán M, Benes V, Ansorge W, Cohen SM (1998) Systematic gain-of-function genetics in Drosophila. Development 125:1049–1057PubMedGoogle Scholar
  76. Rosales-Saavedra T, Esquivel-Naranjo EU, Casas-Flores S, Martínez-Hernández P, Ibarra-Laclette E, Cortes-Penagos C, Herrera-Estrella A (2006) Novel light-regulated genes in Trichoderma atroviride: a dissection by cDNA microarrays. Microbiology 152:3305–3317CrossRefPubMedGoogle Scholar
  77. Ruger-Herreros C, Rodríguez-Romero J, Fernández-Barranco R, Olmedo M, Fischer R, Corrochano LM, Canovas D (2011) Regulation of conidiation by light in Aspergillus nidulans. Genetics 188:809–822. CrossRefPubMedPubMedCentralGoogle Scholar
  78. Salinas F, Rojas V, Delgado V, Agosin E, Larrondo LF (2017) Optogenetic switches for light-controlled gene expression in yeast. Appl Microbiol Biotechnol 101:2629–2640. CrossRefPubMedGoogle Scholar
  79. Sanz C, Rodríguez-Romero J, Idnurm A, Christie JM, Heitman J, Corrochano LM, Eslava AP (2009) Phycomyces MADB interacts with MADA to form the primary photoreceptor complex for fungal phototropism. Proc Natl Acad Sci U S A 106:7095–7100. CrossRefPubMedPubMedCentralGoogle Scholar
  80. Schmoll M, Franchi L, Kubicek CP (2005) Envoy, a PAS/LOV domain protein of Hypocrea jecorina (Anamorph Trichoderma reesei), modulates cellulase gene transcription in response to light. Eukaryot Cell 4:1998–2007CrossRefPubMedPubMedCentralGoogle Scholar
  81. Schumacher J, Simon A, Cohrs KC, Viaud M, Tudzynski P (2014) The transcription factor BcLTF1 regulates virulence and light responses in the necrotrophic plant pathogen Botrytis cinerea. PLoS Genet 10:e1004040. CrossRefPubMedPubMedCentralGoogle Scholar
  82. Schwerdtfeger C, Linden H (2001) Blue light adaptation and desensitization of light signal transduction in Neurospora crassa. Mol Microbiol 39:1080–1087CrossRefPubMedGoogle Scholar
  83. Schwerdtfeger C, Linden H (2003) VIVID is a flavoprotein and serves as a fungal blue light photoreceptor for photoadaptation. EMBO J 22:4846–4855CrossRefPubMedPubMedCentralGoogle Scholar
  84. Shi M, Collett M, Loros JJ, Dunlap JC (2010) FRQ-interacting RNA helicase mediates negative and positive feedback in the Neurospora circadian clock. Genetics 184:351–361Google Scholar
  85. Shoji JY, Maruyama J, Arioka M, Kitamoto K (2005) Development of Aspergillus oryzae thiA promoter as a tool for molecular biological studies. FEMS Microbiol Lett 244:41–46CrossRefPubMedGoogle Scholar
  86. Smith KM, Sancar G, Dekhang R, Sullivan CM, Li S, Tag AG, Sancar C, Bredeweg EL, Priest HD, McCormick RF, Thomas TL, Carrington JC, Stajich JE, Bell-Pedersen D, Brunner M, Freitag M (2010) Transcription factors in light and circadian clock signaling networks revealed by genomewide mapping of direct targets for neurospora white collar complex. Eukaryot Cell 9:1549–1556. CrossRefPubMedPubMedCentralGoogle Scholar
  87. Sopko R, Huang D, Preston N, Chua G, Papp B, Kafadar K, Snyder M, Oliver SG, Cyert M, Hughes TR, Boone C, Andrews B (2006) Mapping pathways and phenotypes by systematic gene overexpression. Mol Cell 21:319–330. CrossRefPubMedGoogle Scholar
  88. Stajich JE (2016) Fungal evolution: Mucor and Phycomyces see double. Curr Biol 26:R775–R777. CrossRefPubMedGoogle Scholar
  89. Sun J, Phillips CM, Anderson CT, Beeson WT, Marletta MA, Glass NL (2011) Expression and characterization of the Neurospora crassa endoglucanase GH5-1. Protein Expr Purif 75:147–154. CrossRefPubMedGoogle Scholar
  90. Tagua VG, Pausch M, Eckel M, Gutiérrez G, Miralles-Durán A, Sanz C, Eslava AP, Pokorny R, Corrochano LM, Batschauer A (2015) Fungal cryptochrome with DNA repair activity reveals an early stage in cryptochrome evolution. Proc Natl Acad Sci U S A 112:15130–15135. CrossRefPubMedPubMedCentralGoogle Scholar
  91. Tisch D, Schmoll M (2010) Light regulation of metabolic pathways in fungi. Appl Microbiol Biotechnol 85:1259–1277. CrossRefPubMedGoogle Scholar
  92. Tisch D, Schmoll M (2013) Targets of light signalling in Trichoderma reesei. BMC Genomics 14:657. CrossRefPubMedPubMedCentralGoogle Scholar
  93. Tisch D, Kubicek CP, Schmoll M (2011) The phosducin-like protein PhLP1 impacts regulation of glycoside hydrolases and light response in Trichoderma reesei. BMC Genomics 12:613. CrossRefPubMedPubMedCentralGoogle Scholar
  94. Tisch D, Schuster A, Schmoll M (2014) Crossroads between light response and nutrient signalling: ENV1 and PhLP1 act as mutual regulatory pair in Trichoderma reesei. BMC Genomics 15:425. CrossRefPubMedPubMedCentralGoogle Scholar
  95. Vogt K, Bhabhra R, Rhodes JC, Askew DS (2005) Doxycycline-regulated gene expression in the opportunistic fungal pathogen Aspergillus fumigatus. BMC Microbiol 5:1CrossRefPubMedPubMedCentralGoogle Scholar
  96. Wanka F, Cairns T, Boecker S, Berens C, Happel A, Zheng X, Sun J, Krappmann S, Meyer V (2016) Tet-on, or Tet-off, that is the question: advanced conditional gene expression in Aspergillus. Fungal Genet Biol 89:72–83. CrossRefPubMedGoogle Scholar
  97. Wang W, Shi XY, Wei DZ (2014) Light-mediated control of gene expression in filamentous fungus Trichoderma reesei. J Microbiol Methods 103:37–39. CrossRefPubMedGoogle Scholar
  98. Wang B, Zhou X, Loros JJ, Dunlap JC (2015) Alternative use of DNA binding domains by the Neurospora white collar complex dictates circadian regulation and light responses. Mol Cell Biol 36:781–793. CrossRefPubMedGoogle Scholar
  99. Waring RB, May GS, Morris NR (1989) Characterization of an inducible expression system in Aspergillus nidulans using alcA and tubulin-coding genes. Gene 79:119–130CrossRefPubMedGoogle Scholar
  100. Weirauch MT, Yang A, Albu M, Cote AG, Montenegro-Montero A, Drewe P, Najafabadi HS, Lambert SA, Mann I, Cook K, Zheng H, Goity A, van Bakel H, Lozano JC, Galli M, Lewsey MG, Huang E, Mukherjee T, Chen X, Reece-Hoyes JS, Govindarajan S, Shaulsky G, Walhout AJM, Bouget FY, Ratsch G, Larrondo LF, Ecker JR, Hughes TR (2014) Determination and inference of eukaryotic transcription factor sequence specificity. Cell 158:1431–1443. CrossRefPubMedPubMedCentralGoogle Scholar
  101. Wolfers S, Kamerewerd J, Nowrousian M, Sigl C, Zadra I, Kürnsteiner H, Kück U, Bloemendal S (2015) Microarray hybridization analysis of light-dependent gene expression in Penicillium chrysogenum identifies bZIP transcription factor PcAtfA. J Basic Microbiol 55:480–9.
  102. Wu C, Yang F, Smith KM, Peterson M, Dekhang R, Zhang Y, Zucker J, Bredeweg EL, Mallappa C, Zhou X, Lyubetskaya A, Townsend JP, Galagan JE, Freitag M, Dunlap JC, Bell-Pedersen D, Sachs MS (2014) Genome-wide characterization of light-regulated genes in Neurospora crassa. G3 4:1731–45. doi:
  103. Yu Z, Armant O, Fischer R (2016) Fungi use the SakA (HogA) pathway for phytochrome-dependent light signalling. Nat Microbiol 1:16019. CrossRefPubMedGoogle Scholar
  104. Zhang JZ (2003) Overexpression analysis of plant transcription factors. Curr Opin Plant Biol 6:430–440CrossRefPubMedGoogle Scholar
  105. Zhang G, Liu P, Wei W, Wang X, Wei D, Wang W (2016) A light-switchable bidirectional expression system in filamentous fungus Trichoderma reesei. J Biotechnol 240:85–93. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Molecular and Systems BiologyGeisel School of MedicineHanoverUSA
  2. 2.Department of Biochemistry and Cell BiologyGeisel School of MedicineHanoverUSA

Personalised recommendations