Applied Microbiology and Biotechnology

, Volume 102, Issue 9, pp 3831–3848 | Cite as

Impacts of environmental conditions on product formation and morphology of Yarrowia lipolytica

  • Asma Timoumi
  • Stéphane E. Guillouet
  • Carole Molina-Jouve
  • Luc Fillaudeau
  • Nathalie Gorret


The yeast Yarrowia lipolytica is an industrially important microorganism with distinctive physiological and metabolic characteristics. A variety of external factors (e.g., pH, temperature, and nutrient availability) influences the behavior of the yeast and may act as stress conditions which the cells must withstand and adapt. In this mini review, the impacts of environmental factors on the morphology and metabolite production by Y. lipolytica are summarized. In this regard, detailed insights into the effectors involved in the dimorphic transition of Y. lipolytica, the cultivation conditions employed, as well as the methods applied for the morphological characterization are highlighted. Concerning the metabolism products, a special focus is addressed on lipid and citric acid metabolites which have attracted significant attention in recent years. The dependence of lipid and citric acid productivity on key process parameters, such as media composition and physico-chemical variables, is thoroughly discussed. This review attempts to provide a recent update on the topic and will serve as a meaningful resource for researchers working in the field.


Citric acid Environmental conditions Lipid Morphology Yarrowia lipolytica 


Funding information

Financial support for this study was provided by Airbus, Agence Nationale de la Recherche (ANR) and Commissariat aux Investissements d’Avenir via the project ProBio3 “Biocatalytic production of lipidic bioproducts from renewable resources and industrial by-products: BioJet Fuel Application” (ref. ANR-11-BTBT-0003).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Amanullah A, Blair R, Nienow AW, Thomas CR (1999) Effects of agitation intensity on mycelial morphology and protein production in chemostat cultures of recombinant Aspergillus oryzae. Biotechnol Bioeng 62:434–446PubMedCrossRefGoogle Scholar
  2. Amanullah A, Leonildi E, Nienow AW, Thomas CR (2001) Dynamics of mycelial aggregation in cultures of Aspergillus oryzae. Bioprocess Biosyst Eng 24:101–107. CrossRefGoogle Scholar
  3. Anastassiadis S, Wandrey C, Rehm HJ (2005) Continuous citric acid fermentation by Candida oleophila under nitrogen limitation at constant C/N ratio. World J Microbiol Biotechnol 21:695–705. CrossRefGoogle Scholar
  4. Andreishcheva EN, Isakova EP, Sidorov NN, Abramova NB, Ushakova NA, Shaposhnikov GL, Soares MI, Zvyagilskaya RA (1999) Adaptation to salt stress in a salt-tolerant strain of the yeast Yarrowia lipolytica. Biochem Mosc 64:1061–1067Google Scholar
  5. Antonucci S, Bravi M, Bubbico R, Di Michele A, Verdone N (2001) Selectivity in citric acid production by Yarrowia lipolytica. Enzym Microb Technol 28:189–195. CrossRefGoogle Scholar
  6. Arsene F, Tomoyasu T, Bukau B (2000) The heat shock response of Escherichia coli. Int J Food Microbiol 55:3–9. PubMedCrossRefGoogle Scholar
  7. Arzumanov TE, Shishkanova NV, Finogenova TV (2000) Biosynthesis of citric acid by Yarrowia lipolytica repeat-batch culture on ethanol. Appl Microbiol Biotechnol 53:525–529PubMedCrossRefGoogle Scholar
  8. Baez A, Shiloach J (2014) Effect of elevated oxygen concentration on bacteria, yeasts, and cells propagated for production of biological compounds. Microb Cell Factories 13:181. CrossRefGoogle Scholar
  9. Bankar AV, Kumar AR, Zinjarde SS (2009) Environmental and industrial applications of Yarrowia lipolytica. Appl Microbiol Biotechnol 84:847–865. PubMedCrossRefGoogle Scholar
  10. Barria C, Malecki M, Arraiano CM (2013) Bacterial adaptation to cold. Microbiol SGM 159:2437–2443. CrossRefGoogle Scholar
  11. Barth G, Gaillardin C (1996) Yarrowia lipolytica. In: Wolf K (ed) Nonconventional yeasts in biotechnology. Springer-Verlag, Berlin, pp 313–388CrossRefGoogle Scholar
  12. Barth G, Gaillardin C (1997) Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. FEMS Microbiol Rev 19:219–237PubMedCrossRefGoogle Scholar
  13. Beales N (2004) Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: a review. Compr Rev Food Sci Food Saf 3:1–20. CrossRefGoogle Scholar
  14. Bellou S, Makri A, Triantaphyllidou IE, Papanikolaou S, Aggelis G (2014) Morphological and metabolic shifts of Yarrowia lipolytica induced by alteration of the dissolved oxygen concentration in the growth environment. Microbiol SGM 160:807–817. CrossRefGoogle Scholar
  15. Bellou S, Triantaphyllidou I-E, Aggeli D, Elazzazy AM, Baeshen MN, Aggelis G (2016a) Microbial oils as food additives: recent approaches for improving microbial oil production and its polyunsaturated fatty acid content. Curr Opin Biotechnol 37:24–35. PubMedCrossRefGoogle Scholar
  16. Bellou S, Triantaphyllidou IE, Mizerakis P, Aggelis G (2016b) High lipid accumulation in Yarrowia lipolytica cultivated under double limitation of nitrogen and magnesium. J Biotechnol 234:116–126. PubMedCrossRefGoogle Scholar
  17. Belo I, Braga A, Mesquita D, Amaral L, Ferreira E (2015) Comparison of aroma production from castor oil by Yarrowia lipolytica in airlift and STR bioreactors. J Biotechnol 208:S14–S14. CrossRefGoogle Scholar
  18. Beopoulos A, Cescut J, Haddouche R, Uribelarrea JL, Molina-Jouve C, Nicaud JM (2009) Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 48:375–387. PubMedCrossRefGoogle Scholar
  19. Biryukova EN, Medentsev AG, Arinbasarova AY, Akimenko VK (2007) Adaptation of the yeast Yarrowia lipolytica to heat shock. Microbiology 76:158–163. CrossRefGoogle Scholar
  20. Boor KJ (2006) Bacterial stress responses: what doesn’t kill them can make them stronger. PLoS Biol 4:18–20. CrossRefGoogle Scholar
  21. Botelho Nunes PM, da Rocha SM, Fonseca Amaral PF, Miguez da Rocha-Leao MH (2013) Study of trans-trans farnesol effect on hyphae formation by Yarrowia lipolytica. Bioprocess Biosyst Eng 36:1967–1975. CrossRefGoogle Scholar
  22. Bouchedja DN, Danthine S, Kar T, Fickers P, Boudjellal A, Delvigne F (2017) Online flow cytometry, an interesting investigation process for monitoring lipid accumulation, dimorphism, and cells’ growth in the oleaginous yeast Yarrowia lipolytica JMY 775. Bioresour Bioprocess 4:3. PubMedPubMedCentralCrossRefGoogle Scholar
  23. Braga A, Belo I (2016) Biotechnological production of gamma-decalactone, a peach like aroma, by Yarrowia lipolytica. World J Microbiol Biotechnol 32:169. PubMedCrossRefGoogle Scholar
  24. Braga A, Mesquita DP, Amaral AL, Ferreira EC, Belo I (2015) Aroma production by Yarrowia lipolytica in airlift and stirred tank bioreactors: differences in yeast metabolism and morphology. Biochem Eng J 93:55–62. CrossRefGoogle Scholar
  25. Braga A, Mesquita DP, Amaral AL, Ferreira EC, Belo I (2016) Quantitative image analysis as a tool for Yarrowia lipolytica dimorphic growth evaluation in different culture media. J Biotechnol 217:22–30. PubMedCrossRefGoogle Scholar
  26. Brigida AIS, Amaral PFF, Coelho MAZ, Goncalves LRB (2014) Lipase from Yarrowia lipolytica: production, characterization and application as an industrial biocatalyst. J Mol Catal B Enzym 101:148–158. CrossRefGoogle Scholar
  27. Broach JR (2012) Nutritional control of growth and development in yeast. Genetics 192:73–105. PubMedPubMedCentralCrossRefGoogle Scholar
  28. Buckland BC, Gbewonyo K, Dimasi D, Hunt G, Westerfield G, Nienow AW (1988) Improved performance in viscous mycelial fermentations by agitator retrofitting. Biotechnol Bioeng 31:737–742. PubMedCrossRefGoogle Scholar
  29. Cavallo E, Charreau H, Cerrutti P, Foresti ML (2017) Yarrowia lipolytica: a model yeast for citric acid production. FEMS Yeast Res 17.
  30. Celik G, Ucar FB, Akpinar O, Corbaci C (2014) Production of citric and isocitric acid by Yarrowia lipolytica strains grown on different carbon sources. Turk J Biochem 39:285–290. CrossRefGoogle Scholar
  31. Cervantes-Chavez JA, Ruiz-Herrera J (2007) The regulatory subunit of protein kinase a promotes hyphal growth and plays an essential role in Yarrowia lipolytica. FEMS Yeast Res 7:929–940. PubMedCrossRefGoogle Scholar
  32. Cescut J (2009) Accumulation d'acylglycérols par des espèces levuriennes à usage carburant aéronautique: physiologie et performances de procédés. Doctoral dissertation, Toulouse, INSAGoogle Scholar
  33. Coelho MAZ, Amaral PFF, Belo I (2010) Yarrowia lipolytica: an industrial workhorse. In: Mendez Vilas A (ed) Current research, technology and education topics in applied microbiology and microbialbiotechnology. Formatex, Badajoz, pp 930–944Google Scholar
  34. Crolla A, Kennedy KJ (2001) Optimization of citric acid production from Candida lipolytica Y-1095 using n-paraffin. J Biotechnol 89:27–40. PubMedCrossRefGoogle Scholar
  35. Crolla A, Kennedy KJ (2004) Fed-batch production of citric acid by Candida lipolytica grown on n-paraffins. J Biotechnol 110:73–84. PubMedCrossRefGoogle Scholar
  36. da Silva LV, Tavares CB, Amaral PFF, Coelho MAZ (2012) Production of citric acid by Yarrowia lipolytica in different crude glycerol concentrations and in different nitrogen sources. In: Bardone E, Brucato A, Keshavarz T, Pierucci S, Klemes JJ (eds) Ibic2012: International Conference on Industrial Biotechnology, vol 27. Chemical engineering transactions. pp 199–204.
  37. Darvishi F, Nahvi I, Zarkesh-Esfahani H, Momenbeik F (2009) Effect of plant oils upon lipase and citric acid production in Yarrowia lipolytica yeast. J Biomed Biotechnol 2009:1–7. CrossRefGoogle Scholar
  38. Dobrowolski A, Mitula P, Rymowicz W, Mironczuk AM (2016) Efficient conversion of crude glycerol from various industrial wastes into single cell oil by yeast Yarrowia lipolytica. Bioresour Technol 207:237–243. PubMedCrossRefGoogle Scholar
  39. Dominguez A, Ferminan E, Gaillardin C (2000) Yarrowia lipolytica: an organism amenable to genetic manipulation as a model for analyzing dimorphism in fungi. Contrib Microbiol 5:151–172PubMedCrossRefGoogle Scholar
  40. Donot F, Fontana A, Baccou JC, Strub C, Schorr-Galindo S (2014) Single cell oils (SCOs) from oleaginous yeasts and moulds: production and genetics. Biomass Bioenergy 68:135–150. CrossRefGoogle Scholar
  41. Douglas Brown B, Hsu KH, Hammond EG, Glatz BA (1989) A relationship between growth and lipid accumulation in Candida curvata D. J Ferment Bioeng 68:344–352. CrossRefGoogle Scholar
  42. Egermeier M, Russmayer H, Sauer M, Marx H (2017) Metabolic flexibility of Yarrowia lipolytica growing on glycerol. Front Microbiol 8:49. PubMedPubMedCentralCrossRefGoogle Scholar
  43. Enshaeieh M, Abdoli A, Nahvi I (2013) Medium optimization for biotechnological production of single cell oil using Candida gali and Yarrowia lipolytica M7. J Cell Mol Res 5:17–23Google Scholar
  44. Ferreira P, Lopes M, Mota M, Belo I (2016a) Oxygen mass transfer impact on citric acid production by Yarrowia lipolytica from crude glycerol. Biochem Eng J 110:35–42. CrossRefGoogle Scholar
  45. Ferreira P, Lopes M, Mota M, Belo I (2016b) Oxygen transfer rate and pH as major operating parameters of citric acid production from glycerol by Yarrowia lipolytica W29 and CBS 2073. Chem Pap 70:869–876. CrossRefGoogle Scholar
  46. Fickers P, Benetti PH, Wache Y, Marty A, Mauersberger S, Smit MS, Nicaud JM (2005) Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res 5:527–543. PubMedCrossRefGoogle Scholar
  47. Fickers P, Marty A, Nicaud JM (2011) The lipases from Yarrowia lipolytica: genetics, production, regulation, biochemical characterization and biotechnological applications. Biotechnol Adv 29:632–644. PubMedCrossRefGoogle Scholar
  48. Fillaudeau L, Cescut J, Anne-Archard D, Nicaud J, Uribelarrea J-L, Molina-Jouve C (2009) Morphology and rheological behaviour of Yarrowia lipolytica during production of intra-cellular energetic molecules: impact of lipid accumulation and genetic modifications. In: 8th World Congress of Chemical Engineering, WCCE8, Montréal, Canada, 2009Google Scholar
  49. Finogenova TV, Kamzolova SV, Dedyukhina EG, Shishkanova NV, Il’chenko AP, Morgunov IG, Chernyavskaya OG, Sokolov AP (2002) Biosynthesis of citric and isocitric acids from ethanol by mutant Yarrowia lipolytica N 1 under continuous cultivation. Appl Microbiol Biotechnol 59:493–500. PubMedCrossRefGoogle Scholar
  50. Finogenova TV, Morgunov IG, Kamzolova SV, Chernyavskaya OG (2005) Organic acid production by the yeast Yarrowia lipolytica: a review of prospects. Appl Biochem Microbiol 41:418–425. CrossRefGoogle Scholar
  51. Goncalves FAG, Colen G, Takahashi JA (2014) Yarrowia lipolytica and its multiple applications in the biotechnological industry. Sci World J 2014:1–14. CrossRefGoogle Scholar
  52. Gonzalez-Lopez CI, Ortiz-Castellanos L, Ruiz-Herrera J (2006) The ambient pH response rim pathway in Yarrowia lipolytica: identification of YlRIM9 and characterization of its role in dimorphism. Curr Microbiol 53:8–12. PubMedCrossRefGoogle Scholar
  53. Groenewald M, Boekhout T, Neuveglise C, Gaillardin C, van Dijck PWM, Wyss M (2014) Yarrowia lipolytica: safety assessment of an oleaginous yeast with a great industrial potential. Crit Rev Microbiol 40:187–206. PubMedCrossRefGoogle Scholar
  54. Groposila-Constantinescu D, Popa O, Margarit G, Visan L (2015) Production of microbial lipids by Yarrowia lipolytica. Rom Biotechnol Lett 20:10936–10944Google Scholar
  55. Guan N, Li J, H-d S, Du G, Chen J, Liu L (2017) Microbial response to environmental stresses: from fundamental mechanisms to practical applications. Appl Microbiol Biotechnol 101:3991–4008. PubMedCrossRefGoogle Scholar
  56. Guevaraolvera L, Calvomendez C, Ruizherrera J (1993) The role of polyamine metabolism in dimorphism of Yarrowia lipolytica. J Gen Microbiol 139:485–493CrossRefGoogle Scholar
  57. Hall HK, Karem KL, Foster JW (1995) Molecular responses of microbes to environmental pH stress. Adv Microb Physiol 37:229–272. PubMedCrossRefGoogle Scholar
  58. Harder W, Dijkhuizen L (1983) Physiological responses to nutrient limitation. Annu Rev Microbiol 37:1–23. PubMedCrossRefGoogle Scholar
  59. Herbert D (1991) The chemical composition of micro-organisms as a function of their environment. Symp Soc Gen Microbiol 11:391–416Google Scholar
  60. Heretsch P, Thomas F, Aurich A, Krautscheid H, Sicker D, Giannis A (2008) Syntheses with a chiral building block from the citric acid cycle: (2R,3S)-Isocitric acid by fermentation of sunflower oil. Angew Chem Int Ed 47:1958–1960. CrossRefGoogle Scholar
  61. Herrero AB, Lopez MC, Fernandez-Lago L, Dominguez A (1999) Candida albicans and Yarrowia lipolytica as alternative models for analysing budding patterns and germ tube formation in dimorphic fungi. Microbiol SGM 145:2727–2737CrossRefGoogle Scholar
  62. Ibrahim D, Weloosamy H, Lim S-H (2015) Effect of agitation speed on the morphology of Aspergillus niger HFD5A-1 hyphae and its pectinase production in submerged fermentation. World J Biol Chem 6:265–271. PubMedPubMedCentralCrossRefGoogle Scholar
  63. Jimenez-Bremont JF, Rodriguez-Hernandez AA, Rodriguez-Kessler M (2012) Development and dimorphism of the yeast Yarrowia lipolytica. Dimorphic fungi: their importance as models for differentiation and fungal pathogenesis. In: Ruiz-Herrera J (ed) , vol 1. Bentham Science Publishers, Oak Park, pp 58–66Google Scholar
  64. Jolivet P, Bergeron E, Benyair H, Meunier JC (2001) Characterization of major protein phosphatases from selected species of Kluyveromyces. Comparison with protein phosphatases from Yarrowia lipolytica. Can J Microbiol 47:861–870PubMedCrossRefGoogle Scholar
  65. Juneja A, Ceballos RM, Murthy GS (2013) Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies 6:4607–4638. CrossRefGoogle Scholar
  66. Kamzolova SV, Morgunov IG (2017) Metabolic peculiarities of the citric acid overproduction from glucose in yeasts Yarrowia lipolytica. Bioresour Technol 243:433–440. PubMedCrossRefGoogle Scholar
  67. Kamzolova SV, Shishkanova NV, Morgunov IG, Finogenova TV (2003) Oxygen requirements for growth and citric acid production of Yarrowia lipolytica. FEMS Yeast Res 3:217–222. PubMedCrossRefGoogle Scholar
  68. Kamzolova SV, Finogenova TV, Lunina IN, Perevoznikova OA, Minachova LN, Morgunov IG (2007) Synthesis citric and isocitric acids by Yarrowia lipolytica during yeasts growth on rapeseed oils. Mikrobiologiia 76:26–31PubMedGoogle Scholar
  69. Kamzolova SV, Finogenova TV, Morgunov IG (2008) Microbiological production of citric and isocitric acids from sunflower oil. Food Technol Biotechnol 46:51–59Google Scholar
  70. Karasu-Yalcin S, Bozdemir MT, Ozbas ZY (2010) Effects of different fermentation conditions on growth and citric acid production kinetics of two Yarrowia lipolytica strains. Chem Biochem Eng Q 24:347–360Google Scholar
  71. Kawasse FM, Amaral PF, Rocha-Leao MHM, Amaral AL, Ferreira EC, Coelho MAZ (2003) Morphological analysis of Yarrowia lipolytica under stress conditions through image processing. Bioprocess Biosyst Eng 25:371–375. PubMedCrossRefGoogle Scholar
  72. Kim J, Cheon SA, Park S, Song Y, Kim JY (2000) Serum-induced hypha formation in the dimorphic yeast Yarrowia lipolytica. FEMS Microbiol Lett 190:9–12PubMedCrossRefGoogle Scholar
  73. Kim SW, Hwang HJ, Xu CP, Choi JW, Yun JW (2003) Effect of aeration and agitation on the production of mycelial biomass and exopolysaccharides in an entomopathogenic fungus Paecilomyces sinclairii. Lett Appl Microbiol 36:321–326. PubMedCrossRefGoogle Scholar
  74. Kuttiraja M, Douha A, Valero JR, Tyagi RD (2016) Elucidating the effect of glycerol concentration and C/N ratio on lipid production using Yarrowia lipolytica SKY7. Appl Biochem Biotechnol 180:1586–1600. PubMedCrossRefGoogle Scholar
  75. Kuttiraja M, Dhouha A, Tyagi RD (2017) Harnessing the effect of pH on lipid production in batch cultures of Yarrowia lipolytica SKY7. Appl Biochem Biotechnol.
  76. Ledesma-Amaro R, Nicaud JM (2016a) Metabolic engineering for expanding the substrate range of Yarrowia lipolytica. Trends Biotechnol 34:798–809. PubMedCrossRefGoogle Scholar
  77. Ledesma-Amaro R, Nicaud JM (2016b) Yarrowia lipolytica as a biotechnological chassis to produce usual and unusual fatty acids. Prog Lipid Res 61:40–50. PubMedCrossRefGoogle Scholar
  78. Levinson WE, Kurtzman CP, Kuo TM (2007) Characterization of Yarrowia lipolytica and related species for citric acid production from glycerol. Enzym Microb Technol 41:292–295. CrossRefGoogle Scholar
  79. Li Q, Du W, Liu D (2008) Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 80:749–756. PubMedCrossRefGoogle Scholar
  80. Liu HH, Ji XJ, Huang H (2015a) Biotechnological applications of Yarrowia lipolytica: past, present and future. Biotechnol Adv 33:1522–1546. PubMedCrossRefGoogle Scholar
  81. Liu X, Wang X, Xu J, Xia J, Lv J, Zhang T, Wu Z, Deng Y, He J (2015b) Citric acid production by Yarrowia lipolytica SWJ-1b using corn steep liquor as a source of organic nitrogen and vitamins. Ind Crop Prod 78:154–160. CrossRefGoogle Scholar
  82. Liu HH, Zeng SY, Shi TQ, Ding Y, Ren LJ, Song P, Huang H, Madzak C, Ji XJ (2017) A Yarrowia lipolytica strain engineered for arachidonic acid production counteracts metabolic burden by redirecting carbon flux towards intracellular fatty acid accumulation at the expense of organic acids secretion. Biochem Eng J 128:201–209. CrossRefGoogle Scholar
  83. Lopes M (2013) Characterization of non-conventional yeasts under hyperbaric conditions : cellular response to oxidative stress. Doctoral dissertation, University of Minho, PortugalGoogle Scholar
  84. Lopes M, Gomes N, Goncalves C, Coelho MAZ, Mota M, Belo I (2008) Yarrowia lipolytica lipase production enhanced by increased air pressure. Lett Appl Microbiol 46:255–260. PubMedCrossRefGoogle Scholar
  85. Lopes M, Belo I, Mota M (2014) Over-pressurized bioreactors: application to microbial cell cultures. Biotechnol Prog 30:767–775. PubMedCrossRefGoogle Scholar
  86. Lopes M, Gomes AS, Silva CM, Belo I (2017) Microbial lipids and added value metabolites production by Yarrowia lipolytica from pork lard. J Biotechnol 265:76–85. PubMedCrossRefGoogle Scholar
  87. Madzak C (2015) Yarrowia lipolytica: recent achievements in heterologous protein expression and pathway engineering. Appl Microbiol Biotechnol 99:4559–4577. PubMedCrossRefGoogle Scholar
  88. Madzak C, Beckerich J-M (2013) Heterologous protein expression and secretion in Yarrowia lipolytica. In: Barth G (ed) Yarrowia lipolytica: biotechnological applications. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 1–76. Google Scholar
  89. Magdouli S, Brar SK, Blais JF (2017a) Morphology and rheological behaviour of Yarrowia lipolytica: impact of dissolved oxygen level on cell growth and lipid composition. Process Biochem 65:1–10. CrossRefGoogle Scholar
  90. Magdouli S, Guedri T, Tarek R, Brar SK, Blais JF (2017b) Valorization of raw glycerol and crustacean waste into value added products by Yarrowia lipolytica. Bioresour Technol 243:57–68. PubMedCrossRefGoogle Scholar
  91. Marden P, Tunlid A, Malmcronafriberg K, Odham G, Kjelleberg S (1985) Physiological and morphological changes during short term starvation of marine bacterial isolates. Arch Microbiol 142:326–332. CrossRefGoogle Scholar
  92. Max B, Salgado JM, Rodriguez N, Cortes S, Converti A, Dominguez JM (2010) Biotechnological production of citric acid. Braz J Microbiol 41:862–875. PubMedPubMedCentralCrossRefGoogle Scholar
  93. Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M (2009) Biodiesel production from oleaginous microorganisms. Renew Energy 34:1–5. CrossRefGoogle Scholar
  94. Moat AG, Foster JW, Spector MP (2003) Microbial stress responses. In: Microbial physiology. John Wiley & Sons, Inc., pp 582–611. Google Scholar
  95. Morales-Vargas AT, Dominguez A, Ruiz-Herrera J (2012) Identification of dimorphism-involved genes of Yarrowia lipolytica by means of microarray analysis. Res Microbiol 163:378–387. PubMedCrossRefGoogle Scholar
  96. Morgunov IG, Kamzolova SV, Lunina JN (2013) The citric acid production from raw glycerol by Yarrowia lipolytica yeast and its regulation. Appl Microbiol Biotechnol 97:7387–7397. PubMedCrossRefGoogle Scholar
  97. Nicaud J-M (2012) Yarrowia lipolytica. Yeast 29:409–418. PubMedCrossRefGoogle Scholar
  98. Novotny C, Dolezalova L, Lieblova J (1994) Dimorphic growth and lipase production in lipolytic yeasts. Folia Microbiol 39:71–73. CrossRefGoogle Scholar
  99. Ochoa-Estopier A (2012) Analyse systématique des bascules métaboliques chez les levures d'intérêt industriel: application aux bascules du métabolisme lipidique chez Yarrowia lipolytica. Doctoral dissertation, Toulouse, INSAGoogle Scholar
  100. Ochoa-Estopier A, Guillouet SE (2014) D-stat culture for studying the metabolic shifts from oxidative metabolism to lipid accumulation and citric acid production in Yarrowia lipolytica. J Biotechnol 170:35–41. PubMedCrossRefGoogle Scholar
  101. Ogrydziak DM (2003) Regulation of production of Yarrowia lipolytica extracellular ribonuclease and alkaline extracellular protease. In: Wolf K, Breunig K, Barth G (eds) Non-conventional yeasts in genetics, biochemistry and biotechnology: practical protocols. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 401–406. CrossRefGoogle Scholar
  102. Oswal N, Sarma PM, Zinjarde SS, Pant A (2002) Palm oil mill effluent treatment by a tropical marine yeast. Bioresour Technol 85:35–37. PubMedCrossRefGoogle Scholar
  103. Ota Y, Oikawa S, Morimoto Y, Minoda Y (1984) Nutritional factors causing mycelial development of Saccharomycopsis lipolytica. Agric Biol Chem 48:1933–1939Google Scholar
  104. Otto C, Holz M, Barth G (2013) Production of organic acids by Yarrowia lipolytica. In: Barth G (ed) Yarrowia lipolytica: biotechnological applications. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 137–149. CrossRefGoogle Scholar
  105. Palande AS, Kulkarni SV, Leon-Ramirez C, Campos-Gongora E, Ruiz-Herrera J, Deshpande MV (2014) Dimorphism and hydrocarbon metabolism in Yarrowia lipolytica var. indica. Arch Microbiol 196:545–556. PubMedCrossRefGoogle Scholar
  106. Papanikolaou S, Aggelis G (2011) Lipids of oleaginous yeasts. Part II: technology and potential applications. Eur J Lipid Sci Technol 113:1052–1073. CrossRefGoogle Scholar
  107. Papanikolaou S, Chevalot I, Komaitis M, Marc I, Aggelis G (2002a) Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures. Appl Microbiol Biotechnol 58:308–312. PubMedCrossRefGoogle Scholar
  108. Papanikolaou S, Muniglia L, Chevalot I, Aggelis G, Marc I (2002b) Yarrowia lipolytica as a potential producer of citric acid from raw glycerol. J Appl Microbiol 92:737–744. PubMedCrossRefGoogle Scholar
  109. Papanikolaou S, Galiotou-Panayotou M, Chevalot I, Komaitis M, Marc I, Aggelis G (2006) Influence of glucose and saturated free-fatty acid mixtures on citric acid and lipid production by Yarrowia lipolytica. Curr Microbiol 52:134–142. PubMedCrossRefGoogle Scholar
  110. Papanikolaou S, Chevalot I, Galiotou-Panayotou M, Komaitis M, Marc I, Aggelis G (2007) Industrial derivative of tallow: a promising renewable substrate for microbial lipid, single-cell protein and lipase production by Yarrowia lipolytica. Electron J Biotechnol 10:425–435. CrossRefGoogle Scholar
  111. Papanikolaou S, Galiotou-Panayotou M, Fakas S, Komaitis M, Aggelis G (2008) Citric acid production by Yarrowia lipolytica cultivated on olive-mill wastewater-based media. Bioresour Technol 99:2419–2428. PubMedCrossRefGoogle Scholar
  112. Papouskova M, Sychrova H (2006) Yarrowia lipolytica possesses two plasma membrane alkali metal cation/H+ antiporters with different functions in cell physiology. FEBS Lett 580:1971–1976. PubMedCrossRefGoogle Scholar
  113. Perez-Campo FM, Dominguez A (2001) Factors affecting the morphogenetic switch in Yarrowia lipolytica. Curr Microbiol 43:429–433. PubMedCrossRefGoogle Scholar
  114. Phadtare S (2004) Recent developments in bacterial cold-shock response. Curr Issues Mol Biol 6:125–136PubMedGoogle Scholar
  115. Portelli B (2011) Biologie systémique et intégrative pour l'amélioration de l'accumulation et de la sélectivité des acides gras accumulés dans les espèces levuriennes. Doctoral dissertation, Toulouse, INSAGoogle Scholar
  116. Rane KD, Sims KA (1994) Oxygen uptake and citric acid production by Candida lipolytica Y 1095. Biotechnol Bioeng 43:131–137. PubMedCrossRefGoogle Scholar
  117. Rane KD, Sims KA (1996) Citric acid production by Yarrowia lipolytica: effect of nitrogen and biomass concentration on yield and productivity. Biotechnol Lett 18:1139–1144. CrossRefGoogle Scholar
  118. Ratledge C (1994) Yeasts, moulds, algae and bacteria as sources of lipids. In: Kamel BS, Kakuda Y (eds) Technological advances in improved and alternative sources of lipids. Springer US, Boston, pp 235–291. CrossRefGoogle Scholar
  119. Ratledge C, Wynn JP (2002) The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 51:1–51PubMedCrossRefGoogle Scholar
  120. Requena JM (2012) Stress response in microbiology. Caister Academic Press, PooleGoogle Scholar
  121. Rodriguez C, Dominguez A (1984) The growth characteristics of Saccharomycopsis lipolytica: morphology and induction of mycelium formation. Can J Microbiol 30:605–612CrossRefGoogle Scholar
  122. Rossi M, Amaretti A, Raimondi S, Leonardi A (2011) Getting lipids for biodiesel production from oleaginous fungi. In: Stoytcheva M, Montero G, editors. Biodiesel - feedstocks and processing technologies. Rijeka: InTech, pp 71–92.
  123. Ruiz-Herrera J, Sentandreu R (2002) Different effectors of dimorphism in Yarrowia lipolytica. Arch Microbiol 178:477–483. PubMedCrossRefGoogle Scholar
  124. Rymowicz W, Rywinska A, Zarowska B, Juszczyk P (2006) Citric acid production from raw glycerol by acetate mutants of Yarrowia lipolytica. Chem Pap-Chem Zvesti 60:391–394. Google Scholar
  125. Rywinska A, Rymowicz W, Zarowska B, Skrzypinski A (2010) Comparison of citric acid production from glycerol and glucose by different strains of Yarrowia lipolytica. World J Microbiol Biotechnol 26:1217–1224. PubMedCrossRefGoogle Scholar
  126. Rywinska A, Musial I, Rymowicz W, Zarowska B, Boruczkowski T (2012) Effect of agitation and aeration on the citric acid production by Yarrowia lipolytica grown on glycerol. Prep Biochem Biotechnol 42:279–291. PubMedCrossRefGoogle Scholar
  127. Sabra W, Bommareddy RR, Maheshwari G, Papanikolaou S, Zeng A-P (2017) Substrates and oxygen dependent citric acid production by Yarrowia lipolytica: insights through transcriptome and fluxome analyses. Microb Cell Factories 16:78. CrossRefGoogle Scholar
  128. Sagnak R, Cochot S, Molina-Jouve C, Nicaud JM, Guillouet SE (2017) Modulation of the glycerol phosphate availability led to concomitant reduction in the citric acid excretion and increase in lipid content and yield in Yarrowia lipolytica. J Biotechnol 265:40–45. PubMedCrossRefGoogle Scholar
  129. Saito H, Kobayashi H (2003) Bacterial responses to alkaline stress. Sci Prog 86:271–282. PubMedCrossRefGoogle Scholar
  130. Sarris D, Galiotou-Panayotou M, Koutinas AA, Komaitis M, Papanikolaou S (2011) Citric acid, biomass and cellular lipid production by Yarrowia lipolytica strains cultivated on olive mill wastewater-based media. J Chem Technol Biotechnol 86:1439–1448. CrossRefGoogle Scholar
  131. Sarris D, Stoforos NG, Mallouchos A, Kookos IK, Koutinas AA, Aggelis G, Papanikolaou S (2017) Production of added-value metabolites by Yarrowia lipolytica growing in olive mill wastewater-based media under aseptic and non-aseptic conditions. Eng Life Sci 17:695–709. CrossRefGoogle Scholar
  132. Sekova VY, Isakova EP, Deryabina YI (2015) Biotechnological applications of the Extremophilic yeast Yarrowia lipolytica (review). Appl Biochem Microbiol 51:278–291. CrossRefGoogle Scholar
  133. Serra-Cardona A, Canadell D, Arino J (2015) Coordinate responses to alkaline pH stress in budding yeast. Microb Cell 2:182–196. PubMedPubMedCentralCrossRefGoogle Scholar
  134. Shaw MK (1967) Effect of abrupt temperature shift on the growth of mesophilic and psychrophilic yeasts. J Bacteriol 93:1332-&Google Scholar
  135. Show PL, Oladele KO, Siew QY, Zakry FAA, Lan JC-W, Ling TC (2015) Overview of citric acid production from Aspergillus niger. Front Life Sci 8:271–283. CrossRefGoogle Scholar
  136. Sinigaglia M, Lanciotti R, Guerzoni ME (1994) Biochemical and physiological characteristics of Yarrowia lipolytica strains in relation to isolation source. Can J Microbiol 40:54–59PubMedCrossRefGoogle Scholar
  137. Soccol CR, Vandenberghe LPS, Rodrigues C, Pandey A (2006) New perspectives for citric acid production and application. Food Technol Biotechnol 44:141–149Google Scholar
  138. Szabo R (1999) Dimorphism in Yarrowia lipolytica: filament formation is suppressed by nitrogen starvation and inhibition of respiration. Folia Microbiol 44:19–24. CrossRefGoogle Scholar
  139. Szabo R, Stofanikova V (2002) Presence of organic sources of nitrogen is critical for filament formation and pH-dependent morphogenesis in Yarrowia lipolytica. FEMS Microbiol Lett 206:45–50. PubMedCrossRefGoogle Scholar
  140. Thevenieau F, Nicaud J-M (2013) Microorganisms as sources of oils. OCL 20:D603CrossRefGoogle Scholar
  141. Thevenieau F, Beopoulos A, Desfougeres T, Sabirova J, Albertin K, Zinjarde S, Nicaud J-M (2010) Uptake and assimilation of hydrophobic substrates by the oleaginous yeast Yarrowia lipolytica. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 1513–1527. CrossRefGoogle Scholar
  142. Timoumi A, Bideaux C, Guillouet SE, Allouche Y, Molina-Jouve C, Fillaudeau L, Gorret N (2017a) Influence of oxygen availability on the metabolism and morphology of Yarrowia lipolytica: insights into the impact of glucose levels on dimorphism. Appl Microbiol Biotechnol 101:7317–7333. PubMedCrossRefGoogle Scholar
  143. Timoumi A, Cléret M, Bideaux C, Guillouet SE, Allouche Y, Molina-Jouve C, Fillaudeau L, Gorret N (2017b) Dynamic behavior of Yarrowia lipolytica in response to pH perturbations: dependence of the stress response on the culture mode. Appl Microbiol Biotechnol 101:351–366. PubMedCrossRefGoogle Scholar
  144. Tomaszewska L, Rakicka M, Rymowicz W, Rywinska A (2014) A comparative study on glycerol metabolism to erythritol and citric acid in Yarrowia lipolytica yeast cells. FEMS Yeast Res 14:966–976. PubMedCrossRefGoogle Scholar
  145. Turcotte G, Kosaric N (1989) Lipid biosynthesis in oleaginous yeasts. In: Bioprocesses and engineering. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 73–92. CrossRefGoogle Scholar
  146. van der Walt JP, von Arx JA (1980) The yeast genus Yarrowia gen. nov. Antonie Van Leeuwenhoek. J Microbiol 46:517–521Google Scholar
  147. Waché Y, Aguedo M, Nicaud J-M, Belin J-M (2003) Catabolism of hydroxyacids and biotechnological production of lactones by Yarrowia lipolytica. Appl Microbiol Biotechnol 61:393–404. PubMedCrossRefGoogle Scholar
  148. Yalcin SK, Bozdemir MT, Ozbas ZY (2009) A comparative study on citric acid production kinetics of two Yarrowia lipolytica strains in two different media. Indian J Biotechnol 8:408–417Google Scholar
  149. Yalcin SK, Bozdemir MT, Ozbas ZY (2010) Citric acid production by yeasts: fermentation conditions, process optimization and strain improvement. In: Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, vol 9, pp 1374–1382Google Scholar
  150. Yarrow D (1972) Four new combinations in yeasts. Antonie Van Leeuwenhoek. J Microbiol Serol 38:357-&. Google Scholar
  151. Zinjarde SS, Pant A, Deshpande MV (1998) Dimorphic transition in Yarrowia lipolytica isolated from oil-polluted sea water. Mycol Res 102:553–558. CrossRefGoogle Scholar
  152. Zinjarde SS, Kale BV, Vishwasrao PV, Kumar AR (2008) Morphogenetic behavior of tropical marine yeast Yarrowia lipolytica in response to hydrophobic substrates. J Microbiol Biotechnol 18:1522–1528PubMedGoogle Scholar
  153. Zinjarde S, Apte M, Mohite P, Kumar AR (2014) Yarrowia lipolytica and pollutants: interactions and applications. Biotechnol Adv 32:920–933. PubMedCrossRefGoogle Scholar
  154. Znidarsic P, Pavko A (2001) The morphology of filamentous fungi in submerged cultivations as a bioprocess parameter. Food Technol Biotechnol 39:237–252Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Asma Timoumi
    • 1
  • Stéphane E. Guillouet
    • 1
  • Carole Molina-Jouve
    • 1
  • Luc Fillaudeau
    • 1
  • Nathalie Gorret
    • 1
  1. 1.LISBP, CNRS, INRA, INSAUniversité de ToulouseToulouseFrance

Personalised recommendations